A SPECIAL CLASS OF HARMONIC UNIVALENT **FUNCTIONS**

TUĞBA GENCEL AND SIBEL YALCIN

ABSTRACT. We define and investigate a special class of Salagean-type harmonic univalent functions in the open unit disk. We obtain coefficient conditions, extreme points, distortion bounds, convex combinations for the above class of harmonic univalent functions.

1. INTRODUCTION

A continuous complex-valued function $f = u + iv$ defined in a simply connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D . In any simply connected domain we can write $f = h + \bar{g}$, where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $|h'(z)| > |g'(z)|$, $z \in D$.

Denote by S_H the class of functions $f = h + \bar{g}$ that are harmonic univalent and sense-preserving in the unit disk $U = \{z : |z| < 1\}$ for which $f(0) =$ $f_z(0) - 1 = 0$. Then for $f = h + \bar{g} \in S_H$ we may express the analytic functions h and q as

$$
h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad g(z) = \sum_{k=1}^{\infty} b_k z^k, \quad |b_1| < 1. \tag{1.1}
$$

In 1984 Clunie and Sheil-Small [1] investigated the class S_H as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on S_H and its subclasses. See [2,6,7]. Jahangiri et al. [4] make use of the Alexander integral transforms of certain analytic functions (which are starlike or convex of positive order) with a view to investigating the construction of sense-preserving, univalent, and close to convex harmonic functions.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C45 ; Secondary 30C50.

Key words and phrases. Harmonic function, coefficient inequalities, Salagean derivatives.

The differential operator D^n was introduced by Salagean [5]. For $f =$ $h + \bar{g}$ given by (1.1), Jahangiri and et al. [3] defined the modified Salagean operator of f as

$$
D^{n} f(z) = D^{n} h(z) + (-1)^{n} \overline{D^{n} g(z)}
$$
\n(1.2)

where

$$
D^{n}h(z) = z + \sum_{k=2}^{\infty} k^{n} a_{k} z^{k}
$$
 and $D^{n}g(z) = \sum_{k=1}^{\infty} k^{n} b_{k} z^{k}$.

In [8,9] one finds generalization of [3].

For $0 \leq \alpha < 1$, $0 < \beta \leq 1$, $n \in N_0$ and $z \in U$, we let $S_H^n(\alpha, \beta)$ denote the family of harmonic functions f of the form (1.1) such that

$$
\operatorname{Re}\left\{\frac{D^{n+1}f(z) - D^nf(z)}{D^{n+1}f(z) + (1 - 2\alpha)D^nf(z)}\right\} < \beta
$$
\n(1.3)

where $D^n f$ is defined by (1.2).

We let the subclass $\bar{S}_{H}^{n}(\alpha, \beta)$ consist of harmonic functions $f_{n} = h + \bar{g}_{n}$ in $\bar{S}_H^n(\alpha, \beta)$ so that h and g_n are of the form

$$
h(z) = z - \sum_{k=2}^{\infty} a_k z^k, \quad g(z) = (-1)^n \sum_{k=1}^{\infty} b_k z^k; \quad a_k, b_k \ge 0.
$$
 (1.4)

In this note, we extend the above result to the class $S_H^n(\alpha, \beta)$ and $\bar{S}_H^n(\alpha, \beta)$. We also obtain extreme points, distortion bounds, convolution conditions, and convex combinations for $\overline{S}_H^n(\alpha, \beta)$.

2. Main Results

We begin with a sufficient coefficient condition for functions in $\bar{S}_H^n(\alpha, \beta)$.

Theorem 1. Let $f = h + \bar{g}$ be so that h and g are given by (1.1). Furthermore, let

$$
\sum_{k=1}^{\infty} k^n \left\{ [k-1 + \beta(k+1-2\alpha)] |a_k| + [k+1 + \beta(k-1+2\alpha)] |b_k| \right\}
$$

$$
\leq 4\beta (1-\alpha) \quad (2.1)
$$

where $a_1 = 1, n \in N_0$, $0 \le \alpha < 1$ and $0 < \beta \le 1$; then f is sense-preserving, harmonic univalent in \overline{U} and $f \in \overline{S}_{H}^{n}(\alpha, \beta)$.

Proof. If $z_1 \neq z_2$, then

$$
\begin{aligned}\n\left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| &\ge 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right| \\
&= 1 - \left| \frac{\sum_{k=1}^{\infty} b_k (z_1^k - z_2^k)}{(z_1 - z_2) + \sum_{k=2}^{\infty} a_k (z_1^k - z_2^k)} \right| \\
&> 1 - \frac{\sum_{k=1}^{\infty} k |b_k|}{1 - \sum_{k=2}^{\infty} k |a_k|} \\
&> 1 - \frac{\sum_{k=1}^{\infty} \frac{k^n [k+1+\beta(k-1+2\alpha)]}{2\beta(1-\alpha)} |b_k|}{1 - \sum_{k=2}^{\infty} \frac{k^n [k-1+\beta(k+1-2\alpha)]}{2\beta(1-\alpha)} |a_k|} \ge 0\n\end{aligned}
$$

which proves univalence. Note that f is sense-preserving in U . This is because

$$
|h'(z)| \ge 1 - \sum_{k=2}^{\infty} k|a_k||z|^{k-1} > 1 - \sum_{k=2}^{\infty} \frac{k^n [k-1+\beta (k+1-2\alpha)]}{2\beta (1-\alpha)} |a_k|
$$

>
$$
\sum_{k=1}^{\infty} \frac{k^n [k+1+\beta (k-1+2\alpha)]}{2\beta (1-\alpha)} |b_k||z|^{k-1}
$$

$$
\ge \sum_{k=1}^{\infty} k|b_k||z|^{k-1} \ge |g'(z)|.
$$

It remains to show that $f \in \bar{S}_H^n(\alpha, \beta)$. Suppose that the inequality (2.1) holds true and let $z \in \partial U = \{z : z \in C \text{ and } |z| = 1\}.$ Then we find from definition (1.2) that

$$
\left| \frac{D^{n+1}f(z) - D^n f(z)}{D^{n+1}f(z) + (1 - 2\alpha)D^n f(z)} \right|
$$

$$
= \left| \frac{\sum_{k=2}^{\infty} k^n (k-1) a_k z^k - (-1)^n \sum_{k=1}^{\infty} k^n (k+1) \overline{b_k z^k}}{2(1-\alpha)z + \sum_{k=2}^{\infty} k^n (k+1-2\alpha) a_k z^k - (-1)^n \sum_{k=1}^{\infty} k^n (k-1+2\alpha) \overline{b_k z^k}} \right|
$$

$$
\leq \frac{\sum_{k=2}^{\infty} k^n (k-1) |a_k||z|^k + \sum_{k=1}^{\infty} k^n (k+1) |b_k||z|^k}{2(1-\alpha)|z| - \sum_{k=2}^{\infty} k^n (k+1-2\alpha) |a_k||z|^k - \sum_{k=1}^{\infty} k^n (k-1+2\alpha) |b_k||z|^k}
$$

$$
\leq \beta
$$

provided that the inequality (2.1) is satisfied. Hence, by the maximum modulus theorem, we have $f(z) \in S_H^n(\alpha, \beta)$.

The harmonic function

$$
f(z) = z + \sum_{k=2}^{\infty} \frac{2\beta (1 - \alpha)}{k^{n} [k - 1 + \beta (k + 1 - 2\alpha)]} x_{k} z^{k} + \sum_{k=1}^{\infty} \frac{2\beta (1 - \alpha)}{k^{n} [k + 1 + \beta (k - 1 + 2\alpha)]} y_{k} z^{k}
$$
(2.2)

where $\sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1$ shetchever Γ^{∞} $\sum_{k=1}^{\infty} |y_k| = 1$ shows that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.2) are in $S_H^n(\alpha, \beta)$ because

$$
\sum_{k=1}^{\infty} \left\{ \frac{k^{n} [k - 1 + \beta (k + 1 - 2\alpha)]}{2\beta (1 - \alpha)} |a_{k}| + \frac{k^{n} [k + 1 + \beta (k - 1 + 2\alpha)]}{2\beta (1 - \alpha)} |b_{k}| \right\}
$$

= $1 + \sum_{k=2}^{\infty} |x_{k}| + \sum_{k=1}^{\infty} |y_{k}| = 2.$

In the following theorem, it is shown that the condition (2.1) is also necessary for functions $f_n = h + \bar{g}_n$ where h and \bar{g}_n are of the form (1.4).

Theorem 2. Let $f_n = h + \bar{g}_n$ be given by (1.4). Then $f_n \in \bar{S}_H^n(\alpha, \beta)$ if and only if

$$
\sum_{k=1}^{\infty} k^n \left\{ [k-1 + \beta (k+1-2\alpha)] a_k + [k+1+\beta (k-1+2\alpha)] b_k \right\}
$$

$$
\leq 4\beta (1-\alpha). \quad (2.3)
$$

Proof. Since $\bar{S}_H^n(\alpha, \beta) \subset S_H^n(\alpha, \beta)$, we only need to prove the "only if" part of the theorem. To this end, for functions f_n of the form (1.4) , we notice that the condition

$$
\operatorname{Re}\left\{\left[\frac{D^{n+1}f(z) - D^nf(z)}{D^{n+1}f(z) + (1 - 2\alpha) D^nf(z)}\right]\right\} < \beta
$$

is equivalent to

$$
\operatorname{Re}\left\{\frac{-\sum_{k=2}^{\infty}k^{n}(k-1)a_{k}z^{k}-(-1)^{2n}\sum_{k=1}^{\infty}k^{n}(k+1)b^{k}\bar{z}^{k}}{2(1-\alpha)z-\sum_{k=2}^{\infty}k^{n}(k+1-2\alpha)a_{k}z^{k}-(-1)^{2n}\sum_{k=1}^{\infty}k^{n}(k-1+2\alpha)b^{k}\bar{z}^{k}}\right\}
$$

If we choose z on the real axis and $z \to 1^-$ we get

$$
\frac{\sum_{k=2}^{\infty} k^{n} (k-1) a_{k} + \sum_{k=1}^{\infty} k^{n} (k+1) b^{k}}{2 (1 - \alpha) - \sum_{k=2}^{\infty} k^{n} (k + 1 - 2\alpha) a_{k} - \sum_{k=1}^{\infty} k^{n} (k - 1 + 2\alpha) b^{k}} < \beta
$$

whence

$$
\sum_{k=2}^{\infty} k^{n} (k - 1) a_{k} + \sum_{k=1}^{\infty} k^{n} (k + 1) b^{k}
$$

<
$$
< 2\beta (1 - \alpha) - \beta \sum_{k=2}^{\infty} k^{n} (k + 1 - 2\alpha) a_{k} - \beta \sum_{k=1}^{\infty} k^{n} (k - 1 + 2\alpha) b_{k}
$$

and so

$$
\sum_{k=2}^{\infty} k^{n} [k - 1 + \beta (k + 1 - 2\alpha)] a_{k} + \sum_{k=1}^{\infty} k^{n} [k + 1 + \beta (k - 1 + 2\alpha)] b_{k} < 2\beta (1 - \alpha)
$$

which is equivalent to (2.3) .

Next we determine the extreme points of closed convex hulls of $\bar{S}_H^n(\alpha, \beta)$ denoted by clco $\bar{S}_H^n(\alpha, \beta)$.

Theorem 3. Let $f_n = h + \bar{g}_n$ be given by (1.4). Then $f_n \in \bar{S}_H^n(\alpha, \beta)$ if and only if

$$
f_n(z) = \sum_{k=1}^{\infty} (x_k h_k(z) + y_k g_{n_k}(z)), \text{ where } h_1(z) = z,
$$

\n
$$
h_k(z) = \frac{2\beta (1 - \alpha)}{k^n [k - 1 + \beta (k + 1 - 2\alpha)]} z^k, \text{ } (k = 2, 3, ...)
$$
 and
\n
$$
g_{n_k}(z) = z + (-1)^n \frac{2\beta (1 - \alpha)}{k^n [k + 1 + \beta (k - 1 + 2\alpha)]} \overline{z}^k, \text{ } (k = 1, 2, ...)
$$

\n
$$
\sum_{k=1}^{\infty} (x_k + y_k) = 1, \text{ } x_n \ge 0, \text{ } y_n \ge 0.
$$

In particular, the extreme points of $\bar{S}_H^n(\alpha, \beta)$ are $\{h_k\}$ and $\{g_{n_k}\}$. Proof. Suppose

$$
f_n(z) = \sum_{k=1}^{\infty} (x_k h_k(z) + y_k g_{nk}(z))
$$

=
$$
\sum_{k=1}^{\infty} (x_k + y_k) z - \sum_{k=2}^{\infty} \frac{2\beta (1 - \alpha)}{k^n [k - 1 + \beta (k + 1 - 2\alpha)]} x_k z^k
$$

+
$$
(-1)^n \sum_{k=1}^{\infty} \frac{2\beta (1 - \alpha)}{k^n [k + 1 + \beta (k - 1 + 2\alpha)]} y_k \overline{z}^k.
$$

Then

$$
\sum_{k=2}^{\infty} \frac{k^n \left[k - 1 + \beta\left(k + 1 - 2\alpha\right)\right]}{2\beta \left(1 - \alpha\right)} \left(\frac{2\beta \left(1 - \alpha\right)}{k^n \left[k + 1 + \beta\left(k - 1 + 2\alpha\right)\right]} x_k\right)
$$

$$
+ \sum_{k=1}^{\infty} \frac{k^n \left[k + 1 + \beta\left(k - 1 + 2\alpha\right)\right]}{2\beta \left(1 - \alpha\right)} \left(\frac{2\beta \left(1 - \alpha\right)}{k^n \left[k + 1 + \beta\left(k - 1 + 2\alpha\right)\right]} y_k\right)
$$

$$
= \sum_{k=2}^{\infty} x_k + \sum_{k=1}^{\infty} y_k = 1 - x_1 \le 1
$$

and so $f_n \in \bar{S}_H^n(\alpha, \beta)$. Conversely, if $f_n \in \text{cloc } \bar{S}_H^n(\alpha, \beta)$, then

$$
a_k \le \frac{2\beta(1-\alpha)}{k^n \left[k-1+\beta\left(k+1-2\alpha\right)\right]} \quad \text{and} \quad b_k \le \frac{2\beta(1-\alpha)}{k^n \left[k+1+\beta\left(k-1+2\alpha\right)\right]}.
$$

Set

$$
x_k = \frac{k^n [k - 1 + \beta (k + 1 - 2\alpha)]}{2\beta (1 - \alpha)} a_k, \ \ (k = 2, 3, ...)
$$

and

$$
y_k = \frac{k^n [k+1 + \beta (k-1+2\alpha)]}{2\beta (1-\alpha)} b_k, \ \ (k=1,2,...).
$$

Then note that by Theorem 2, $0 \le x_k \le 1$, $(k = 2, 3, ...)$ and $0 \le y_k \le 1$, $(k = 1, 2, \dots)$. We define

$$
x_1 = 1 - \sum_{k=2}^{\infty} x_k - \sum_{k=1}^{\infty} y_k
$$

and note that, by Theorem 2, $x_1 \ge 0$. Consequently, we obtain $f_n(z) = \sum_{k=1}^{\infty} (x_k h_k(z) + y_k g_{n_k}(z))$ as required.

The following theorem gives the distortion bounds for functions $\text{in}\bar{S}_H^n(\alpha,\beta)$ which yields a covering result for this class.

Theorem 4. Let $f_n \in \overline{S}_H^n(\alpha, \beta)$. Then for $|z| = r < 1$ we have

$$
|f_n(z)| \le (1+b_1) r + \frac{1}{2^{n-1}} \left(\frac{\beta (1-\alpha) - (1+\beta \alpha) b_1}{1+\beta (3-2\alpha)} \right) r^2, \ \ |z| = r < 1
$$

and

$$
|f_n(z)| \ge (1 - b_1) r - \frac{1}{2^{n-1}} \left(\frac{\beta (1 - \alpha) - (1 + \beta \alpha) b_1}{1 + \beta (3 - 2\alpha)} \right) r^2, \ |z| = r < 1.
$$

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be omitted. Let $f_n \in \overline{S}_H^n(\alpha, \beta)$. Taking the absolute value of f_n we have

$$
|f_n(z)| \le (1+b_1) r + \sum_{k=2}^{\infty} (a_k + b_k) r^k \le (1+b_1) r + \sum_{k=2}^{\infty} (a_k + b_k) r^2
$$

= $(1+b_1) r + \frac{2\beta(1-\alpha)}{2^n [1+\beta(3-2\alpha)]} \sum_{k=2}^{\infty} \frac{2^n [1+\beta(3-2\alpha)]}{2\beta(1-\alpha)} (a_k + b_k) r^2$

$$
\le (1+b_1) r + \frac{\beta(1-\alpha)}{2^{n-1} [1+\beta(3-2\alpha)]} \left(1 - \frac{2+2\beta\alpha}{2\beta(1-\alpha)} b_1\right) r^2
$$

= $(1+b_1) r + \frac{1}{2^{n-1}} \left(\frac{\beta(1-\alpha) - (1+\beta\alpha)b_1}{1+\beta(3-2\alpha)}\right) r^2.$

The following covering result follows from the left hand inequality in Theorem 4.

Corollary 1. Let f_n of the form (1.4) be such that $f_n \in \overline{S}_H^n(\alpha, \beta)$. Then

$$
\left\{ w : |w| < \frac{2^{n-1} \left[1 + \beta \left(3 - 2\alpha \right) \right] - \beta \left(1 - \alpha \right)}{2^{n-1} \left[1 + \beta \left(3 - 2\alpha \right) \right]} - \frac{2^{n-1} \left[1 + \beta \left(3 - 2\alpha \right) \right] - \left(1 + \beta \alpha \right)}{2^{n-1} \left[1 + \beta \left(3 - 2\alpha \right) \right]} b_1 \right\} \subset f_n(U).
$$

For our next theorem, we need to define the convolution of two harmonic functions. For harmonic functions of the form

$$
f_n(z) = z - \sum_{k=2}^{\infty} a_k z^k + (-1)^n \sum_{k=1}^{\infty} b_k \bar{z}^k
$$

and

$$
F_n(z) = z - \sum_{k=2}^{\infty} A_k z^k + (-1)^n \sum_{k=1}^{\infty} B_k \bar{z}^k
$$

we define the convolution of two harmonic functions f_n and F_n as

$$
(f_n * F_n)(z) = f_n(z) * F_n(z) = z - \sum_{k=2}^{\infty} a_k A_k z^k + (-1)^n \sum_{k=1}^{\infty} b_k B_k \bar{z}^k \quad (2.4)
$$

Using this definition, we show that the class $\bar{S}_H^n(\alpha, \beta)$ is closed under convolution.

Theorem 5. For $0 \leq \alpha_1 \leq \alpha_2 < 1$ let $f_n \in \bar{S}_H^n(\alpha_2, \beta)$, and $F_n \in \bar{S}_H^n(\alpha_1, \beta)$. Then the convolution $f_n * F_n \in \overline{S}_H^n(\alpha_2, \beta) \subset \overline{S}_H^n(\alpha_1, \beta)$.

Proof. For f_n and F_n as the Theorem 5, write

$$
f_n(z) = z - \sum_{k=2}^{\infty} a_k z^k + (-1)^n \sum_{k=1}^{\infty} b_k \overline{z}^k
$$

and

$$
F_n(z) = z - \sum_{k=2}^{\infty} A_k z^k + (-1)^n \sum_{k=1}^{\infty} B_k \bar{z}^k.
$$

Then the convolution $f_n * F_n$ is given by (2.4). We wish to show that the coefficients of $f_n * F_n$ satisfy the required condition given in Theorem 2. For $F_n \in \overline{S}_H^n(\alpha_2, \beta)$ we note that $A_k < 1$ and $B_k < 1$. Now, for the convolution function $f_n * F_n$ we obtain

$$
\sum_{k=2}^{\infty} \frac{k^{n} [k - 1 + \beta (k + 1 - 2\alpha_{1})]}{2\beta (1 - \alpha_{1})} a_{k} A_{k} + \sum_{k=1}^{\infty} \frac{k^{n} [k + 1 + \beta (k - 1 + 2\alpha_{1})]}{2\beta (1 - \alpha_{1})} b_{k} B_{k}
$$

\n
$$
\leq \sum_{k=2}^{\infty} \frac{k^{n} [k - 1 + \beta (k + 1 - 2\alpha_{1})]}{2\beta (1 - \alpha_{1})} a_{k} + \sum_{k=1}^{\infty} \frac{k^{n} [k + 1 + \beta (k - 1 + 2\alpha_{1})]}{2\beta (1 - \alpha_{1})} b_{k}
$$

\n
$$
\leq \sum_{k=2}^{\infty} \frac{k^{n} [k - 1 + \beta (k + 1 - 2\alpha_{2})]}{2\beta (1 - \alpha_{2})} a_{k} + \sum_{k=1}^{\infty} \frac{k^{n} [k + 1 + \beta (k - 1 + 2\alpha_{2})]}{2\beta (1 - \alpha_{2})} b_{k}
$$

\n
$$
\leq 1
$$

since $0 \leq \alpha_1 \leq \alpha_2 < 1$ and $f_n \in \bar{S}_H^n(\alpha_2, \beta)$. Therefore $f_n * F_n \in \bar{S}_H^n(\alpha_2, \beta) \subset$ $\bar{S}_H^n(\alpha_1,\beta)$. $\prod_{H}^{n}(\alpha_1,\beta).$

Now we show that $\bar{S}_H^n(\alpha, \beta)$ is closed under convex combinations of its members.

Theorem 6. The class $\bar{S}_H^n(\alpha, \beta)$ is closed under convex combination.

Proof. For $i = 1, 2, ...$ let $f_{n_i} \in \overline{S}_H^n(\alpha, \beta)$, where f_{n_i} is given by

$$
f_{n_i}(z) = z - \sum_{k=2}^{\infty} a_{k_i} z^k + (-1)^n \sum_{k=1}^{\infty} b_{k_i} \overline{z}^k.
$$

Then by (2.3) ,

$$
\sum_{k=1}^{\infty} \left(\frac{k^n \left[k - 1 + \beta \left(k + 1 - 2\alpha \right) \right]}{\beta \left(1 - \alpha \right)} a_{k_i} + \frac{k^n \left[k + 1 + \beta \left(k - 1 + 2\alpha \right) \right]}{\beta \left(1 - \alpha \right)} b_{ki} \right) \le 4
$$
\n
$$
(2.5)
$$

For $\sum_{i=1}^{\infty} t_i = 1, 0 \le t_i \le 1$, the convex combination of f_{n_i} may be written as

$$
\sum_{i=1}^{\infty} t_i f_{n_i}(z) = z - \sum_{k=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i a_{k_i} \right) z^k + (-1)^n \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i b_{k_i} \right) \overline{z}^k
$$

Then by (2.5) ,

$$
\sum_{k=1}^{\infty} \left[\frac{k^n \left[k - 1 + \beta \left(k + 1 - 2\alpha \right) \right]}{\beta \left(1 - \alpha \right)} \sum_{i=1}^{\infty} t_i a_{k_i} + \frac{k^n \left[k + 1 + \beta \left(k - 1 + 2\alpha \right) \right]}{\beta \left(1 - \alpha \right)} \sum_{i=1}^{\infty} t_i b_{k_i} \right]
$$

$$
= \sum_{i=1}^{\infty} t_i \left\{ \sum_{k=1}^{\infty} \left(\frac{k^n \left[k - 1 + \beta \left(k + 1 - 2\alpha \right) \right]}{\beta \left(1 - \alpha \right)} a_{k_i} + \frac{k^n \left[k + 1 + \beta \left(k - 1 + 2\alpha \right) \right]}{\beta \left(1 - \alpha \right)} b_{k_i} \right) \right\} \le 4 \sum_{i=1}^{\infty} t_i = 4
$$

This is the condition required by (2.3) and so $\sum_{i=1}^{\infty} t_i f_{n_i}(z) \in \bar{S}_H^n(\alpha, \beta)$. \Box **Theorem 7.** If $f_n \in \overline{S}_H^n(\alpha, \beta)$ then f_n is convex in the disc

$$
|z| \le \min_{k} \left\{ \frac{\beta (1 - \alpha) (1 - b_1)}{k [\beta (1 - \alpha) - (1 + \beta \alpha) b_1]} \right\}^{\frac{1}{k - 1}}, \quad k = 2, 3, \dots
$$

Proof. Let $f_n \in \bar{S}_H^n(\alpha, \beta)$, and let $r, 0 < r < 1$, be fixed. Then $r^{-1}f_n(rz) \in$ $\overline{S}_{H}^{n}(\alpha,\beta)$ and we have

$$
\sum_{k=2}^{\infty} k^2 (a_k + b_k) = \sum_{k=2}^{\infty} k (a_k + b_k) \left(kr^{k-1} \right)
$$

$$
\leq \sum_{k=2}^{\infty} \left(\frac{k^n [k-1 + \beta (k+1 - 2\alpha)]}{2\beta (1 - \alpha)} a_k + \sum_{k=1}^{\infty} \frac{k^n [k+1 + \beta (k-1 + 2\alpha)]}{2\beta (1 - \alpha)} b_k \right) \left(kr^{k-1} \right) \leq 1 - b_1
$$

provided

$$
kr^{k-1}\leq \frac{1-b_1}{1-\frac{1+\beta\alpha}{\beta(1-\alpha)}}
$$

which is true if

$$
r \le \min_{k} \left\{ \frac{\beta (1 - \alpha) (1 - b_1)}{k [\beta (1 - \alpha) - (1 + \beta \alpha) b_1]} \right\}^{\frac{1}{k - 1}}, \quad k = 2, 3,
$$

REFERENCES

- [1] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 9 (1984), 3–25.
- [2] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470–477.
- [3] J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harmonic univalent functions, South. J. Pure Appl. Math., 2 (2002), 77–82.
- [4] J. M. Jahangiri, Yong Chan Kim and H.M. Srivastava, Construction of a certain class of harmonic close to convex functions associated with the Alexander integral transform, Integral Transforms Spec. Funct., 14 (3) (2003), 237–242.
- [5] G. S. Salagean, Subclass of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Burcharest, 1 (1983), 362–372.
- [6] H. Silverman, Harmonic univalent function with negative coefficients, J. Anal. Appl., 220 (1998), 283–289.
- [7] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zeland J. Math., 28 (1999), 275–284.
- [8] S. Yalçın, On certain harmonic univalent functions defined by Salagean derivatives, Soochow J. Math., 31 (3) (2005), 321–331.
- [9] S. Yalçın, A new class of Salagean-type harmonic univalent functions, Appl. Math. Lett., 18 (2005), 191–198.

(Received: May 15, 2007) Department of Mathematics

Faculty of Arts and Sciences Uludag University 16059 Bursa, Turkey E–mail: tugbagencel@hotmail.com E–mail: skarpuz@uludag.edu.tr