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ON THE DIFFERENCE EQUATION xn+1 = ax2
n+bxn−1xn−k

cx2
n+dxn−1xn−k

E.M. ELABBASY, H. EL-METWALLY AND E.M. ELSAYED

Abstract. In this paper we investigate the global convergence result,
boundedness, and periodicity of solutions of the recursive sequence

xn+1 =
ax2

n + bxn−1xn−k

cx2
n + dxn−1xn−k

, n = 0, 1, . . .

where the parameters a, b, c and d are positive real numbers and the ini-
tial conditions x−k, x−k+1, . . . , x−1 and x0 are arbitrary positive num-
bers.

1. Introduction

Our goal in this paper is to investigate the global stability character and
the periodicity of solutions of the recursive sequence

xn+1 =
ax2

n + bxn−1xn−k

cx2
n + dxn−1xn−k

, (1)

where a, b, c and d ∈ (0,∞) with the initial conditions x−k, x−k+1, . . . , x−1

and x0 ∈ (0,∞).
Recently there has been a lot of interest in studying the global attractiv-

ity, boundedness character and the periodic nature of nonlinear difference
equations. For some results in this area, see for example [5-8]. See also [1-4].

Here, we recall some notations and results which will be useful in our
investigation.

Definition 1. The difference equation

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . (2)

is said to be persistence if there exist numbers m and M with 0 < m ≤
M < ∞ such that for any initial conditions x−k, x−k+1, . . . , x−1, x0 ∈ (0,∞)
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there exists a positive integer N which depends on the initial conditions such
that

m ≤ xn ≤ M for all n ≥ N.

Definition 2. (Stability)
(i) The equilibrium point x of Eq.(2) is locally stable if for every ε > 0,

there exists δ > 0 such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I for
some interval I of real numbers with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < δ,

we have
|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of Eq.(2) is locally asymptotically stable if
x is locally stable solution of Eq.(2) and there exists γ > 0, such that
for all x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ,

we have
lim

n→∞ xn = x.

(iii) The equilibrium point x of Eq.(2) is global attractor if for all x−k,
x−k+1, . . . , x−1, x0 ∈ I, we have

lim
n→∞ xn = x.

(iv) The equilibrium point x of Eq.(2) is globally asymptotically stable if
x is locally stable, and x is also a global attractor of Eq.(2).

(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.
The linearized equation of Eq.(2) about the equilibrium x is the linear

difference equation

yn+1 =
k∑

i=0

∂F (x, x, . . . , x)
∂xn−i

yn−i. (3)

Theorem A. Assume that p, q ∈ R and k ∈ {0, 1, 2, . . . }. Then

|p|+ |q| < 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, . . . .

Remark 1. Theorem A can be easily extended to a general linear equations
of the form

xn+k + p1xn+k−1 + · · ·+ pkxn = 0, n = 0, 1, . . . (4)
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where p1, p2, . . . , pk ∈ R and k ∈ {1, 2, . . . }. Then Eq.(4) is asymptotically
stable provided that

k∑

i=1

|pi| < 1.

2. Local stability of the equilibrium point

In this section we study the local stability character of the solutions of
Eq.(1). Eq.(1) has a unique positive equilibrium point and is given by

x =
a + b

c + d
. (5)

Let f : (0,∞)3 −→ (0,∞) be a continuous function defined by

f(u, v, w) =
au2 + bvw

cu2 + dvw
. (6)

Therefore it follows that
∂f(u, v, w)

∂u
=

2(ad− bc)uvw

(cu2 + dvw)2

∂f(u, v, w)
∂v

=
−(ad− bc)u2w

(cu2 + dvw)2

∂f(u, v, w)
∂w

=
−(ad− bc)u2v

(cu2 + dvw)2
.

Then we see that
∂f(x, x, x)

∂u
=

2(ad− bc)
(a + b)(c + d)

= −c2

∂f(x, x, x)
∂v

=
−(ad− bc)

(a + b)(c + d)
= −c1

∂f(x, x, x)
∂w

=
−(ad− bc)

(a + b)(c + d)
= −c0.

Then the linearized equation of Eq.(1) about x is

yn+1 + c2yn + c1yn−1 + c0yn−k = 0 (7)

and its characteristic equation is

λk+1 + c2λ
k + c1λ

k−1 + c0 = 0. (8)

Theorem 2.1. Assume that

4 |ad− bc| < (a + b)(c + d).

Then the positive equilibrium point of Eq.(1) is locally asymptotically stable.
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Proof. It follows from Remark 1 that Eq.(7) is asymptotically stable if all
roots of Eq.(8) lie in the open disc |λ| < 1, which results from inequality

|c2|+ |c1|+ |c0| < 1.
∣∣∣∣

2(ad− bc)
(a + b)(c + d)

∣∣∣∣ +
∣∣∣∣
−(ad− bc)

(a + b)(c + d)

∣∣∣∣ +
∣∣∣∣
−(ad− bc)

(a + b)(c + d)

∣∣∣∣ < 1,

or
4 |bc− ad| < (c + d)(a + b).

The proof is complete. ¤

3. Boundedness of solutions

Here we study the permanence of Eq.(1).

Theorem 3.1. Every solution of Eq.(1) is bounded and persists.

Proof. Let {xn}∞n=−k be a solution of Eq.(1). It follows from Eq.(1) that

xn+1 =
ax2

n + bxn−1xn−k

cx2
n + dxn−1xn−k

=
ax2

n

cx2
n + dxn−1xn−k

+
bxn−1xn−k

cx2
n + dxn−1xn−k

≤ ax2
n

cx2
n

+
bxn−1xn−k

dxn−1xn−k
.

Then
xn ≤ a

c
+

b

d
= M for all n ≥ 1. (9)

Now we wish to show that there exists m > 0 such that

xn ≥ m for all n ≥ 1.

The transformation
xn =

1
yn

,

will reduce Eq.(1) to the equivalent form

yn+1 =
dy2

n + cyn−1yn−k

by2
n + ayn−1yn−k

=
dy2

n

ayn−1yn−k + by2
n

+
cyn−1yn−k

ayn−1yn−k + by2
n

.

It follows that

yn+1 ≤ d

b
+

c

a
=

bc + ad

ab
= H for all n ≥ 1.

Thus we obtain

xn =
1
yn
≥ 1

H
=

ab

bc + ad
= m for all n ≥ 1. (10)
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From (9) and (10) we see that

m ≤ xn ≤ M for all n ≥ 1.

Therefore every solution of Eq.(1) is bounded and persists. ¤

4. Periodicity of solutions

In this section we study the existence of prime period two solutions of
Eq.(1).

Theorem 4.1. Let k be even. Eq.(1) has a prime period two solution if and
only if

(i) 4da < (c− d)(b− a).

Proof. First suppose that there exists a prime period two solution

. . . , p, q, p, q, . . .

of Eq.(1). We will prove that Condition (i) holds.
When k − even, we see from Eq.(1) that

p =
aq2 + bpq

cq2 + dpq
=

aq + bp

cq + dp
,

and

q =
ap2 + bpq

cp2 + dpq
=

ap + bq

cp + dq
.

Then
cpq + dp2 = aq + bp, (11)

and
cpq + dq2 = ap + bq. (12)

Subtracting (11) from (12) gives

d(p2 − q2) = (b− a)(p− q).

Since p 6= q, it follows that

p + q =
(b− a)

d
. (13)

Also, since p and q are positive, (b− a) should be positive.
Again, adding (11) and (12) yields

2cpq + d(p2 + q2) = (p + q)(a + b). (14)

It follows by (13), (14) and the relation

p2 + q2 = (p + q)2 − 2pq for all p, q ∈ R,

that
2(c− d)pq =

2a(b− a)
d

.
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Again, since p and q are positive and b > a, we see that c > d. Thus

pq =
a(b− a)
d(c− d)

. (15)

Now it is clear from Eq.(13) and Eq.(15) that p and q are the two positive
distinct roots of the quadratic equation

t2 − (b− a)
d

t +
a(b− a)
d(c− d)

= 0, (16)

and so [
b− a

d

]2

− 4a(b− a)
d(c− d)

> 0.

Since c− d and b− a have the same sign,
b− a

d
>

4a

(c− d)
,

which is equivalent to
4da < (c− d)(b− a).

Therefore Inequality (i) holds.
Second suppose that Inequality (i) is true. We will show that Eq.(1) has

a prime period two solution.
Assume that

p =
b−a
d −

√[
b−a
d

]2 − 4a(b−a)
d(c−d)

2
,

and

q =
b−a
d +

√[
b−a
d

]2 − 4a(b−a)
d(c−d)

2
.

We see from Inequality (i) that

(c− d)(b− a) > 4da,

or
[b− a]2 >

4da(b− a)
(c− d)

,

which equivalents to [
b− a

d

]2

>
4a(b− a)
d(c− d)

.

Therefore p and q are distinct positive real numbers.
Let k be even, 0 < p < q,

x−k = p, x−k+1 = q, . . . , x0 = p.

We wish to show that

x1 = x−1 = q and x2 = x0 = p.
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It follows from Eq.(1) that

ap2 + bpq

cp2 + dpq
= q = x1 and

ax2
1 + bpq

cx2
1 + dpq

= p,

ap + bq

cp + dq
= q and

aq + bp

cq + dp
= p.

Then
cpq + dp2 = aq + bp and cpq + dq2 = ap + bq.

Adding and subtracting the above relations

p + q =
(b− a)

d
and pq =

a(b− a)
d(c− d)

,

so p and q are the solutions of equation

t2 − (b− a)
d

t +
a(b− a)
d(c− d)

= 0.

So if k even and 4da < (c − d)(b − a) we have a prime period two solution
and the proof is complete. ¤

5. Global stability of Eq.(1)

In this section we investigate the global asymptotic stability of Eq.(1).

Lemma 1. For any values of the quotient a
c and b

d , the function f(u, v, w)
defined by Eq.(6) is monotone in each of its three arguments.

Proof. The proof follows from the calculations after formula (6). ¤
Theorem 5.1. The equilibrium point x is a global attractor of Eq.(1) if one
of the following statements holds

(1) ad ≥ bc and 4cb− 2da > (a− b)d
[
ad

bc

]2

. (17)

(2) ad ≤ bc and 4da− 2cb > (b− a)c
[

bc

ad

]2

. (18)

Proof. Let {xn}∞n=−k be a solution of Eq.(1) and again let f be a function
defined by Eq.(6).

We will prove the theorem when Case (1) is true and the proof of Case
(2) is similar and is left to the reader.

Assume that (17) is true, then it results from the calculations after formula
(6) that the function f(u, v, w) is non-decreasing in u and non-increasing in
v, w. Thus from Eq.(1), we see that

xn+1 =
ax2

n + bxn−1xn−k

cx2
n + dxn−1xn−k

≤ ax2
n + b(0)

cx2
n + d(0)

=
a

c
.
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Then
xn ≤ a

c
= H for all n ≥ 1. (19)

xn+1 =
ax2

n + bxn−1xn−k

cx2
n + dxn−1xn−k

≥ a(0) + bxn−1xn−k

c(0) + dxn−1xn−k

≥ bxn−k

dxn−k
≥ b

d
= h for all n ≥ 1. (20)

Then from Eq.(19) and Eq.(20), we see that

0 < h =
b

d
≤ xn ≤ a

c
= H for all n ≥ 1.

Let {xn}∞n=0 solution of Eq.(1) with

I := lim
n→∞ inf xn and S := lim

n→∞ supxn.

It suffices to show that I = S.
Now it follows from Eq.(1) that

I ≥ f(I, S, S),

or,

I ≥ aI2 + bS2

cI2 + dS2
,

and so
aI2 + bS2 − cI3 ≤ dS2I. (21)

Similarly, we see from Eq.(1) that

S ≤ f(S, I, I),

or,

S ≤ aS2 + bI2

cS2 + dI2
,

and so
aS2 + bI2 − cS3 ≥ dSI2. (22)

Therefore it follows from Eq.(21) and Eq.(22) that

aI3 + bS2I − cI4 ≤ dS2I2 ≤ aS3 + bSI2 − cS4

c(I4 − S4) + bSI(I − S)− a(I3 − S3) ≥ 0,

if and only if

(I − S)
[
c(I2 + S2)(I + S) + bSI − a(I2 + S2 + IS)

] ≥ 0,

or
(I − S)

[
(I2 + S2){c(I + S)− a}+ SI{b− a}] ≥ 0,

and so
I ≥ S if (I2 + S2){c(I + S)− a}+ SI{b− a} > 0.
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Now, we know by (17) that

4cb− 2da > (a− b)d
[
ad

bc

]2

2
[
2cb

d
− a

]
> (a− b)

[
ad

bc

]2

[
I2 + S2

]
(c (I + S)− a) ≥

[[
b

d

]2

+
[

b

d

]2
][

c

[
b

d
+

b

d

]
− a

]

> (a− b)
[a

c

] [a

c

]
> (a− b)IS

(I2 + S2){c(I + S)− a}+ SI{b− a} > 0,

and so it follows that
I ≥ S.

Therefore
I = S.

This completes the proof. ¤
Remark 2. It follows from Eq.(1), when a

c = b
d , that xn+1 = λ for all

n ≥ −k and for some constant λ.
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