ON A SOBOLEV TYPE THEOREM FOR THE GENERALIZED RIESZ POTENTIAL GENERATED BY THE GENERALIZED SHIFT OPERATOR ON MORREY SPACE

MEHMET ZEKI SARIKAYA AND HÜSEYIN YILDIRIM

ABSTRACT. In this paper, we give a generalized definition of Morrey space for Lebesgue measure. In this space, the inequality of Hardy-Sobolev type is established for the generalized Riesz potentials generated by the generalized shift operator.

1. Introduction

Suppose that \mathbb{R}^n is the *n*-dimensional Euclidean space, $x=(x_1,x_2,\ldots,x_n), y=(y_1,y_2,\ldots,y_n)$ are vectors in $\mathbb{R}^n, x.y=x_1y_1+\cdots+x_ny_n, |x|=(x.x)^{\frac{1}{2}},$

$$\mathbb{R}_n^+ = \{x: \ x = (x_1, \dots, x_n), \ x_1 > 0, \dots, x_n > 0\}.$$

The Bessel differential operator is defined by

$$B_i = \frac{\partial^2}{\partial x_i^2} + \frac{2v_i}{x_i} \frac{\partial}{\partial x_i}, \quad i = 1, 2, \dots, n,$$

 $v = (v_1, \ldots, v_n), \ v_1 > 0, \ldots, v_n > 0, |v| = v_1 + \cdots + v_n.$ For $1 \le p < \infty$ let $L_{p,v}(\mathbb{R}_n^+) = L_{p,v}(\mathbb{R}_n^+, \left(\prod_{i=1}^n x_i^{2v_i}\right) dx)$ be the space of functions measurable on \mathbb{R}_n^+ with the norm

$$||f||_{p,v} = \left(\int_{\mathbb{R}_n^+} |f(x)|^p \left(\prod_{i=1}^n x_i^{2v_i}\right) dx\right)^{\frac{1}{p}}.$$

Key words and phrases. Riesz potential, shift operator and Morrey space.

²⁰⁰⁰ Mathematics Subject Classification. 31B10, 44A15.

Denote by T^y the generalized shift operator acting according to the law

$$T_x^y F(x) = C_v \int_0^{\pi} \dots \int_0^{\pi} F\left(\sqrt{x_1^2 + y_1^2 - 2x_1 y_1 \cos \alpha_1}, \dots, \sqrt{x_n^2 + y_n^2 - 2x_n y_n \cos \alpha_n}\right) \left(\prod_{i=1}^n \sin_i^{2v_i - 1} \alpha_i\right) d\alpha_1 \dots d\alpha_n$$

where $x, y \in \mathbb{R}_n^+$, $v_i > \frac{1}{2}$, i = 1, ..., n, $C_v = \prod_{i=1}^n \frac{\Gamma(v_i + 1)}{\Gamma(\frac{1}{2})\Gamma(v_i)}$ [2] and [8]. Let f be in $L_{p,v}(\mathbb{R}_n^+)$, $1 \le p < \infty$. Then $T^y f$ belongs to $L_{p,v}(\mathbb{R}_n^+)$, and

$$||T^y f||_{p,v} \le ||f||_{p,v}$$
.

We remark that T^y is closely connected with the Bessel differential operator $B = (B_1, \ldots, B_n)$.

Definition. Let $1 \leq p < \infty$. By $L_{p,w,v}(\mathbb{R}_n^+) = L_{p,w,v}(\mathbb{R}_n^+, \left(\prod_{i=1}^n x_i^{2v_i}\right) dx)$ we denote the generalized Morrey space which are sets of functions f locally integrable on \mathbb{R}_n^+ , with finite norm

$$||f||_{p,w,v} = \sup_{Q} \left(\frac{1}{w(Q)} \int_{\mathbf{Q}} T^{y} |f(x)|^{p} \left(\prod_{i=1}^{n} x_{i}^{2v_{i}} \right) dx \right)^{\frac{1}{p}}$$

Then $L_{p,w,v}(\mathbb{R}_n^+)$ is a Banach space with norm $||f||_{p,w,v}$. If $w(0,\rho) = 1$ and $T^y |f(x)|^p = |f(x)|^p$, then $L_{p,w,v} = L_{p,v}$. If $w(0,\rho) = \rho^{n+2|v|}$ and $T^y |f(x)|^p = |f(x)|^p$, then $L_{p,w,v} = L_{\infty,v}$. And if $w(0,\rho) = \rho^{\lambda}$, $0 < \lambda < n+2|v|$ and $T^y |f(x)|^p = |f(x)|^p$ then $L_{p,w,v}$ is the Morrey space introduced in [4] which is denoted simply by $L_{p,\lambda,v}$.

Let $w: \mathbb{R}_n^+ \times \mathbb{R}_n^+ \to \mathbb{R}^+$, $1 \leq p < \infty$ and $Q(0, \rho)$ be the cube

$$\{x \in \mathbb{R}_n^+ : |x_i| \le \frac{\rho}{2}, i = 1, 2, \dots, n\}$$

whose edges have length ρ and are parallel to the coordinate axes. For $Q = Q(0, \rho)$, let $kQ = Q(0, k\rho)$ and $w(Q) = w(0, \rho)$.

Assume that there is a constant C > 0 such that, for any $\rho > 0$

$$\rho \le t \le 2\rho \Rightarrow C^{-1} \le \frac{w(0,t)}{w(0,\rho)} \le C \tag{1}$$

and

$$\int_{\rho}^{\infty} \frac{w(0,t)}{t^{n+2|v|-\alpha p+1}} dt \le C \frac{w(0,\rho)}{\rho^{n+2|v|-\alpha p}}, \ \alpha p < n+2|v|.$$
 (2)

The convolution operator determined by the T^y is as follows.

$$(f * \varphi)(x) = \int_{\mathbb{R}_n^+} f(y) T^y \varphi(x) \left(\prod_{i=1}^n y_i^{2v_i} \right) dy.$$

This convolution is known as a B-convolution. We note the following properties of the B-convolution and T^y [3] and [7].

a.
$$f * \varphi = \varphi * f$$

b.
$$||f * \varphi||_{r,v} \le ||f||_{p,v} ||\varphi||_{q,v}, \ 1 \le p, \ r \le \infty, \ \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$$

c.
$$T^y . 1 = 1$$

d. If $f(x), g(x) \in C(\mathbb{R}_n^+)$, g(x) is a bounded function all $x \in \mathbb{R}_n^+$ and

$$\int_{\mathbb{R}_{n}^{+}} |f(x)| \left(\prod_{i=1}^{n} x_{i}^{2v_{i}} \right) dx < \infty$$

then

$$\int_{\mathbb{R}_n^+} T^y f(x) g(y) \Big(\prod_{i=1}^n y_i^{2v_i} \Big) \, dy = \int_{\mathbb{R}_n^+} f(y) T^y g(x) \Big(\prod_{i=1}^n y_i^{2v_i} \Big) \, dy$$

e.
$$|T^y f(x)| \le \sup_{x \ge 0} |f(x)|$$
.

In this work, we are considering the Hardy-Littlewood radial maximal type function

$$Mf(x) = \sup_{\rho > 0} \frac{1}{|Q(0,\rho)|_v} \int_{\mathbf{Q}} T^y f(x) \Big(\prod_{i=1}^n y_i^{2v_i} \Big) dy.$$

where

$$|Q(0,\rho)|_v = \int_{Q(0,\rho)} \left(\prod_{i=1}^n x_i^{2v_i} \right) dx.$$

Let $0 < \alpha < n+2 |v|$. We define the generalized Riesz potentials generated by the generalized shift operator as

$$I_{\alpha,v}f(x) = \int_{\mathbb{R}_n^+} f(y)T^y |x|^{\alpha - n - 2|v|} \left(\prod_{i=1}^n y_i^{2v_i} \right) dy.$$
 (3)

The important properties of the classical Riesz potentials on the Morrey space were studied by Chiarenza et all [1] and Nakai [5]. Furthermore, it is well known that the Riesz potentials $I^{\alpha}f = C_{n,\alpha}f * |x|^{\alpha-n}$, where $C_{n,\alpha} = \frac{\Gamma(\frac{n-\alpha}{2})}{2^{\alpha}\pi^{\frac{n}{2}}\Gamma(\frac{\alpha}{2})}$, are bounded operators from $L_p(\mathbb{R}^n)$ to $L_q(\mathbb{R}^n)$ for $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ [6,7].

The boundedness of the Riesz potentials generated by the generalized shift operator from $L_{p,v}(\mathbb{R}_n^+)$ to $L_{q,v}(\mathbb{R}_n^+)$ ($\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n+2|v|}$) was proved in [8]. In this work, an inequality of Hardy-Sobolev type is established for these potentials on Morrey space.

Lemma 1. Let
$$1 \leq p < \infty$$
, $f \in L_{p,w,v}(\mathbb{R}_n^+)$. Then the inequality $|T^y f(x)|^p < T^y |f(x)|^p$

holds.

Proof. Let

$$F(\alpha, x, y) = f(\sqrt{x_1^2 + y_1^2 - 2x_1y_1\cos\alpha_1}, \dots, \sqrt{x_n^2 + y_n^2 - 2x_ny_n\cos\alpha_n}).$$

From Hölder's inequality, we have the following inequality with $\frac{1}{p} + \frac{1}{p'} = 1$.

$$|T^{y}f(x)|^{p} = \left| C_{v} \int_{0}^{\pi} \dots \int_{0}^{\pi} F(\alpha, x, y) \prod_{i=1}^{n} (\sin^{2v_{i}-1} \alpha_{i} d\alpha_{i}) \right|^{p}$$

$$\leq \left(C_{v} \int_{0}^{\pi} \dots \int_{0}^{\pi} |F(\alpha, x, y)|^{p} \prod_{i=1}^{n} (\sin^{2v_{i}-1} \alpha_{i} d\alpha_{i}) \right)$$

$$\cdot \left[\left(C_{v} \int_{0}^{\pi} \dots \int_{0}^{\pi} \prod_{i=1}^{n} (\sin^{2v_{i}-1} \alpha_{i} d\alpha_{i}) \right)^{\frac{1}{p'}} \right]^{p}$$

$$\leq T^{y} (|f(x)|^{p}).$$

Lemma 2. Let $f \in L_{p,w,v}(\mathbb{R}_n^+)$ and 1 . Then we have

$$||T^y f||_{p,w,v} \le ||f||_{p,w,v}$$
.

Proof. From Lemma 1 the following inequality holds.

$$||T^y f||_{p,w,v}^p \le \frac{1}{w(Q)} \int_Q T^z |T^y f(x)|^p \left(\prod_{i=1}^n z_i^{2v_i}\right) dz.$$

If we consider the properties (c) and (d) of the shift operator, then we have the following inequality

$$||T^y f||_{p,w,v} \le \left(\frac{1}{w(Q)} \int_Q T^z |f(x)|^p \left(\prod_{i=1}^n z_i^{2v_i}\right) dz\right)^{\frac{1}{p}} = ||f||_{p,w,v}.$$

Lemma 3. Let $0 < \delta \le 1$. Assume that w satisfies (1) and

$$\int_{\rho}^{\infty} \frac{w(0,t)}{t^{(n+2|v|)\delta+1}} dt \le C \frac{w(0,\rho)}{\rho^{(n+2|v|)\delta}}.$$

Then for $1 \le p < \infty$ there is a constant C > 0 such that

$$\int T^{y} |f(x)|^{p} (M\chi_{Q}(y))^{\delta} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \leq Cw(Q) \|f\|_{p,w,v}^{p}, \text{ for } f \in L_{p,w,v}.$$

Proof. Let χ_Q be the characteristic function of $Q = Q(0, \rho)$. Then $M\chi_Q(x) \le 1$. For $x \in 2^{k+1}Q \setminus 2^kQ$, $M\chi_Q(x)$ is comparable to $2^{-k(n+2|v|)}$, $k = 1, 2, \ldots$. Therefore

$$\int T^{y} |f(x)|^{p} (M\chi_{Q}(y))^{\delta} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy$$

$$\leq \left\{ \int_{2Q} T^{y} |f(x)|^{p} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy
+ \sum_{k=1}^{\infty} \int_{2^{k+1}Q\backslash 2^{k}Q} 2^{-k(n+2|v|)\delta} T^{y} |f(x)|^{p} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \right\}$$

$$\leq C \left\{ w(2Q) + \sum_{k=1}^{\infty} 2^{-k(n+2|v|)\delta} w(2^{k+1}Q) \right\} ||f||_{p,w,v}^{p}$$

$$\leq C \rho^{(n+2|v|)\delta} \sum_{k=0}^{\infty} \frac{w(0, 2^{k}Q)}{(2^{-k}\rho)^{(n+2|v|)\delta}} ||f||_{p,w,v}^{p}.$$

Since $\frac{w(0,2^kQ)}{(2^{-k}\rho)^{(n+2|v|)\delta}}$ is comparable to $\int_{2^k\rho}^{2^{k+1}\rho} \frac{w(0,t)}{t^{(n+2|v|)\delta+1}} dt$, we have

$$\int T^{y} |f(x)|^{p} (M\chi_{Q}(y))^{\delta} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \leq C \rho^{(n+2|v|)\delta} \int_{\rho}^{\infty} \frac{w(0,t)}{t^{(n+2|v|)\delta+1}} dt \, ||f||_{p,w,v}^{p}$$

$$\leq Cw(0,\rho) \, ||f||_{p,w,v}^{p}.$$

For the generalized Riesz potentials generated by the generalized shift operator the following analogue of the Hardy-Sobolev theorem is valid.

Theorem. Let $0 < \alpha < n+2 |v|$, $1 \le p < \frac{n+2|v|}{\alpha}$, $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n+2|v|}$. Assume that w satisfies (1) and (2).

i) If p > 1, then there is a constant $C_{p,q} > 0$ such that

$$||I_{\alpha,v}f||_{q,w,v} \le C_{p,q} ||f||_{p,w,v} \text{ for } f \in L_{p,w,v}(\mathbb{R}_n^+).$$
 (4)

ii) If p = 1, then there is a constant $C_q > 0$ such that for any t > 0 and for any Q

$$\frac{m\{x \in Q : |I_{\alpha,v}f| > t\}}{w(Q)^q} \le \frac{C_q}{t^q} \|f\|_{1,w,v}^q \text{ for } f \in L_{1,w,v}(\mathbb{R}_n^+).$$
 (5)

Proof. i) For $f \in L_{p,w,v}(\mathbb{R}_n^+)$ and for Q, let $f = f_1 + f_2$, $f_1 = f\chi_{2Q}$. Since $I_{\alpha,v}$ is bounded from $L_{p,v}$ to $L_{q,v}$ in [8],

$$\int_{Q} |I_{\alpha,v} f_{1}(x)|^{q} \left(\prod_{i=1}^{n} x_{i}^{2v_{i}} \right) dx \leq \|I_{\alpha,v} f_{1}\|_{p,v}^{q} \leq C_{p,q} \|f_{1}\|_{p,v}^{q}
\leq C_{p,q} \left\{ \int_{2Q} |f(x)|^{p} \left(\prod_{i=1}^{n} x_{i}^{2v_{i}} \right) dx \right\}^{\frac{q}{p}}.$$

Therefore from Lemma 2 we have

$$\left\{ \frac{1}{w(Q)^{\frac{q}{p}}} \int_{Q} T^{y} |I_{\alpha,v} f_{1}(x)|^{q} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \right\}^{\frac{1}{p}} \\
\leq \left\{ \frac{1}{w(Q)^{\frac{q}{p}}} \int_{Q} |I_{\alpha,v} f_{1}(x)|^{q} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \right\}^{\frac{1}{p}} \\
\leq C_{p,q} \left\{ \frac{1}{w(Q)} \int_{2Q} T^{y} |f(x)|^{p} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \right\}^{\frac{1}{p}} \\
= C_{p,q} \|f\|_{p,w,v} . \tag{6}$$

For $x \in Q$ and for $y \in (2Q)^c$, $\frac{1}{|y|^{n+2|v|-\alpha}}$ is comparable to $\left(\frac{M\chi_Q(y)}{|Q|}\right)^{1-\frac{\alpha}{n+2|v|}}$. Then we have

$$|I_{\alpha,v}f_{2}(x)| \leq \int \frac{T^{y}|f_{2}(x)|}{|y|^{n+2|v|-\alpha}} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}}\right) dy$$

$$\leq \left(\frac{1}{|Q|}\right)^{1-\frac{\alpha}{n+2|v|}} \int T^{y}|f(x)| \left(M\chi_{Q}(y)\right)^{1-\frac{\alpha}{n+2|v|}} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}}\right) dy.$$
(7)

By Lemma 3 we have

$$\int_{\rho}^{\infty} \frac{w(0,t)}{t^{n+2|v|-\alpha p-\varepsilon+1}} dt \le C \frac{w(0,\rho)}{\rho^{n+2|v|-\alpha p-\varepsilon}} \text{ for } \varepsilon > 0.$$

Let $\delta = \frac{n+2|v|-\alpha p-\varepsilon}{n+2|v|}$. By Hölder's inequality, we have

$$|I_{\alpha,v}f_{2}(x)| \leq \frac{C}{|Q|^{1-\frac{\alpha}{n+2|v|}}} \int T^{y} |f(x)| (M\chi_{Q}(y))^{\frac{\delta}{p}} \times (M\chi_{Q}(y))^{1-\frac{\alpha}{n+2|v|}-\frac{\delta}{p}} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}}\right) dy$$

$$\leq \frac{C}{|Q|^{1-\frac{\alpha}{n+2|v|}}} \left(\int T^{y} |f(x)|^{p} (M\chi_{Q}(y))^{\delta} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \right)^{\frac{1}{p}} \times \left(\int (M\chi_{Q}(y))^{\frac{(1-\frac{\alpha}{n+2|v|} - \frac{\delta}{p})}{p-1}} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \right)^{\frac{1}{q}}.$$

Now

$$\begin{split} |Q|^{-1} & \int \left(M \chi_Q(y) \right)^{\frac{(1 - \frac{\alpha}{n + 2|v|} - \frac{\delta}{p})}{p - 1}} \left(\prod_{i=1}^n y_i^{2v_i} \right) dy \\ & \leq |Q|^{-1} \left\{ \int_{2Q} \left(\prod_{i=1}^n y_i^{2v_i} \right) dy \right. \\ & + \sum_{k=1}^\infty \int_{2^{k+1}Q \setminus 2^k Q} \left(M \chi_Q(y) \right)^{\frac{(1 - \frac{\alpha}{n + 2|v|} - \frac{\delta}{p})}{p - 1}} \left(\prod_{i=1}^n y_i^{2v_i} \right) dy \right\} \\ & \leq C |Q|^{-1} \left\{ w(2Q) + \sum_{k=1}^\infty 2^{-k \frac{(n + 2|v|)}{p - 1} (1 - \frac{\alpha}{n + 2|v|} - \frac{\delta}{p})} \left| 2^{k+1}Q \right| \right\} \\ & \leq C \sum_{k=0}^\infty 2^{\frac{-k\varepsilon}{p - 1}} \leq C_{p,q}. \end{split}$$

Therefore by Lemma 3 we have

$$|I_{\alpha,v}f_2(x)| \le C_{p,q} |Q|^{-\frac{1}{q}} w(Q)^{\frac{1}{q}} ||f||_{p,w,v}$$
 for $x \in Q$

and from Lemma 2

$$\left\{ \frac{1}{w(Q)^{\frac{q}{p}}} \int_{Q} |T^{y}(I_{\alpha,v}f_{2})(x)|^{q} \left(\prod_{i=1}^{n} y_{i}^{2v_{i}} \right) dy \right\}^{\frac{1}{p}} \leq C_{p,q} \|f\|_{p,w,v}.$$
(8)

By (6) and (8) we have (4).

ii) For $f \in L_{1,w,v}$ and for Q, let $f = f_1 + f_2$, $f_1 = f\chi_{2Q}$. Since $I_{\alpha,v}$ is bounded from $L_{1,v}$ to weak $L_{q,v}$ in [8],

$$m\{x \in Q: |I_{\alpha,v}f(x)| > t\} \le C_q \left(\frac{\|f_1\|_{1,w,v}}{t}\right)^q$$

 $\le C_q \left(\frac{w(Q)\|f\|_{1,w,v}}{t}\right)^q.$

It follows from (7) and Lemma 3 with $p=1, \ \delta=1-\frac{\alpha}{n+2|v|}=\frac{1}{q}$ that

$$|I_{\alpha,v}f_2(x)| \le C_q |Q|^{-\frac{1}{q}} \int T^y |f(x)| \left(M\chi_Q(y)\right)^{\frac{1}{q}} \left(\prod_{i=1}^n y_i^{2v_i}\right) dy$$

$$\le C_q |Q|^{-\frac{1}{q}} w(Q) ||f||_{1,w,v} \text{ for } x \in Q.$$

Then from Lemma 2 we obtain

$$m\{x \in Q: |I_{\alpha,v}f_2(x)| > t\} \le \int_Q \left(\frac{|I_{\alpha,v}f_2(x)|}{t}\right)^q \left(\prod_{i=1}^n y_i^{2v_i}\right) dy$$
$$\le C_q \left(\frac{w(Q) \|f\|_{1,w,v}}{t}\right)^q.$$

Thus we have (5). This completed the theorem.

References

- F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood Maximal Function, Rend. Mat. Appl., 7 (3-4) (1987), 271–279.
- [2] B. M. Levitan, B.M., Expansion in Fourier Series and Integrals with Bessel Functions, Uspehi Mat. Nauk (N.S), 6 no. 2(42) (1951), 102–143 (in Russian).
- [3] B. M. Levitan, Generalized Translation Operators and Some of Their Applications, Moscova 1962 (Translation 1964).
- [4] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans.Amer. Math. Soc., 43 (1938), 126–166.
- [5] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 95–103.
- [6] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Application, Gordan and Breach Science USA 1993.
- [7] E. M. Stein, Singular Integrals and Differential Properties of Functions, Princeton University Press, Princeton, New Jersey, (1970).
- [8] H. Yıldırım, Riesz Potentials Generated by a Generalized Shift Operator, Ph.D. Thesis 1995.

(Received: October 18, 2006) Department (Revised: December 25, 2007) Faculty of

Department of Mathematics Faculty of Science and Arts Kocatepe University Afyon—TURKEY E-mail: sarikaya@aku.edu.tr E-mail: hyildir@aku.edu.tr