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REPRESENTATION THEOREMS FOR CONNECTED
COMPACT HAUSDORFF SPACES

MIRNA DŽAMONJA

Dedicated to Professor Fikret Vajzović on the occasion of his 80th birthday

Abstract. We present two theorems which can be used to represent
compact connected Hausdorff spaces in an algebraic context, using a
Stone-like representation. The first theorem stems from the work of
Wallman and shows that every distributive disjunctive normal lattice is
the lattice of closed sets in a unique up to homeomorphism connected
compact Hausdorff space. The second theorem stems from the work
of Jung and Sünderhauf. Introducing the notion of strong proximity
involution lattices, it shows that every such lattice can be uniquely rep-
resented as the lattice of pairs of compact and open sets of connected
compact Hausdorff space. As a consequence we easily obtain a some-
what surprising theorem birepresenting distributive disjunctive normal
lattices and strong proximity involution lattices.

1. Introduction

Arguably one of the most important theorems about Boolean algebras is
the theorem by M. Stone [10] which states that every Boolean algebra B
is isomorphic to a field of sets, namely a subalgebra of the algebra of all
subsets of a certain (totally disconnected) 0-dimensional compact Hausdorff
topological space. This space is called the Stone space of B and denoted
by St(B). Stone considered this connection important because among other
things it “is a precise analogue of the theorem that every abstract group
is represented by an isomorphic group of permutations”. Conversely, Stone
also proved that to every compact 0-dimensional Hausdorff topological space
X there corresponds a unique up to isomorphism Boolean algebra B such
that X = St(B). Even though the motivation of the Stone representation
theorem was the forward direction, now it is more often the latter direction
of the theorem that gets used in applications, when one wishes to construct
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a topological space with certain properties and instead one constructs the
Boolean algebra whose Stone space is the desired space (see [7], [5], [2] for
examples). The advantage of this approach from the point of view of logic
is that Boolean algebras are first order objects, while topological spaces
are second order, and therefore it is much easier to control the properties
of Boolean algebras, be it in direct or in forcing constructions. However,
the approach necessarily runs in difficulties when one needs to construct a
connected space because Stone spaces are totally disconnected. Examples
of such a construction arose most recently in [8], [6] where there are con-
structions of connected compact Hausdorff spaces K having the property
that the space of continuous functions C(K) is not isomorphic to C(L) for
any 0-dimensional space L and solving an important question in the iso-
morphic theory of Banach spaces. In order to approach such a construction
through a representation theorem one needs a Stone-style representation
theorem for compact Hausdorff spaces, not the 0-dimensional such spaces.
The 0-dimensional aspect of the Stone representation theorem stems from
the existence of complements in Boolean algebras, therefore one needs to
work with structures in which there is no complement. Birkhoff in [1] points
out the necessity of complementation in Stone’s theorem and gives a repre-
sentation theorem for general distributive lattices, given however in terms
of families of functions without topological considerations.

Wallman announced in [14] and gave detailed proofs in [13] of a topological
representation theorem for disjunctive distributive lattices in which to each
such lattice one associates a compact T1 space. He noted that the space
is Hausdorff iff the lattice is normal. Wallman’s motivation was that if
one starts with the lattice of closed sets of a given topological space X
then one obtains through his representation a compact space in which X
is embedded as a dense subspace and which has the same homology and
dimension as X. He was not concerned with the connectedness of the space,
but nevertheless, with small changes, his original theorem can be used to
obtain a representation of connected compact spaces. In §2 we give such a
representation, largely based on an appendix in [8]. Wallman’s research was
continued and generalised by others later, notably by Šhanin in [12] as well
as in a number of more recent papers, however connectedness does not seem
to have been an issue.

Another approach is motivated by questions in logic, and later computer
science. Namely in [11] Stone considers Heyting algebras, which are a gen-
eralisation of Boolean algebra in which there is only a certain pseudocom-
plementation in place of complementation. Heyting algebras are used as
models of intuitionistic logic, where there is no law of excluded middle. An-
other important example of a Heyting algebra is the collection of open sets
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in any topological space. Stone in [11] gives a representation theorem for
such algebras. This line of research was taken up again by Priestley in [9],
where she provided what is now known as Priestley duality. It associates
to distributive lattices a compact Hausdorff space endowed with an order.
This has led to a large body of research. Such dualities are of special inter-
est in theoretical computer science, and in particular Jung and Sünderhauf
in [4] introduce a notion of strong proximity lattices that is used to repre-
sent the so called stably compact spaces. The spaces to which this type of
representation are applied are in general not Hausdorff and the interest in
them stems from the fact that stably compact spaces capture by topological
means most semantic domains in the mathematical theory of computation.
Research of [4] is continued in recent work of Jung and Moshier in [3], where
they provide a bitopological setting for Stone duality. In this line of general-
isation of Stone’s representation theorem the concern seems to have been on
the non-Hausdorff case. Like in the case of Wallman-like representation, the
situation of compact Hausdorff connected spaces, with which we are con-
cerned here, does not seem to have been directly considered. This is not to
say that there was no awareness of the possibility, and as we shall see in §3
only one additional twist is needed in Jung’s and Sünderhauf’s work to ob-
tain a representation of connected Hausdorff spaces using strong proximity
lattices. The main ideas of the representation of compact Hausdorff spaces
were laid to us by Jung in a conversation in 2003. Connectedness was not
discussed at the time and does not seem to appear as an issue in published
work.

Wallman’s paper [14] and Stone’s [11] appeared the same year, yet it is
not clear if the authors were aware of each other’s work and the connection
between them. This seems to have continued to be the case between those
who continued to study representations from the set-theoretic topology point
of view and those who have studied them from the computing or logical point
of view. A purpose of this note is to bring the two representation theorems
on compact Hausdorff spaces together. This allows us to easily obtain the
unexpected result stating that distributive disjunctive normal lattices and
strong involution proximity lattices are representable by each other. This
connection does not seem to have been noticed before. 1

A Wallman-style representation is given in §2 and representation using
strong proximity involution lattice is given in §3. The origins of these results

1A reader interested in a more detailed survey on representations and their use in
topology, along with a number of exciting recent results may consult the paper: Hart,
Klaas Pieter, An algebraic and logical approach to continuous images, 30th Winter School
on Abstract Analysis (Lhota nade Rohanovem, Litice u České Ĺıpy, 2002). Acta Univ.
Carolin. Math. Phys., 43 (2002), no. 2, 5–25.
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are explained in the above. The birepresentation of distributive disjunctive
normal lattices and strong involution proximity lattices is given in §4.

All lattices we mention will be bounded, which means that they will have
the smallest element 0 and the largest element 1. Therefore by saying ‘dis-
tributive lattice’ we mean a distributive bounded lattice. We shall only be
concerned with Hausdorff spaces.

2. Wallman representation

Let L = 〈L,∧,∨, 0, 1〉 be a distributive lattice. The notions of a filter,
prime filter and an ultrafilter of such a lattice are introduced similarly to
the analogous notions in a Boolean algebra.

Definition 2.1. An L-filter is a family F ⊆ L closed under ∧ and satisfying
that 1 ∈ F , 0 /∈ F , whilst for any a ∈ F , b ∈ L, if a ≤ b then b ∈ F .

An L-filter F is prime if whenever a ∨ b ∈ F then a ∈ F or b ∈ F . An
L-ultrafilter is an L-filter which is maximal under ⊆.

In the case of Boolean algebras all prime filters are ultrafilters but this
is not the case in distributive lattices in general. Using Zorn’s Lemma and
basic lattice manipulations one can still prove the following facts:

Lemma 2.2.
(i) Every subset of L satisfying that the meet of any of its finite subset

is non-zero, is contained in an L–ultrafilter.
(ii) If F is an L-ultrafilter and b ∈ L has the property that b ∧ a 6= 0 for

every a ∈ F , then b ∈ F .
(iii) Every L-ultrafilter is prime.

Let ULT(L) be the set of all L-ultrafilters. For a ∈ L we put

V (a) = {F ∈ ULT(L) : a /∈ F}
and we let F (a) = ULT(L) \ V (a). We shall show below that these sets can
be interpreted as the basic open and closed sets in a topology on ULT(L).
In the interesting cases this topology will have a nice connection with L, for
which we need an additional property of L:

Definition 2.3. A lattice L is said to be disjunctive if for any a 6= 1 there
is b 6= 0 such that a ∧ b = 0.

Then the following can easily be checked:

Lemma 2.4. Let L be a distributive disjunctive lattice. Then:
(i) V (a) ∩ V (b) = V (a∨b) and V (a) ∪ V (b) = V (a∧b) for any a, b ∈ L.
(ii) V (a) = ∅ if and only if a = 1.
(iii) V (a) = ULT(L) if and only if a = 0.
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Proof. We only prove (ii) to see how the assumption of disjunctivity is used.
If a = 1 then clearly for every F ∈ ULT(L) we have a ∈ F , so V (a) = ∅.

On the other hand, if a 6= 1 then by disjunctivity there is b 6= 0 such that
a ∧ b = 0. Let F ∈ ULT(L) be such that b ∈ F . Then a /∈ F , so F ∈ V (a),
showing that V (a) 6= ∅. ¤

Now we shall show using Lemma 2.4 that sets V (a) form basis for a topol-
ogy on ULT(L), and that under additional assumptions on L this topology
is connected.

Definition 2.5. A lattice L is normal if whenever a, b ∈ L satisfy a∧ b = 0
then there are u, v ∈ L such that u ∨ v = 1 while u ∧ b = v ∧ a = 0.

An element a of L is complemented if there is b ∈ L such that a ∧ b = 0
and a ∨ b = 1. Then such a b is unique and is denoted by ac.

Theorem 2.6. For any normal lattice L the space K = ULT(L) is compact
and Hausdorff. If the set of complemented elements of L is {0, 1} and the
lattice is disjunctive then K is connected.

Proof. Let F ,G be two distinct L–ultrafilters. Then F is not contained in
G so we may take a ∈ F \ G. By Lemma 2.2 (ii) there is b ∈ G such that
a∧b = 0. By the normality of L there are u, v ∈ L such that u∨ v = 1 while
u ∧ b = v ∧ a = 0. By the choice of u, v we cannot have v ∈ F or u ∈ G.
Therefore F ∈ V (v) and G ∈ V (u). Moreover, by Lemma 2.2 (iii) we have
V (u) ∩ V (v) = V (u∨v) = V (1) = ∅. This shows that K is Hausdorff.

To check compactness consider a cover of K of the form V (at), t ∈ T and
suppose for contradiction that it has no finite subcover. Then using Lemma
2.2 and 2.4 we obtain that for any finite I ⊆ T

V (
∧

t∈I

at) =
⋃

t∈I

V (at) 6= K, so
∧

t∈I

at 6= 0.

Hence at are centered and there is an ultrafilter F containing them all. It
follows that F /∈ V (at) for any t ∈ T , a contradiction.

Suppose now that the only complemented elements in L are 0 and 1,
L is disjunctive and that M ⊆ K is a clopen set. Then by compactness
and Lemma 2.4 M = V (a) and K \ M = V (b) for some a, b ∈ L. We
have K = V (a) ∪ V (b) = V (a∧b) so by 2.4(iii) a∧b = 0; similarly ∅ =
V (a) ∩ V (b) = V (a∨b) so a∨b = 1. It follows that a = bc so a = 0 or a = 1
and M = K or M = ∅. ¤

Claim 2.7. Suppose that L is a distributive lattice. Then the mapping
a 7→ F (a) is a lattice isomorphism between L and a family of closed subsets
of ULT(L).
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If K is a compact Hausdorff space then the family of its closed subsets
forms a normal distributive lattice. If K is connected then this lattice is
disjunctive.

Proof. The mapping preserves lattice operations by Lemma 2.4 (i). For
a, b ∈ L, if a 6= b then a∆b 6= 0. Say a \ b 6= 0. Therefore there is a filter F
such that a \ b ∈ F , implying that a ∈ F and b 6∈ F . Then F ∈ F (a) \F (b),
showing that the mapping is injective. Finally, by compactness and Lemma
2.4 (i), any closed set in ULT(L) is of the form F (a) for some a ∈ L.

It is clear that the family of closed sets of a connected compact Hausdorff
space forms a normal disjunctive distributive lattice. ¤

3. Spils

Definition 3.1. A strong proximity involution lattice (spil) is given by a
structure 〈B,∨,∧,

′
, 0, 1,≺〉 where 〈B,∨,∧, 0, 1〉 is a distributive lattice and

the following additional axioms hold:
(i) ≺ is a transitive binary relation which is also interpolating: for all

a, b, c ∈ B if a ≺ c then there is some b such that a ≺ b & b ≺ c.
(ii) for all finite M ⊆ B and a ∈ B

(∀m ∈ M)m ≺ a ⇐⇒
∨

M ≺ a,

(∀m ∈ M)a ≺ m ⇐⇒ a ≺
∧

M

(iii) Involution ’ is a unary operation satisfying that
(a) x′′ = x for all x (we say the involution is proper);
(b) for all x, y and z we have x ∧ y ≺ z iff x ≺ z ∨ y′ and
(c) (De Morgan laws) (x∨y)′ = x′∧y′ and its dual (x∧y)′ = x′∨y′

hold;
(iv) x ≺ y ∧ y′ =⇒ x ≺ 0.

It is convenient to use the notation M ≺ a for (∀m ∈ M) m ≺ a and
similarly for a ≺ M .

The idea of a spil is that it is a substitute for a Boolean algebra, where
the involution plays the role of the complement and ≺ the role of the order
≤ induced by the Boolean operations. As in the classical case of the Boolean
algebras there is a duality in the axioms, as seen in (ii) and (iii).

Basic properties of strong proximity lattices are given by the following
Lemma, which is Lemma 7 in [4]. For the sake of completeness we give the
proof.

Lemma 3.2. Suppose that B is a spil. Then for all a, b, c, d ∈ B we have
(1) 0 ≺ a ≺ 1,
(2) a ≺ b =⇒ a ≺ b ∨ c,



REPRESENTATION THEOREMS FOR · · · 13

(3) a ≺ b =⇒ a ∧ c ≺ b,
(4) a ≺ b & c ≺ d =⇒ a ∨ b ≺ c ∨ d,
(5) a ≺ b & c ≺ d =⇒ a ∧ b ≺ c ∧ d.

Proof. (1) We have ∅ ≺ a trivially so 0 =
∨ ∅ ≺ a by axiom (ii). Similarly

a ≺ ∧ ∅ = 1. For (2) write b = b∧(b∨c) and use (ii). (3) is proved similarly.
For (4) first use (2) to get {a, b} ≺ c ∨ d, and then use (ii). (5) is proved
similarly. ¤

The next Lemma gives further basic properties, this time involving the
involution.

Lemma 3.3. Suppose that B is a spil. Then B satisfies:

(1) For all x, y and z we have x ∧ y′ ≺ z iff x ≺ z ∨ y, and
(2) for all x and y, y ∨ y′ ≺ x =⇒ 1 ≺ x.

Proof. (1) Suppose that x∧y′ ≺ z, so by (iii)(b) we have x ≺ z∨ y′′ = z∨ y.
The other direction is proved similarly.
(2) Suppose that y ∨ y′ ≺ x. We have by the properness of the involution
that y ∨ y′ = y′′ ∨ y′ which is by De Morgan laws equal to (y′ ∧ y)′. Hence
1 ∧ (y′ ∧ y)′ = (y′ ∧ y)′ ≺ x. By (iii)(b) we have 1 ≺ x ∨ (y′ ∧ y). Therefore
1 ≺ (x ∨ y′) ∧ (x ∨ y), giving us by (ii) that 1 ≺ x ∨ y′ and 1 ≺ x ∨ y.
From 1 ≺ x ∨ y′ we obtain by (iii)(b) that 1 ∧ y ≺ x, so y ≺ x. Using that
x ≺ 1 from 3.2(1), we conclude that x ∨ y ≺ x by 3.2(4). Then 1 ≺ x by
transitivity. ¤

We now proceed to associate to every spil a compact Hausdorff space, in
a manner similar to the classical Stone representation theorem. The main
difference is that filters are defined in connection with the ≺ relation rather
than the Boolean-algebraic order ≤ and that there are no complements.

Definition 3.4. Suppose that B is a spil.

(1) For A ⊆ B we define ↑ A
def= {x ∈ B : (∃a ∈ A) a ≺ x}.

(2) A ≺-filter F on B is a non-empty subset of B which is closed under
(finite) meets and satisfies F =↑ F .

(3) A ≺-filter F on B is called prime iff for every finite M ⊆ B with∨
M ∈ F we have that a ∈ F for some a ∈ M .

(4) spec(B) is the set of all prime ≺-filters with the topology generated
by the sets

Ox
def= {F ∈ spec(B) : x ∈ F}

for x ∈ B. (We shall prove below that these sets really form a basis).
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Note that a prime ≺-filter is not necessarily an ultrafilter in the sense
of containing every set or its complement, as there is no complement to
speak of– the involution does not necessarily satisfy x ∧ x′ = 0 for all x.
It is also not necessarily a ⊆-maximal filter. That is why spec(B) is not
necessarily isomorphic to a subspace of 2B and in fact it is not necessarily
zero-dimensional. Some basic properties of prime filters are given by the
following

Lemma 3.5. Let B be a spil. Then:

(1) if F is a prime ≺-filter on B then 0 /∈ F , and 1 ∈ F ,
(2) if a, b ∈ B then Oa∧b = Oa ∩Ob and Oa∨b = Oa ∪Ob,
(3) if F is a prime ≺-filter on B and a ∈ F then a′ /∈ F ,
(4) if F is a prime ≺-filter on B, a, b ∈ B and for some x we have x ≺ a

and x′ ≺ b, then a ∈ F or b ∈ F ,
(5) if F 6= G are two prime ≺-filters on B, there is a such that a ∈ F

and a′ ∈ G or a′ ∈ F and a ∈ G.

Proof. (1) If 0 ∈ F then
∨ ∅ ∈ F so F ∩∅ 6= ∅ by primeness, a contradiction.

Since ∅ ⊆ F we have
∧ ∅ ∈ F so 1 ∈ F .

(2) If F is a ≺-filter containing both a, b then it also contains a ∧ b by the
closure under meets. If F is a ≺-filter containing a ∧ b then by F =↑ F we
get that for some x ∈ F the relation x ≺ a∧ b holds. Then x ≺ a and x ≺ b
by the axioms of a spil, and hence a, b ∈ F . This shows the first equality.
For the second equality, if F ∈ spec(B) and a∨b ∈ F then by the primeness
of F we have a, b ∈ F ; hence Oa∨b ⊆ Oa ∪Ob. If F ∈ Oa then a ∈ F =↑ F ,
so for some c ∈ F we have c ≺ a. By Lemma 3.2(2) we have c ≺ a ∨ b and
hence a ∨ b ∈↑ F = F . This shows Oa ⊆ Oa∨b and similarly Ob ⊆ Oa∨b.
(3) Suppose otherwise and let a, a′ ∈ F , hence a ∧ a′ ∈ F =↑ F . By axiom
(iv)(b) we have a ∧ a′ ≺ 0 so 0 ∈ F , contradicting (1).
(4) By Lemma 3.2(4) we have x ∨ x′ ≺ a ∨ b. By Lemma 3.3(2) we have
1 ≺ a ≺ b then by (1) above and F =↑ F we get a∨ b ∈ F , and hence a ∈ F
or b ∈ F .
(5) Suppose F 6= G and say a ∈ F \ G (if there is no such a, then there is
a ∈ G \ F and that case is handled by symmetry). Since a ∈ F =↑ F there
is b ∈ F with b ≺ a, and for the same reason there is c ∈ F with c ≺ b.
By transitivity we have c ≺ a. By Lemma 3.2(4) it follows that c ≺ a ∨ b,
so by axiom (iii)(b) of a spil we have c ∧ b′ ≺ a. On the other hand, by
Lemma 3.2(5) we have c ∧ b ≺ a. Putting these two conclusions together
and using Lemma 3.2(4) we have c ∧ (b ∨ b′) ≺ a. Using axiom (iii)(b) we
have b ∨ b′ ≺ a ∨ c′ and then by Lemma 3.3(2). this implies 1 ≺ a ∨ c′. By
(1) of this Lemma we have a ∨ c′ ∈ G so by the primeness of G we have
a ∈ G or c′ ∈ G. Since a /∈ G we have c′ ∈ G. ¤
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To prove Theorem 3.9 below we need to assure Hausdorffness and com-
pactness of the resulting space. The former will follow by Lemma 3.5 and
for the latter we shall need the following lemmas:

Lemma 3.6. Suppose that B is a spil and A ⊆ B. Then:
(1) ↑ (↑ A) =↑ A and,
(2) if A is closed under meets then so is ↑ A.

Proof. (1) If c ∈↑ A then there is a ∈ A with a ≺ c, so by axiom (i)(b) of
spils there is some b such that a ≺ b and b ≺ c. Then b ∈↑ A, so c ∈↑ (↑ A).

If c ∈↑ (↑ A) then there is b ∈↑ A such that b ≺ c, hence a ∈ A such that
a ≺ b and b ≺ c. Since ≺ is transitive we have that c ∈↑ A.
(2) Let b, d ∈↑ A, hence there are a, c ∈ A such that a ≺ b and c ≺ d. Then
by Lemma 3.2(5) we have a ∧ b ≺ c ∧ d and since a ∧ b ∈ A we conclude
c ∧ d ∈↑ A. ¤
Lemma 3.7. Suppose that B is a spil and A ⊆ B is closed under meets and
satisfies that for no x ∈ A do we have x ≺ 0. Then there is a prime filter F
containing A as a subset.

Proof. Let F be given by

F = {F ⊆ B : A ⊆ F, 0 /∈ F and F is a filter}.
By the choice of A we have 0 /∈↑ A and by Lemma 3.6(2) we have ↑ A is
closed under meets. By Lemma 3.6(1) we have ↑ (↑ A) =↑ A, so A ∈ F .
Consequently F 6= ∅. Now we observe the following

Claim 3.8. If F ∈ F then ↑ (F ∪ {1}) ∈ F .

Proof of the Claim. By Lemma 3.6 it suffices to check that F ∪{1} is closed
under meets and does not contain 0, which follows by the choice of F . ¤

It is easily seen that F is closed under ⊆-increasing unions so by Zorn’s
lemma there is a maximal element F of F . We claim that F is prime. By
Claim 3.8 and maximality we have that 1 ∈ F . Now we shall show that for
all p ∈ B either p or p′ are in F (not both as then 0 ∈ F ). So suppose that
p ∈ B is such that p, p′ /∈ F . The family X =↑ (F ∪ {p ∧ q : q ∈ F}) is
clearly a set satisfying X =↑ X that is closed under meets and is proper a
superset of F because it includes p. By maximality of F we have that 0 ∈ F
so for some q ∈ F the relation p ∧ q ≺ 0 holds. Similarly we can find r ∈ F
such that p′ ∧ r ≺ 0 holds. Applying axiom (iii)(b) of a spil we obtain that
q ≺ p′ and r ≺ p′′, so p ∧ q ≺ p′ ∧ p′′ by Lemma 3.2(5), and hence by axiom
(iv) of a spil, q ∧ r ≺ 0, which is a contradiction with the choice of F .

Now suppose that M ⊆ B is finite such that m =
∨

M ∈ F but no p ∈ M
is in F . Hence for all p ∈ M we have p′ ∈ F and so

∧{p′ : p ∈ M} = m′ ∈ F .
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But then m∧m′ ∈ F , which contradicts axiom (iv) and the fact that 0 /∈ F .
We have shown that F is as required. ¤

Theorem 3.9. Let spec(B) be as defined in Definition 3.5. Then spec(B)
is a compact Hausdorff space with {Ox : x ∈ B} a base.

Proof. Clearly every element of spec(B) is contained in some Oa. It follows
by Lemma 3.5(2) that the family {Oa : a ∈ B} indeed forms a base for a
topology on spec(B). Now we show that the topology is Hausdorff.

Suppose that F 6= G are prime ≺-filters. By Lemma 3.5(5) there is a such
that a ∈ F and a′ ∈ G, or vice versa. Let us say that a ∈ F . Then F ∈ Oa

and G ∈ Oa′ and by Lemma 3.5(3), the sets Oa and Oa′ are disjoint.
Finally we need to show that spec(B) is compact. So suppose that {Op :

p ∈ A} covers spec(B) but no finite subfamily does. By Lemma 3.5(2) we
may assume that A is closed under finite joins. By the choice of A for all
finite M ⊆ A there is F ∈ spec(B) with

∨
M /∈ F . Fix such M, F and let

q =
∨

M . If for some p ∈ F we have that p ∧ q′ ≺ 0 then p ≺ 0 ∨ q′′ = q, so
q ∈ F as F is a filter, a contradiction. So for no p ∈ F do we have p∧ q′ ≺ 0
and in particular we cannot have q′ ≺ 0 by Lemma 3.2(3). This means that
the family {p′ : p ∈ A} is closed under meets (as A is closed under joins)
and none of its elements is ≺ 0. By Lemma 3.7 there is a prime filter F that
contains this family as a subset. By the choice of A there is p ∈ A such that
F ∈ Op. But then p, p′ ∈ F which contradicts Lemma 3.5(3). ¤

We are in particular interested in the situation when spec(B) is con-
nected. Characterising this situation will become easier once we prove the
whole representation theorem.

The idea behind the direction from the space to a spil in the representation
theorem is that the pairs of the form (O, K) where O is open and K ⊇
O compact will replace the clopen sets in the Stone representation. The
relation ≺ will be a replacement for ⊆ (so ≤ in the Ba representation), so
we shall have (O0,K0) ≺ (O1,K1) iff K0 ⊆ O1.

Theorem 3.10. Suppose that X is a compact Hausdorff space. We define

• B
def= {(O,K) : O is open ⊆ X,K is compact ⊆ X,O ⊆ K},

• (O0,K0) ∨ (O1,K1)
def= (O ∪O1,K0 ∪K1),

• (O0,K0) ∧ (O1,K1)
def= (O0 ∩O1,K0 ∩K1),

• 0 def= (∅, ∅), 1 def= (X, X),
• (O0,K0) ≺ (O1,K1) ⇐⇒ K0 ⊆ O1,
• (O, K)′ def= (X \K, X \O).

Then 〈B,∨,∧, 0, 1,≺,′ 〉 is a spil such that spec(B) is homeomorphic to X.
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Proof. It is clear that 〈B,∨,∧, 0, 1〉 is a distributive (bounded) lattice, as
well as that ≺ is transitive. Since X is compact Hausdorff it is normal so
the operation ≺ is indeed interpolating. The second axiom from the list in
Definition 3.1 is easily seen to hold by the definition of ∧ and ∨. Let us
consider axiom (iii).

The involution is clearly proper. For part (b) suppose that (O0,K0)
∧(O1,K1) ≺ (O2, K2), so K0 ∩K1 ⊆ O2. We have (O1, K1)′ = (X \K1, X \
O1) so (O2,K2) ∨ (O1,K1)′ = (O2 ∪ (X \K1),K2 ∪ (X \ O1)). Since K0 ⊆
O2 ∪ (X \K1) we obtain that (O0, K0) ≺ (O2, K2) ∨ (O1,K1)′, as required.
The remaining direction of the axiom is proved similarly. De Morgan laws
clearly hold.

For axiom (iv), if (O, K) ≺ (U,H)∧ (X \H, X \U) then since U ⊆ H we
have X \U ⊇ X \H and hence U ∩ (X \H) = ∅ (as a side note observe that
it does not necessarily follow that H ∩ (X \U) = ∅). Since (O,K) ≺ (U,H)
we have K = ∅, so O = ∅ and clearly (O, K) ≺ (∅, ∅).

This shows that B is a spil and we have to verify that X is homeomorphic
to spec(B). To this end let us define for x ∈ X the set Fx = {(O,K) ∈ B :
x ∈ O}.
Claim 3.11. Each Fx is an element of spec(B).

Proof of the Claim. Let x ∈ X. Since (X,X) ∈ Fx we have that Fx 6= ∅.
It is clear that Fx is closed under meets, so Fx is a filter. Suppose that
(
⋃

i<n Oi,
⋃

i<n Ki) ∈ Fx, where each (Oi,Ki) ∈ B. Hence x ∈ ⋃
i<n Oi so

there is some i < n such that x ∈ Oi and so (Oi, Ki) ∈ Fx. ¤

Let g be the function associating Fx to x. We claim that g is a homeomor-
phism between X and spec(B). If x 6= y then there is O open containing x
and not containing y. Hence (O,X) ∈ Fx \ Fy and hence Fx 6= Fy. So g is
1-1.

Suppose that F ∈ spec(B) and let K = {K : (∃O)(O, K) ∈ F}. Since
this is a centred family of compact sets its intersection is non-empty, so let
x ∈ ⋂K. We claim that F = Fx. If not, then there is a = (O, K) ∈ Fx such
that a′ ∈ F (by Lemma 3.5(5) and the fact that the involution is proper in
B). But then x ∈ O and hence x /∈ X \ O, contradicting the assumption
that a′ = (X \K, X \O) ∈ F . Hence g is bijective.

Suppose that U is basic open in spec(B) so U = Oa for some a = (O, K).
Then

g−1(Oa) = {x : Fx ∈ Oa} = {x : a ∈ Fx} = {x : x ∈ O} = O,

so open in X. Hence g is continuous.
Finally, if O is open in X then g“O = {g(x) : x ∈ O} = {Fx : x ∈ O}. If

U is open ⊆ O and K is a compact superset of U then if F = O(U,K), F = Fx
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for some x ∈ U , as follows from the argument showing the surjectivity of g.
Hence O(U,K) ∈ {Fx : x ∈ O}, which shows that = {Fx : x ∈ O} contains⋃{O(U,K) : U open ⊆ O, K compact ⊇ U}. In fact we claim that these
two sets are equal, which shows that g is an open mapping and hence a
homeomorphism. So let x ∈ O and (U,K) ∈ Fx. Hence (O ∩ U,K) ∈ Fx

and so Fx ∈ O(U,K). ¤

Now we are able to state

Theorem 3.12. spec(B) is connected iff for no x ∈ B \ {0, 1} do we have
x ∧ x′ = 0.

Proof. By Theorem 3.10 we may assume that B is given in the form stated
in that theorem. Then X = spec(B) is connected iff there are no open
disjoint sets O, V 6= X, ∅ such that X = O ∪ V .

Suppose that X is connected and let x = (O,K) ∈ B, therefore (O,K)′ =
(X \K, X \O). Suppose x∧ x′ = 0. Then O ∩ (X \K) = K ∩ (X \O) = ∅.
This means that O = K and that letting V = X \O we obtain O ∪ V = X,
and V is open. Hence O ∈ {∅, X} and therefore x ∈ {0, 1}.

In the other direction, suppose for contradiction that X is not connected
and let O, V exemplify that. Hence both O, V are compact and letting
x = (O,O) we obtain x ∧ x′ = 0, in contradiction with x /∈ {0, 1}. ¤

We finish this section by explaining the use of the word “strong” in the
name for a spil. In the terminology of [4], proximity lattices are structures
that satisfy the axioms of a spil but without the involution, and such struc-
tures are called strong if they in addition satisfy the following axioms

(A) for all a, x, y ∈ B

x ∧ y ≺ a =⇒ (∃x+, y+ ∈ B) x ≺ x+, y ≺ y+ & x+ ∧ y+ ≺ a;

(B) for all a, x, y ∈ B

a ≺ x ∨ y =⇒ (∃x+, y+ ∈ B) x+ ≺ x, y+ ≺ y & a ≺ x+ ∨ y+;

Note that ≺ is not necessarily reflexive in a spil hence axioms (A) and (B)
are not trivially met. We shall however demonstrate that every spil satisfies
them.

Claim 3.13. Suppose B is a spil. Then axioms (A) and (B) above are
satisfied.

Proof of the Claim. Let us first show (A), so suppose that x ∧ y ≺ a. Then
by the interpolating property of ≺ there is b such that x ∧ y ≺ b ≺ a. By
axiom (iii)(b) of a spil this gives x ≺ b ∨ y′. Similarly we obtain y ≺ b ∨ x′.
Letting x+ = b ∨ y′ and y+ = b ∨ x′ we have x+ ∧ y+ = b ∧ (x′ ∨ y′). Since
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b ≺ a, by Lemma 3.2(3) we have b ∧ (x′ ∨ y′) ≺ a, hence x+ and y+ are as
required.

(B) is shown similarly. ¤

4. Lattices

In the previous sections we have given two theorems which both can be
viewed as algebraic representation theorems for connected compact Haus-
dorff spaces. A corollary of this is that the algebraic notions used are birep-
resentable. In particular, every distributive disjunctive normal lattice can
be adjoined an order and a convolution operator to make it into a spil.

Suppose that L is a distributive disjunctive normal lattice and let X =
ULT (L) be the connected compact Hausdorff space constructed in §2. The-
refore L is isomorphically embedded to the lattice of closed sets of X en-
dowed with ∩,∪ and this space is unique up to homeomorphism. Let A
be the Boolean algebra generated by the closed and open sets in X. We
consider L as a sublattice of A and therefore the family of open subsets of
X is the set of complements in A of the elements of L. For a ∈ L we denote
by ac the complent of a in A, which agrees with the previous definition in
the case that ac ∈ L.

Definition 4.1. Let L, X be as above. We define the spil induced by L by
letting

B = {(u, k) : u ∈ Lc, k ∈ L and u ⊆ k},
endowing it with the following operations:

• (u, k) ∧ (v, h) = (u ∪ v, k ∩ h),
• (u, k) ∨ (v, h) = (u ∪ v, k ∪ h),
• (u, k)′ = (kc, uc)

and the relation (u, k) ≺ (v, h) iff k ⊆ v. We let 1 = (X,X) and 0 = (∅, ∅).
Theorem 4.2. Suppose that L is as in Definition 4.1. Then

(1) the spil B induced by L is a spil and
(2) the space spec(B) is homeomorphic to X and its lattice of closed

subsets is isomorphic to L.

Proof. (1) Clearly B is a distributive lattice with the 0 and 1 as specified.
We check the rest of the axioms of Definition 3.1.

It is clear that ≺ is transitive. Checking that the relation ≺ is interpo-
lating uses the normality of L. Suppose that (u, k) ≺ (v, h) holds, hence
k ⊆ v and hence k, vc are disjoint elements of L. Let w, z ∈ L be such that
w∪z = X while w∩vc = ∅ and z∩k = ∅. From w∪z = X we conclude that
w ⊇ zc and from z ∩ k = ∅ we have k ⊆ zc. Hence k ⊇ w. From w ∪ z = X
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and w∩vc = ∅ we conclude vc ⊆ z, and hence v ⊇ zc. Therefore (w, zc) ∈ B
satisfies (u, k) ≺ (w, zc) ≺ (v, h).

Axiom (ii) of a spil follows by the corresponding properties of the Boolean
algebra A. Similarly for axioms (iii) and (iv).
(2) Let B∗ be the spil consisting of pairs (O,K) of pairs of open and compact
subsets of spec(B) such that O ⊆ K. By the representation theorem in §3
we have that spec(B∗) and spec(B) are homeomorphic and this induces
an isomorphism between B and B∗. Hence L is isomorphic to the lattice
of closed, equivalently, compact, subsets of spec(B). This implies that
spec(B) is homeomorphic to ULT (L). ¤
Corollary 4.3. Every distributive normal disjunctive lattice induces a uni-
que spil B satisfying that L is isomorphic to the lattice of closed subsets of
spec(B).

Running the proof of Theorem 4.2 backwards will naturally show how
each spil induces a distributive disjunctive normal lattice.
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Čas. mat. fys., 67 (1937), 1–25.



REPRESENTATION THEOREMS FOR · · · 21
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