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AN IMPLICIT FUNCTION IMPLIES SEVERAL
CONTRACTION CONDITIONS

JAVID ALI AND M. IMDAD

Abstract. In this paper, we define a new implicit function which in-
cludes a majority of contractions of the existing literature of metric fixed
point theory and then utilize the same to prove a general common fixed
point theorem for two pairs of weakly compatible mappings satisfying
the common property (E.A). In the process, a host of previously known
results are improved and generalized. Some related results are derived
besides furnishing illustrative examples.

1. Introduction

A common fixed point theorem in metric spaces generally involves con-
ditions on commutativity, continuity, contraction along with a condition on
suitable containment of range of one mapping into the range of other. Hence,
in order to prove a new metrical common fixed point theorem one is always
required to improve one or more of these conditions.

The first ever attempt to improve commutativity conditions in common
fixed point theorems is due to Sessa [29] wherein he introduced the notion
of weakly commuting mappings. Inspired by the definition due to Sessa
[29], researchers of this domain introduced several definitions of weak com-
mutativity such as: Compatible mappings, Compatible mappings of type
(A), (B), (C) and (P ), and some others whose systematic comparison and
illustration (up to 2001) is available in Murthy [25]. But in our subsequent
work, we use the most minimal but natural of these conditions namely ‘weak
compatibility’ which is due to Jungck [19].

With a view to improve the continuity requirement in fixed point theo-
rems, Kannan [21] proved a result for self mappings (without continuity)
and shown that there do exist mappings which are discontinuous at their
fixed points. However, common fixed point theorems without any continuity
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requirement were established by Singh and Mishra [31] and also Pant [26].
Here, we opt a method which is essentially inspired by Singh and Mishra
[31].

The tradition of improving contraction conditions in fixed and common
fixed point theorems is still in fashion and continues to be most effective tool
to improve such results. For an extensive collection of contraction conditions
one can be referred to Rhoades [28] and references cited therein. Most
recently, with a view to accommodate many contraction conditions in one
go, Popa [27] introduced implicit functions which are proving fruitful due to
their unifying power besides admitting new contraction conditions. In this
paper, we also introduce an implicit function to prove our results because of
their versatility of deducing several contraction conditions in one go. This
fact will be substantiated by furnishing several examples in Section 2.

Definition 1.1. [18] A pair (A, S) of self mappings of a metric space (X, d)
is said to be compatible if limn→∞ d(ASxn, SAxn) = 0, whenever {xn} is a
sequence in X such that

lim
n→∞Axn = lim

n→∞Sxn = t, for some t ∈ X.

Definition 1.2. A pair (A,S) of self mappings of a metric space (X, d) is
said to be noncompatible if there exists at least one sequence {xn} in X such
that

lim
n→∞Axn = lim

n→∞Sxn = t, for some t ∈ X

but limn→∞ d(ASxn, SAxn) is either nonzero or nonexistent.

Motivated by the notions of compatibility and noncompatibility, Aamri
and Moutawakil [1] defined the generalization of these notions as follows.

Definition 1.3. [1] A pair (A,S) of self mappings of a metric space (X, d)
is said to satisfy the property (E.A) if there exists a sequence {xn} in X
such that

lim
n→∞Axn = lim

n→∞Sxn = t, for some t ∈ X.

Clearly a pair of noncompatible mappings satisfies the property (E.A).

Definition 1.4. [23] Two pairs (A,S) and (B, T ) of self mappings of a
metric space (X, d) are said to satisfy the common property (E.A) if there
exist two sequences {xn}, {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = t, for some t ∈ X.

Definition 1.5. [19] A pair (A,S) of self mappings of a nonempty set X
is said to be weakly compatible if Ax = Sx for some x ∈ X implies ASx =
SAx.
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The main purpose of this paper is to define a new implicit function to en-
hance the domain of applicability which includes several known contraction
conditions such as: Ćirić quasi-contraction, generalized contraction, φ-type
contraction, rational inequality and others besides admitting new unknown
contraction conditions which is used to prove a general common fixed point
theorem for two pairs of weakly compatible self mappings satisfying the
common property (E.A). In the process, many known results are enriched
and improved. Some related results are also derived besides furnishing il-
lustrative examples.

2. Implicit functions

Now we define an implicit function and furnish a variety of examples
which include most of the well known contractions of the existing literature
besides admitting several new ones. Here it is fascinating to note that some
of the presented examples are of nonexpansive type (e.g. Examples 2.16 and
2.19) and Lipschitzian type (e.g. Examples 2.12, 2.14 and 2.15). Here, it
may be pointed out that most of the following examples do not meet the
requirements of implicit function due to Popa [27]. In order to describe our
implicit function, let Ψ be the family of lower semi-continuous functions
F : <6

+ → < satisfying the following conditions.

(F1) : F (t, 0, t, 0, 0, t) > 0, for all t > 0,

(F2) : F (t, 0, 0, t, t, 0) > 0, for all t > 0,

(F3) : F (t, t, 0, 0, t, t) > 0, for all t > 0.

Example 2.1. Define F (t1, t2, · · · , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − k max{t2, t3, t4, t5, t6}, where k ∈ [0, 1).

(F1): F (t, 0, t, 0, 0, t) = t(1− k) > 0, for all t > 0,

(F2): F (t, 0, 0, t, t, 0) = t(1− k) > 0, for all t > 0,

(F3): F (t, t, 0, 0, t, t) = t(1− k) > 0, for all t > 0.

Example 2.2. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − k max{t2, t3, t3t5, t4t6}, where k ∈ [0, 1).

(F1): F (t, 0, t, 0, 0, t) = t(1− k) > 0, for all t > 0,

(F2): F (t, 0, 0, t, t, 0) = t > 0, for all t > 0,

(F3): F (t, t, 0, 0, t, t) = t(1− k) > 0, for all t > 0.

Example 2.3. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − k[max{t22, t3t4, t5t6, t3t5, t4t6}]
1
2 , where k ∈ [0, 1).
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Example 2.4. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − α[β max{t2, t3, t4, t5, t6}+ (1− β)

(max{t22, t3t4, t5t6, t3t6, t4t5})
1
2 ]

where α ∈ [0, 1) and β ≥ 0.

Example 2.5. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t21 − α max{t22, t23, t24} − β max{t3t5, t4t6} − γt5t6

where α, β, γ ≥ 0 and α + γ < 1.

Example 2.6. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = (1 + αt2)t1 − α max{t3t4, t5t6} − β max{t2, t3, t4, t5, t6}
where α ≥ 0 and β ∈ [0, 1).

Example 2.7. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − αt2 − β max{t3, t4} − γ max{t3 + t4, t5 + t6}
where α, β, γ ≥ 0 and α + β + 2γ < 1.

Example 2.8. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − φ(max{t2, t3, t4, t5, t6})
where φ : <+ → < is an upper semi-continuous function such that φ(0) = 0
and φ(t) < t for all t > 0.

Example 2.9. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − φ(t2, t3, t4, t5, t6)

where φ : <5
+ → < is an upper semi-continuous function such that

max{φ(0, t, 0, 0, t), φ(0, 0, t, t, 0), φ(t, 0, 0, t, t)} < t for each t > 0.

Example 2.10. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t21 − φ(t22, t3t4, t5t6, t3t6, t4t5)

where φ : <5
+ → < is an upper semi-continuous function such that

max{φ(0, 0, 0, t, 0), φ(0, 0, 0, 0, t), φ(t, 0, t, 0, 0)} < t for each t > 0.

Example 2.11. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) =

{
t1 − αt2 − β

t23+t24
t3+t4

− γ(t5 + t6), if t3 + t4 6= 0
t1, if t3 + t4 = 0

where α, β, γ ≥ 0 and β + γ < 1.
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Example 2.12. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) =

{
tp1 − ktp2 − t3tp4+t5tp6

t3+t4
, if t3 + t4 6= 0

t1, if t3 + t4 = 0

where p ≥ 1 and 0 ≤ k < ∞.

Example 2.13. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) =

{
t1 − αt2 − β

t25+t26
t5+t6

− γ(t3 + t4), if t5 + t6 6= 0
t1, if t5 + t6 = 0

where α, β, γ ≥ 0 and β + γ < 1.

Example 2.14. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) =

{
t1 − kt2 − t3t4+t5t6

t5+t6
, if t5 + t6 6= 0

t1, if t5 + t6 = 0

where 0 ≤ k < ∞.

Example 2.15. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) =





t1 − kt2 − t3t4+t5t6
t3+t4

− t3t5+t4t6
t5+t6

, if t3 + t4 6= 0
and t5 + t6 6= 0

t1, if t3 + t4 = 0
or t5 + t6 = 0

where 0 ≤ k < ∞.

Example 2.16. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − t3t4 + t5t6
1 + t2

.

Example 2.17. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − αt2 − β
t3 + t4
1 + t5t6

, where α, β ∈ [0, 1).

Example 2.18. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t21 − αt22 − β
t5t6

1 + t23 + t24
where α, β ≥ 0 and α + β < 1.

Example 2.19. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t31 −
t23t

2
4 + t25t

2
6

1 + t2
.
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Example 2.20. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t31 − αt21t2 − βt1t3t4 − γt25t6 − ηt5t
2
6

where α, β, γ, η ≥ 0 and α + γ + η < 1.

Since verification of requirements (F1, F2 and F3) for Examples 2.3-2.20
are easy, details are not included.

3. Main results

We begin with the following observation.

Lemma 3.1. Let A,B, S and T be self mappings of a metric space (X, d)
such that

(a) the pair (A,S) (or (B, T )) satisfies the property (E.A),

(b) A(X) ⊂ T (X) (or B(X) ⊂ S(X)), and

(c) for all x, y ∈ X and F ∈ Ψ

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Sx,By), d(Ty, Ax)) ≤ 0.
(3.1.1)

Then the pairs (A,S) and (B, T ) satisfy the common property (E.A).

Proof. If the pair (A,S) enjoys property (E.A), then there exists a sequence
{xn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = t, for some t ∈ X.

Since A(X) ⊂ T (X), hence for each {xn} there exists {yn} in X such that
Axn = Tyn. Therefore, limn→∞ Tyn = limn→∞Axn = t. Thus, in all we
have Axn → t, Sxn → t and Tyn → t. Now, we assert that Byn → t. If not,
then using (3.1.1), we have

F (d(Axn, Byn), d(Sxn, T yn), d(Axn, Sxn), d(Byn, T yn),

d(Sxn, Byn), d(Tyn, Axn)) ≤ 0

which on making n →∞, reduces to

F (d(t, Byn), 0, 0, d(Byn, t), d(t, Byn), 0) ≤ 0

a contradiction to (F2). Hence Byn → t which shows that the pairs (A,S)
and (B, T ) satisfy the common property (E.A). ¤
Remark 3.1. The converse of Lemma 3.1 is not true in general. For a
counter example, one can see Example 4.1.

Now, we state and prove our main result for two pairs of weakly compat-
ible mappings satisfying an implicit function.



AN IMPLICIT FUNCTION IMPLIES SEVERAL CONTRACTION CONDITIONS 275

Theorem 3.1. Let A,B, S and T be self mappings of a metric space (X, d)
which satisfy inequality (3.1.1). Suppose that

(a) pairs (A,S) and (B, T ) enjoy the common property (E.A),

(b) S(X) and T (X) are closed subsets of X.

Then the pair (A,S) as well as (B, T ) have a coincidence point. Moreover,
A,B, S and T have a unique common fixed point provided both the pairs
(A,S) and (B, T ) are weakly compatible.

Proof. Since the pairs (A,S) and (B, T ) enjoy common property (E.A), then
there exist two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = t, for some t ∈ X.

If S(X) is a closed subset of X, then limn→∞ Sxn = t ∈ S(X). Therefore,
there exists a point u ∈ X such that Su = t. Now we assert that Au = Su.
If not, then using (3.1.1), we have

F (d(Au, Byn), d(Su, Tyn), d(Au, Su), d(Byn, T yn),

d(Su, Byn), d(Tyn, Au)) ≤ 0

which on making n →∞, reduces to

F (d(Au, t), d(Su, t), d(Au, Su), d(t, t), d(Su, t), d(t, Au)) ≤ 0

or
F (d(Au, Su), 0, d(Au, Su), 0, 0, d(Su, Au)) ≤ 0

a contradiction to (F1). Hence Au = Su. Therefore, u is a coincidence point
of the pair (A,S).

If T (X) is a closed subset of X, then limn→∞ Tyn = t ∈ T (X). Therefore,
there exists a point w ∈ X such that Tw = t. Now we assert that Bw = Tw.
If not, then again using (3.1.1), we have

F (d(Axn, Bw), d(Sxn, Tw), d(Axn, Sxn), d(Bw, Tw),

d(Sxn, Bw), d(Tw,Axn)) ≤ 0

which on making n →∞, reduces to

F (d(t, Bw), d(t, Tw), d(t, t), d(Bw, Tw), d(t, Bw), d(Tw, t)) ≤ 0

or
F (d(Tw, Bw), 0, 0, d(Bw, Tw), d(Tw, Bw), 0) ≤ 0

a contradiction to (F2). Hence Bw = Tw, which shows that w is a coinci-
dence point of the pair (B, T ).
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Since the pair (A,S) is weakly compatible and Au = Su, hence At =
ASu = SAu = St. Now we assert that t is a common fixed point of the pair
(A,S). Suppose that At 6= t, then using (3.1.1), we have

F (d(At,Bw), d(St, Tw), d(At, St), d(Bw, Tw), d(St, Bw), d(Tw, At)) ≤ 0

or
F (d(At, t), d(At, t), 0, 0, d(At, t), d(t, At)) ≤ 0

a contradiction to (F3).
Also the pair (B, T ) is weakly compatible and Bw = Tw, then Bt =

BTw = TBw = Tt. Suppose that Bt 6= t, then using (3.1.1), we get

F (d(Au, Bt), d(Su, T t), d(Au, Su), d(Bt, T t), d(Su, Bt), d(Tt, Au)) ≤ 0

or
F (d(Bt, t), d(Bt, t), 0, 0, d(Bt, t), d(t, Bt)) ≤ 0

a contradiction to (F3). Therefore, Bt = t which shows that t is a common
fixed point of the pair (B, T ). Hence t is a common fixed point of both
the pairs (A, S) and (B, T ). Uniqueness of common fixed point is an easy
consequence of inequality (3.1.1) in view of condition (F3). This completes
the proof. ¤

Theorem 3.2. The conclusions of Theorem 3.1 remain true if the condition
(b) of Theorem 3.1 is replaced by following.

(b′) A(X) ⊂ T (X) and B(X) ⊂ S(X).

As a corollary of Theorem 3.2, we can have the following result which is
also a variant of Theorem 3.1.

Corollary 3.1. The conclusions of Theorems 3.1 and 3.2 remain true if
the conditions (b) and (b′) are replaced by following.

(b′′) A(X) and B(X) are closed subsets of X provided A(X) ⊂ T (X) and
B(X) ⊂ S(X).

Theorem 3.3. Let A,B, S and T be self mappings of a metric space (X, d)
satisfying inequality (3.1.1). Suppose that

(a) the pair (A,S) (or (B, T )) has property (E.A),

(b) A(X) ⊂ T (X) (or B(X) ⊂ S(X)), and

(c) S(X) (or T (X)) is closed subset of X.

Then the pairs (A,S) and (B, T ) have coincidence point. If the pairs
(A,S) and (B, T ) are weakly compatible, then A,B, S and T have a unique
common fixed point.
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Proof. In view of Lemma 3.1, the pairs (A,S) and (B, T ) satisfy the common
property (E.A), i.e. there exist two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = t ∈ X.

If S(X) is a closed subset of X, then on the lines of Theorem 3.1, the pair
(A,S) has coincidence point, say u, i.e. Au = Su. Since A(X) ⊂ T (X) and
Au ∈ A(X), there exists w ∈ X such that Au = Tw. Now we assert that
Bw = Tw. If not, then using (3.1.1), we have

F (d(Axn, Bw), d(Sxn, Tw), d(Axn, Sxn), d(Bw, Tw),

d(Sxn, Bw), d(Tw,Axn)) ≤ 0

which on making n →∞, reduces to

F (d(t, Bw), d(t, Tw), d(t, t), d(Bw, Tw), d(t, Bw), d(Tw, t)) ≤ 0

or
F (d(Tw, Bw), 0, 0, d(Bw, Tw), d(Tw, Bw), 0) ≤ 0

a contradiction to (F2). Hence Bw = Tw, which shows that w is a coinci-
dence point of the pair (B, T ). The rest of the proof can be completed on
the lines of Theorem 3.1. ¤

By choosing A,B, S and T suitably, one can deduce corollaries for a pair
as well as for a triod of mappings. The details of two possible corollaries for
a triod of mappings are not included. As a sample, we outline the following
natural result for a pair of self mappings.

Corollary 3.2. Let A and S be self mappings of a metric space (X, d).
Suppose that

(a) A and S have property (E.A),

(b) for all x, y ∈ X and F ∈ Ψ

F (d(Ax,Ay), d(Sx, Sy), d(Ax, Sx), d(Ay, Sy), d(Sx, Ay), d(Sy, Ax)) ≤ 0
(3.1.2)

(c) S(X) is a closed subset of X.

Then A and S have a coincidence point. Moreover, if the pair (A,S) is
weakly compatible, then A and S have a unique common fixed point.

Corollary 3.3. The conclusions of Theorem 3.1 remain true if inequality
(3.1.1) is replaced by one of the following contraction conditions. For all
x, y ∈ X,
(a1)

d(Ax,By) ≤ k max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Sx, By), d(Ty, Ax)}
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where k ∈ [0, 1).
(a2)

d(Ax, By) ≤ k max{d(Sx, Ty), d(Ax, Sx), d(Ax, Sx)d(Sx,By),

d(By, Ty)d(Ty,Ax)}
where k ∈ [0, 1).
(a3)

d(Ax, By) ≤ k[max{d2(Sx, Ty), d(Ax, Sx)d(By, Ty), d(Sx, By)d(Ty,Ax),

d(Ax, Sx)d(Sx, By), d(By, Ty)d(Ty,Ax)}] 1
2

where k ∈ [0, 1).
(a4)

d(Ax, By) ≤ α[β max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Sx, By),

d(Ty,Ax)}
+ (1− β)(max{d2(Sx, Ty), d(Ax, Sx)d(By, Ty), d(Sx, By)d(Ty, Ax),

d(Ax, Sx)d(Ty, Ax), d(By, Ty)d(Sx, By)}) 1
2 ]

where α ∈ [0, 1) and β ≥ 0.
(a5)

d2(Ax,By) ≤ α max{d2(Sx, Ty), d2(Ax, Sx), d2(By, Ty)}
+ β max{d(Ax, Sx)d(Sx, By), d(By, Ty)d(Ty,Ax)}

+ γd(Sx, By)d(Ty, Ax)

where α, β, γ ≥ 0 and α + γ < 1.
(a6)

(1 + αd(Sx, Ty))d(Ax,By) ≤ α max{d(Ax, Sx)d(By, Ty), d(Sx, By)

d(Ty,Ax)}
+ β max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Sx, By), d(Ty,Ax)}

where α ≥ 0 and β ∈ [0, 1).
(a7)

d(Ax, By) ≤ αd(Sx, Ty) + β max{d(Ax, Sx), d(By, Ty)}
+ γ max{d(Ax, Sx) + d(By, Ty), d(Sx, By) + d(Ty,Ax)}

where α, β, γ ≥ 0 and α + β + 2γ < 1.
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(a8)

d(Ax, By) ≤ φ(max{d(Sx, Ty), d(Ax, Sx), d(By, Ty),

d(Sx, By), d(Ty, Ax)})
where φ : <+ → < is an upper semi-continuous function such that φ(0) = 0
and φ(t) < t for all t > 0.
(a9)

d(Ax,By) ≤ φ(d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Sx, By), d(Ty, Ax))

where φ : <5
+ → < is an upper semi-continuous function such that

max{φ(0, t, 0, 0, t), φ(0, 0, t, t, 0), φ(t, 0, 0, t, t)} < t for each t > 0.
(a10)

d2(Ax,By) ≤ φ(d2(Sx, Ty), d(Ax, Sx)d(By, Ty), d(Sx, By)d(Ty, Ax),

d(Ax, Sx)d(Ty,Ax), d(By, Ty)d(Sx,By))

where φ : <5
+ → < is an upper semi-continuous function such that

max{φ(0, 0, 0, t, 0), φ(0, 0, 0, 0, t), φ(t, 0, t, 0, 0)} < t for each t > 0.
In the following contraction conditions, we denote D = d(Ax, Sx) +

d(By, Ty) and D1 = d(Sx, By) + d(Ty,Ax).
(a11)

d(Ax,By) ≤





αd(Sx, Ty) + β d2(Ax,Sx)+d2(By,Ty)
d(Ax,Sx)+d(By,Ty)

+γ(d(Sx,By) + d(Ty, Ax)), if D 6= 0
0, if D = 0

where α, β, γ ≥ 0 and β + γ < 1.
(a12)

dp(Ax,By) ≤
{

kdp(Sx, Ty) + d(Ax,Sx)dp(By,Ty)+d(Sx,By)dp(Ty,Ax)
d(Ax,Sx)+d(By,Ty) if D 6= 0

0, if D = 0

where p ≥ 1 and 0 ≤ k < ∞.
(a13)

d(Ax,By) ≤





αd(Sx, Ty) + β d2(Sx,By)+d2(Ty,Ax)
d(Sx,By)+d(Ty,Ax)

+γ(d(Ax, Sx) + d(By, Ty)), if D1 6= 0
0, if D1 = 0

where α, β, γ ≥ 0 and β + γ < 1.
(a14)

d(Ax,By) ≤
{

kd(Sx, Ty) + d(Ax,Sx)d(By,Ty)+d(Sx,By)d(Ty,Ax)
d(Sx,By)+d(Ty,Ax) if D1 6= 0

0, if D1 = 0
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where 0 ≤ k < ∞.
(a15)

d(Ax,By) ≤





kd(Sx, Ty)
+d(Ax,Sx)d(By,Ty)+d(Sx,By)d(Ty,Ax)

d(Ax,Sx)+d(By,Ty)

+d(Ax,Sx)d(Sx,By)+d(By,Ty)d(Ty,Ax)
d(Sx,By)+d(Ty,Ax) if D 6= 0, D1 6= 0

0, if D = 0 or D1 = 0

where 0 ≤ k < ∞.
(a16)

d(Ax,By) ≤ d(Ax, Sx)d(By, Ty) + d(Sx, By)d(Ty, Ax)
1 + d(Sx, Ty)

(a17)

d(Ax,By) ≤ αd(Sx, Ty) + β
d(Ax, Sx) + d(By, Ty)
1 + d(Sx, By)d(Ty,Ax)

where α, β ∈ [0, 1).
(a18)

d2(Ax,By) ≤ αd2(Sx, Ty) + β
d(Sx, By)d(Ty,Ax)

1 + d2(Ax, Sx) + d2(By, Ty)

where α, β ≥ 0 and α + β < 1.
(a19)

d3(Ax,By) ≤ d2(Ax, Sx)d2(By, Ty) + d2(Sx, By)d2(Ty, Ax)
1 + d(Sx, Ty)

(a20)

d3(Ax,By) ≤ αd2(Ax,By)d(Sx, Ty) + βd(Ax, By)d(Ax, Sx)d(By, Ty)

+ γd2(Sx, By)d(Ty, Ax) + ηd(Sx, By)d2(Ty, Ax)

where α, γ, η, β ≥ 0 and α + γ + η < 1.

Proof. The proof follows from Theorem 3.1 and Examples 2.1-2.20. ¤

Remark 3.2. Corollaries corresponding to contraction conditions (a1) to
(a20) are new results as these never require any conditions on the con-
tainment of ranges. Some contraction conditions (e.g. a1, a4, a6 − a15) in
the above corollary are well known and generalize relevant results from [2-
15,17,18,20,22-24,26,30,32] while some others are new ones (e.g. a2, a3, a5,
a16 − a20).

As an application of Theorem 3.1, we have the following result for four
finite families of self mappings.
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Theorem 3.4. Let {A1, A2, . . . , Am}, {B1, B2, . . . , Bp}, {S1, S2, . . . , Sn}
and {T1, T2, . . . , Tq} be four finite families of self mappings of a metric
space (X, d) with A = A1A2 . . . Am, B = B1B2 . . . Bp, S = S1S2, . . . Sn and
T = T1T2 . . . Tq satisfying condition (3.1.1) and the pairs (A,S) and (B, T )
share common property (E.A). If S(X) and T (X) are closed subsets of X,
then

(a) the pair (A,S) has a coincidence point,

(b) the pair (B, T ) has a coincidence point.

Moreover, if AiAj = AjAi, BkBl = BlBk, SrSs = SsSr, TtTu = TuTt,
AiBk = BkAi and SrTt = TtSr for all i, j ∈ I1 = {1, 2, . . . , m}, k, l ∈ I2 =
{1, 2, . . . , p}, r, s ∈ I3 = {1, 2, . . . , n} and t, u ∈ I4 = {1, 2, . . . , q}, then (for
all i ∈ I1, k ∈ I2, r ∈ I3 and t ∈ I4) Ai, Bk, Sr and Tt have a common fixed
point.

Proof. Proof follows on the lines of result due to Imdad et al. [16, Theorem
2.2]. ¤

By setting A1 = A2 = · · · = Am = G,B1 = B2 = · · · = Bp = H, S1 =
S2 = · · · = Sn = I and T1 = T2 = · · · = Tq = J in Theorem 3.4, we deduce
the following:

Corollary 3.4. Let G,H, I and J be self mappings of a metric space (X, d),
pairs (Gm, In) and (Hp, Jq) have common property (E.A) and satisfying the
condition

F (d(Gmx,Hpy), d(Inx, Jqy), d(Gmx, Inx), d(Hpy, Jqy),

d(Inx,Hpy), d(Jqy, Gmx)) ≤ 0

for all x, y ∈ X and F ∈ Ψ where m,n, p and q are fixed positive integers. If
In(X) and Jq(X) are closed subsets of X, then G,H, I and J have a unique
common fixed point provided GI = IG and HJ = JH.

Remark 3.3. By restricting the four families as {A1, A2}, {B1, B2}, {S1}
and {T1} in Theorem 3.4, we deduce a substantial but partial generalization
of the main results of Imdad and Khan [12,13] as such a result will deduce
stronger commutativity condition besides relaxing continuity requirements
and weakening completeness requirement of the space to the closedness of
subspaces.

Remark 3.4. Corollary 3.4 is a slight but partial generalization of Theorem
3.1 as the commutativity requirements (i.e. GI = IG and HJ = JH) in this
corollary are stronger as compared to weak compatibility in Theorem 3.1.
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Remark 3.5. Results similar to Corollary 3.3 can be derived from Theorems
3.2-3.3 and Corollaries 3.1, 3.2 and 3.4. For the sake of brevity, we have not
included the details.

4. Illustrative examples

Now we furnish examples demonstrating the validity of the hypotheses
and degree of generality of our results proved in this paper over the majority
of earlier results proved till date with rare possible exceptions.

Example 4.1. Consider X = [−1, 1] equipped with the usual metric. Define
self mappings A,B, S and T on X as

A(−1) = A1 = 3/5, Ax = x/4, −1 < x < 1,
B(−1) = B1 = 3/5, Bx = −x/4, −1 < x < 1,
S(−1) = 1/2, Sx = x/2, −1 < x < 1, and S1 = −1/2, and
T (−1) = −1/2, Tx = −x/2, −1 < x < 1, and T1 = 1/2.

Consider sequences {xn = 1
n} and {yn = −1

n } in X. Clearly,

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = 0

which shows that pairs (A,S) and (B, T ) satisfy the common property
(E.A). Define a continuous implicit function F : <6

+ → < such that
F (t1, t2, ..., t6) = t1 − k max{t2, t3, t4, t5, t6} where k ∈ [0, 1) and F ∈ Ψ.
By a routine calculation, one can verify the inequality (3.1.1) with k = 1

2 .

Also, A(X) = B(X) = {3
5} ∪ (−1

4 , 1
4) 6⊂ S(X) = T (X) = [−1

2 , 1
2 ]. Therefore,

all the conditions of Theorem 3.1 are satisfied and 0 is a unique common
fixed point of the pairs (A,S) and (B, T ) which is their coincidence point as
well.

Here it is worth noting that none of the theorems (with rare possible
exceptions) can be used in the context of this example as Theorem 3.1
never requires any condition on the containment of ranges of mappings while
completeness condition is replaced by closedness of subspaces. Moreover,
the continuity requirements of involved mappings are completely relaxed
whereas all earlier theorems (prior to 1997) require the continuity of at least
one involved mapping.

Now, we furnish an example which presents a situation applicable to The-
orems 3.1, 3.2 and 3.3.

Example 4.2. Consider X = [2, 20] equipped with the usual metric. Define
self mappings A,B, S and T on X as

Ax = 2, x ∈ {2} ∪ (5, 20], Ax = 4, 2 < x ≤ 5,
Bx = 2, x ∈ {2} ∪ (5, 20], Bx = 3, 2 < x ≤ 5,
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S2 = 2, Sx = 8, 2 < x ≤ 5, Sx = (x + 1)/3, x > 5 and
T2 = 2, Tx = 12 + x, 2 < x ≤ 5, Tx = x− 3, x > 5.

Clearly, both the pairs (A,S) and (B, T ) satisfy the common property
(E.A) as there exist two sequences {xn = 5 + 1

n}, {yn = 5 + 1
n} ∈ X such

that
lim

n→∞Axn = lim
n→∞Sxn = lim

n→∞Byn = lim
n→∞Tyn = 2.

Also A(X) = {2, 4} ⊂ [2, 17] = T (X) and B(X) = {2, 3} ⊂ [2, 7] ∪ {8} =
S(X). Define F (t1, t2, . . . , t6) : <6

+ → < with t3 + t4 6= 0 as

F (t1, t2, . . . , t6) = t1 − αt2 − β

[
t23 + t24
t3 + t4

]
− γ[t5 + t6]

where α, β, γ ≥ 0 with at least one is nonzero and β + γ < 1.
By a routine calculation one can verify that contraction condition (3.1.1) is

satisfied for α = γ = 1
4 and β = 1

5 . If x, y ∈ {2}∪(5, 20], then d(Ax,By) = 0
and verification is trivial. If x ∈ (2, 5] and y > 5, then

αd(Sx, Ty) + β

[
d2(Sx, Ax) + d2(Ty, By)
d(Sx, Ax) + d(Ty, By)

]
+ γ[d(Sx, By) + d(Ty,Ax)]

=
1
4
|y − 11|+ 1

5

[
42 + |y − 5|2
4 + |y − 5|

]
+

1
4
[6 + |y − 7|]

≥





4
5 + 1

4(24− 2y) > 2 = d(Ax,By), if y ∈ (5, 7]
4
5 + 10

4 = 33
10 > 2 = d(Ax,By), if y ∈ (7, 11]

4
5 + 1

4(2y − 12) > 2 = d(Ax,By), if y > 11.
Similarly, one can verify the other cases. One may note that the pairs (A,S)
and (B, T ) commute at 2 which is their common coincidence point. All the
needed pairwise commutativity at coincidence point 2 are immediate. Thus
all the conditions of Theorems 3.1, 3.2 and 3.3 are satisfied and 2 is the
unique common fixed point of A,B, S and T. Here one may notice that all
the mappings in this example are even discontinuous at their unique common
fixed point 2.

Example 4.2 may create an impression that Theorems 3.1, 3.2 and 3.3
are not different results. In what follows, we show that these results can
be situationally useful, i.e. there do exist situations when one theorem is
applicable whereas others are not. In order to substantiate this view point,
we furnish the following examples.

Example 4.3. In the setting of Example 4.2 retain the same A,B, T and
implicit function F and modify S as follows.

S2 = 2, S20 = 2, Sx = 8, 2 < x ≤ 5, Sx = (x + 1)/3, 5 < x < 20.
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Clearly, S(X) = [2, 7) ∪ {8} which is not a closed subset of X. Here, Theo-
rems 3.2 and 3.3 are applicable but not Theorem 3.1.

Example 4.4. In the setting of Example 4.2 retain the same A,B and
implicit function F and modify S and T as follows.

S2 = 2, S20 = 2, Sx = 8, 2 < x ≤ 5, Sx = (x + 1)/3, 5 < x < 20,

T2 = 2, T20 = 2, Tx = 12 + x, 2 < x ≤ 5, Tx = x− 3, 5 < x < 20.

Clearly, S(X) = [2, 7)∪{8} and T (X) = [2, 17) which are not closed subsets
of X. Here Theorem 3.2 is applicable but not Theorems 3.1 and 3.3.

Acknowledgment. The authors are grateful to the referee for his advice
to improve implicit function so as to include Ćirić quasi-contraction.
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