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EXTREMAL VECTORS FOR A CLASS OF OPERATORS

LARRY DOWNEY AND BOON W. ONG

Abstract. In this note, we study extremal vectors for a class of oper-
ators with a special application to the the Volterra operator. The study
requires the description of the asymptotic behavior of a class of infinite
series involving a real parameter.

1. Introduction

In 1996 Per Enflo introduced the concept of extremal vectors in connection
with the Invariant Subspace Problem [1]. In particular, backward minimal
vectors can be used to give constructive proofs of the existence of invariant
subspaces for certain classes of operators on a Hilbert Space. In this paper we
investigate the behavior of backward minimal vectors for a class of operators,
including the Volterra operator. In particular, our main interest will be to
give estimates on the norms of these vectors. Necessary for this study is
the determination of the asymptotic behavior of a class of infinite series
involving a real parameter. This work is contained in Section 2.

2. The sum of a class of series

The series we investigate here are of the form
∑

n∈J
nc

(nd+K)2
where J =

{1, 3, . . .} is the set of odd positive integers. The method of summation
used involves the calculus of residues in Complex Analysis. Before stating
the main result of this section (Theorem 2.3 ), we establish some terminology
and state two technical lemmas. The proofs of these lemmas are given at
the end of this section.

Let

T (z) = −π

2
tan

(πz

2

)
.
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Let c and d be positive even integers with c ≤ 2d − 2 and for j = 1, . . . , d,
let

αj = exp

(
i
2j − 1

d
π

)
= cos

2j − 1
d

π + i sin
2j − 1

d
π

be the d-th roots of −1 and let βj = αj
d
√

K.

Lemma 2.1. Let

M =
d∑

j=1

T (βj) αc+1
j and N =

d∑

j=1

T ′(βj) αc+2
j .

Then both M and N are real numbers.

Lemma 2.2. For each j = 1, . . . , d, let Sj = {1, 2, . . . , d} \ {j}, and let

Aj =
∑

`∈Sj

1
αj − α`

, and Bj =
∏

`∈Sj

1
αj − α`

.

Then
Aj =

d− 1
2αj

and Bj = −αj

d
.

We now state the main theorem of this section :

Theorem 2.3. Let K ≥ 1 be real, c and d be positive even integers with
c ≤ 2d− 2, and J be the set of odd, positive integers. Then

∑

n∈J

nc

(nd + K)2
=

1
Kp

(
(d− c− 1)M −N d

√
K

2d2

)

where p = 2− c+1
d and M and N are as in Lemma 2.1.

Proof. Let f(z) = zc

(zd+K)2
and let γk be a Mittag-Leffler rectangle with

corners ±2k ± (2k)i. If we assume k > K, then by the residue theorem,
1

2πi

∫

γk

T (z)f(z) dz =
∑

p

Res (T (z)f(z), z = p)

where the sum is taken over all the poles p of the function Tf , lying inside
the rectangle γk. Since limz→∞ zf(z) = 0 and |T (z)| is bounded on γk,∫
γk

T (z)f(z) dz → 0 as k →∞ [2]. Moreover, Tf has as poles the set of odd
integers, each a simple pole, and the d complex numbers β1, . . . βd, each of
order 2.

Consequently, we have

∑

m∈Z\2Z
Res (T (z)f(z), z = m) +

d∑

j=1

Res (T (z)f(z), z = βj) = 0. (1)
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Since T has simple poles at all the odd integers with residues equal 1,

∑

m∈Z\2Z
Res (T (z)f(z), z = m) =

∑

m∈Z\2Z
f(m)Res (T (z), z = m)

=
∑

m∈Z\2Z
f(m)

= 2
∑

n∈J

f(n)

= 2
∑

n∈J

nc

(nd + K)2
.

Now, for each j = 1, . . . , d, Tf has a double pole at z = βj . Thus, letting

Gj(z) =
∏

`∈Sj

1
(z − β`)2

,

we have that

Res (T (z)f(z), z = βj) = lim
z→βj

d

dz
(z−βj)2T (z)f(z) = lim

z→βj

d

dz
zcT (z)Gj(z)

= cβc−1
j T (βj)Gj(βj) + βc

jT (βj)G′
j(βj) + βc

jT
′(βj)Gj(βj).

But

Gj(βj) =
1(

K
2
d

)d−1

∏

`∈Sj

1
αj − α`

= K
2−2d

d B2
j = K

2−2d
d

α2
j

d2
.

Using a logarithmic derivative we have

G′
j(βj) = −2Gj(βj)

(
1

(αj
d
√

K − α1
d
√

K)
+ · · ·+ 1

(αj
d
√

K − αd
d
√

K)

)

= −2K
2−2d

d B2
j K− 1

d

(
1

(αj − α1)
+ · · ·+ 1

(αj − αd)

)

= −2K
2−2d

d B2
j K− 1

d Aj

= −2K
1−2d

d B2
j Aj
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where Aj and Bj are as in lemma 2.2. Hence

cβc−1
j T (βj)Gj(βj) + βc

jT (βj)G′
j(βj)

= T (βj)
(
cαc−1

j
d
√

K
c−1

Gj(βj) + αc
j

d
√

K
c
G′

j(βj)
)

= T (βj)
(
cαc−1

j K
c−1

d K
2−2d

d B2
j − 2αc

jK
c
d K

1−2d
d B2

j Aj

)

= T (βj)K
c+1−2d

d

(
cαc−1

j B2
j − 2αc

jB
2
j Aj

)

= T (βj)K
c+1−2d

d

(
cαc−1

j

α2
j

d2
− 2αc

j

α2
j

d2
· (d− 1)

2αj

)

= T (βj)K
c+1−2d

d αc+1
j

(c− d + 1
d2

)
.

Therefore,

Res (T (z)f(z), z = βj)

= cβc−1
j T (βj)Gj(βj) + βc

jT (βj)G′
j(βj) + βc

jT
′(βj)Gj(βj)

= K
c+1−2d

d T (βj) αc+1
j

(c− d + 1
d2

)
+ K

c
d αc

jT
′(βj)K

2−2d
d

α2
j

d2

= K
c+1−2d

d

(
T (βj) αc+1

j

(c− d + 1
d2

)
+ K

1
d αc+2

j T ′(βj)
1
d2

)
.

Finally, recalling the definitions of M and N, and that

∑

m∈Z\2Z
Res (T (z)f(z), z = m) = −

d∑

j=1

Res (T (z)f(z), z = βj) ,

we now have that

2
∑

n∈J

nc

(nd + K)2
= −

d∑

j=1

K
c+1−2d

d

(
T (βj)αc+1

j

(c− d + 1
d2

)

+ K
1
d αc+2

j T ′(βj)
1
d2

)

=
1

K
2d−c−1

d

((d− c− 1)M −N d
√

K

d2

)
.

Dividing by 2 completes the proof of Theorem 2.3. ¤

In what follows, we will be comparing functions of a real variable according
to their asymptotic behavior. The real variable will be the parameter K from
the series above ( and also the K = Kε from Theorem 3.2 ). We make the
following definition :
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Definition 2.4. Let f, g : [1,∞) −→ R be two positive real valued functions
(of the parameter K). Then f and g are asymptotically equivalent, de-
noted f v g, if there exist positive constants A and B independent of K,
so that

A · g(K) < f(K) < B · g(K).

Note here that v is an equivalence relation. Moreover, we have the fol-
lowing :

Proposition 2.5. Let

W (K) = (d− c− 1)M −N
d
√

K

be as in Theorem 2.3. Then

W (K) v 1.

Proof. Since the sum in Theorem 2.3 is clearly positive, it is sufficient to show
that W (K) → C for some non-zero constant C as K → ∞. Since T (z) =
πi(eiz−e−iz)
2(eiz+e−iz)

and since sin
(

2j−1
d π

)
> 0 for 1 ≤ j ≤ d

2 and sin
(

2j−1
d π

)
< 0

for d
2 < j ≤ d, one readily obtains

lim
K→∞

T (βj) =

{
−π

2 i, for 1 ≤ j ≤ d
2

π
2 i, for d

2 < j ≤ d.

So

lim
K→∞

M = lim
K→∞

d∑

j=1

T (βj) αc+1
j

= lim
K→∞

d/2∑

j=1

T (βj) αc+1
j + T (βj+ d

2
) αc+1

j+ d
2

= −πi
d/2∑

j=1

αc+1
j

(
since αj+d/2 = −αj , T (βj+ d

2
) = −T (βj)

)

= −πi
(

αc+1
1 +

(
α3

1

)c+1 +
(
α5

1

)c+1 + · · ·+
(
αd−1

1

)c+1
)

=
−πiαc+1

1

(
1− (

αc+1
1

)d
)

(
1− (

αc+1
1

)2
) =

−2πiαc+1
1(

1− (
αc+1

1

)2
)

=
−2πiαc+1

1 α1
c+1

αc+1
1

(
1− (

αc+1
1

)2
) =

2πi
αc+1

1 − α1
c+1

=
π

sin (c+1)π
d

.
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Also, since

T ′(βj) = −π2
(
eiπ

2
βj + e−iπ

2
βj

)−1
= O

( 1

e
d√K

)
,

the limit
lim

K→∞
N

d
√

K = lim
K→∞

T ′(βj) αc+2
j

d
√

K = 0.

Hence

lim
K→∞

W (K) = lim
K→∞

(d− c− 1)M −N
d
√

K =
π(d− c− 1)

sin (c+1)π
d

which is positive for c ≤ 2d− 2. ¤

Proposition 2.6. Let f(K) =
∑

n∈J
nc

(nd+K)2
be as in Theorem 2.3. Then

f(K) v 1

K2− c+1
d

.

Proof. We have from Theorem 2.3 that f(K) = W (K)
2d2Kp where p = 2 − c+1

d .
But by Proposition 2.5, we have W (K) v 1, so f(K) = W (K)

2d2Kp v 1
Kp . ¤

2.1. Proofs of Lemmas 2.1 and 2.2.

Proof. (Lemma 2.1) : Note that for j = 1, . . . , d
2 , αj = αd−j+1, and conse-

quently βj = βd−j+1. Also, for any complex number z,

T (z) = T (z) and T ′(z) = T ′(z).

Therefore

M =
d∑

j=1

T (βj) αc+1
j =

d/2∑

j=1

T (βj) αc+1
j + T (βd−j+1) αc+1

d−j+1

=
d/2∑

j=1

T (βj) αc+1
j + T (βj) αj

c+1 =
d/2∑

j=1

T (βj) αc+1
j + T (βj) αc+1

j

= 2
d/2∑

j=1

<e
(
T (βj) αc+1

j

)
.

From Theorem 2.3, since the sum is real and M is real, N must be real. ¤

Proof. (Lemma 2.2) : Note that for j = 1, . . . , d, if we let Hj(z) = z−αj

zd+1
,

then

lim
z→αj

Hj(z) = Bj
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and

lim
z→αj

(lnHj(z))′ = −Aj .

Hence

Aj = − lim
z→αj

(
H ′

j(z)
Hj(z)

)

= lim
z→αj

dzd−1(z − αj)− (zd + 1)
(zd + 1)(z − αj)

= lim
z→αj

d(d− 1)zd−2(z − αj) + dzd−1 − dzd−1

(zd + 1) + dzd−1(z − αj)

= lim
z→αj

d(d− 1)zd−2(z − αj)
(zd + 1) + dzd−1(z − αj)

= lim
z→αj

d(d− 1)(d− 2)zd−3(z − αj) + d(d− 1)zd−2

dzd−1 + dzd−1 + d(d− 1)zd−2(z − αj)

=
d− 1
2αj

.

Also,

Bj = lim
z→αj

Hj(z) = lim
z→αj

z − αj

zd + 1

= lim
z→αj

1
dzd−1

=
1

dαd−1
j

= −αj

d
.

¤

3. Extremal vectors for a class of operators

We begin by giving the the definition of a backward minimal vector and
previously known results (Theorem 3.2 ) [1] which are pertinent to our dis-
cussion.

Definition 3.1. Let T : H −→ H be a bounded linear operator on a Hilbert
Space with dense range. Let x0 ∈ H with x0 /∈ R(T ). Then, for ε > 0
with ε < ‖x0‖, there is a unique vector yε,x0 so that ‖yε,x0‖ = inf{‖y|| :
‖Ty− x0‖ ≤ ε}. The vectors yε,x0 are called backward minimal vectors.

In what follows, we will assume that x0 is known, and hence simply write
yε for yε,x0 . We also note here that, in fact, ‖Tyε − x0‖ = ε, [1].

Theorem 3.2. [1] For ε > 0 there exists a constant K = Kε > 0 so that

yε = −KεT
∗(Tyε − x0).
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We now give two important equations, also found in [1], which will be
used in what follows. The first equation is obtained by solving for yε in the
formula of Theorem 3.2. The second is obtained by first applying T to the
same formula and then solving for Tyε.

yε = Kε(I + KεT
∗T )−1T ∗x0. (2)

Tyε = Kε(I + KεTT ∗)−1TT ∗x0. (3)

As mentioned above, our interest is in estimating the norms of backward
minimal vectors. Because we are assuming that x0 is not in the (dense)
range of T , these norms necessarily grow unboundedly as the parameter ε
tends to 0.

Theorem 3.3. Let ε and K = Kε be as in Theorem 3.2. Let T : H −→
H be a linear operator on a Hilbert space so that TT ∗ can be decomposed
with a sequence of eigenvalues (λn) and corresponding complete orthonormal
sequence (fn) of eigenvectors. If x0 =

∑
bnfn, then

ε2 =
∑ b2

n

(1 + Kλn)2
and (4)

‖yε‖2 = K2
∑ λnb2

n

(1 + Kλn)2
. (5)

Proof. Let V ≡ K(I + KTT ∗)−1TT ∗, so that by the spectral mapping
theorem, V has the same eigenvectors (fn) as TT ∗ but with eigenvalues
( Kλn
1+Kλn

). Thus, using equation (3), we have that

ε2 = ‖Tyε − x0‖2 = ‖V x0 − x0‖2

= ‖V (
∑

bnfn)−
∑

bnfn‖2

=
∥∥∥∥
∑

(
Kλnbn

1 + Kλn
− bn)fn

∥∥∥∥
2

=
∥∥∥∥
∑ −bn

1 + Kλn
fn

∥∥∥∥
2

=
∑ b2

n

(1 + Kλn)2
.

which gives equation (4).
Now, noting that T ∗T (T ∗( fn√

λn
)) = T ∗(

√
λnfn) = λnT ∗( fn√

λn
), we see

that T ∗T has eigenvalues (λn) with (orthonormal) eigenvectors (T ∗( fn√
λn

)).
Letting W ≡ (I +KT ∗T )−1, then W has the same eigenvectors as T ∗T with
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eigenvalues ( 1
1+Kλn

). Using equation (2) we have

‖yε‖2 = ‖KWT ∗(x0)‖2 = K2‖WT ∗(
∑

bnfn)‖2

= K2‖W (
∑

bnT ∗fn)‖2 = K2

∥∥∥∥
∑ bn

√
λn

1 + Kλn
T ∗

(
fn√
λn

)∥∥∥∥
2

= K2
∑ b2

nλn

(1 + Kλn)2
.

¤

4. The Volterra operator

We now apply Theorem 3.3 to the Volterra operator, which is defined as:

Definition 4.1. Let T : L2(0, π
2 ) −→ L2(0, π

2 ) by Tf(x) ≡ ∫ x
0 f(t)dt. Then

T is called the Volterra operator.

Fact : If T is the Volterra operator, then the adjoint T ∗ of T is given by

T ∗f(x) =
∫ π

2

x
f(t) dt.

In what follows, we use the function x0 which is constantly one a.e., as it is
not in the range of the Volterra operator. For a more general x0, one simply
needs to expand x0 with respect to the eigenvectors (sin(nx)) as discussed
below.

Theorem 4.2. Let ε and K = Kε be as in Theorem 3.2. If T is the Volterra
operator, x0 is the function which is constantly one a.e. on (0, π

2 ), and yε

is the corresponding backward minimal vector, then ‖yε‖ v 1
ε .

Proof. Because T is compact, so is TT ∗, and since TT ∗ is self adjoint,
TT ∗ has a sequence of eigenvalues (λn) with a corresponding orthonor-
mal sequence of eigenvectors (fn) so that for every f in L2(0, π

2 ), Tf =∑
n λn〈f, fn〉fn. Consider the equation TT ∗f = λf . Because T and T ∗ are

integral operators, one can differentiate this equation twice, and then use
standard differential equation techniques to show that TT ∗ has eigenvalues
λn = 1

n2 (n ∈ J = {1, 3, 5, . . .}) with corresponding eigenvectors fn(x) =
4
π sinnx. Expanding x0 with respect to (fn) gives x0 = 4

π

∑
n∈J

sin nx
n , i.e.

(bn) = ( 1
n).

Thus, by equation (4),

ε2 =
∑

n∈J

n2

(n2 + K)2
.
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Now, using Proposition 2.6 with c = d = 2, we see that

ε2 v 1

K
1
2

or ε v 1

K
1
4

.

Also, by equation (5),

‖yε‖2 = K2
∑

n∈J

1
(n2 + K)2

.

Using Proposition 2.6 again, this time with c = 0 and d = 2, we have
that

‖yε‖2 v K2

K
3
2

or ‖yε‖ v K
1
4 ,

and thus we see that
‖yε‖ v 1

ε
.

¤

5. Open problems

In [1], the authors consider extremal vectors of not only operators, but of
powers of the operators. A study of the rate of growth of the norms of the
backward minimal vectors of powers Tn of the Volterra operator similar to
the above would require an analysis of the eigenvalues and eigenvectors of
Tn. However, for n ≥ 2, the eigenvalues of Tn are solutions of complicated
transcendental equations, and can only be estimated, and the eigenvectors
can only be estimated as well. While an asymptotic estimate would do,
even such estimates seem to be difficult, or at least very cumbersome. We
do make the following conjecture :
Conjecture : If Tn is the nth power of the Volterra operator and x0 is one
a.e., then yε v 1

ε2n−1 .

References

[1] S. Ansari and P. Enflo, Extremal vectors and invariant subspaces, Trans. Amer. Math.
Soc., 350 (1998), 539–558.

[2] S. D. Fisher, Complex Variables, 2nd ed., Dover Publications, 1990.

(Received: June 14, 2007) School of Science
(Revised: July 2, 2008) Penn State University at Erie

Station Road, Erie, PA 16563
USA
E–mail: lmd108@psu.edu
E–mail: bwo1@psu.edu


