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Abstract. Let a ≤ x0 < x1 < · · · < xn ≤ b. We consider approx-

imating integrals
∫ b

a
f(x) dx of functions with bounded derivatives by

sums of the form
∑n

i=0 aif(xi). We find sharp errors for these approx-
imations and define the weights ai, such that

∑n
i=0 aif(xi) is the best

approximation of
∫ b

a
f(x) dx.

1. Introduction

Most numerical integration formulas are designed for equally spaced nodes
and the error estimates are usually for functions with higher derivatives. In
this paper we will discuss errors in approximating

∫ b
a f(x) dx by formulas

of the form
∑n

i=0 aif(xi) where the nodes a ≤ x0 < x1 < · · · < xn ≤ b
are not necessarily equally spaced and for functions with just bounded first
derivatives. We desire that the error be bounded by cn ‖f ′‖∞ where cn

depends on the nodes x0, x1, . . . , xn and the weights a0, a1, . . . , an only. We
will show that for given nodes it is always possible to find the weights such
that cn → 0 as max {(x0 − a), (b− xn), (xi+1 − xi) | 0 ≤ i ≤ n− 1} → 0.
This condition can’t be satisfied on the space of continuous functions as the
following example shows.

Example 1. Let xi = a + i
n(b − a), i = 0, 1, . . . , n. Define f(x) = 1 on

intervals
(
xi + 1

3n , xi+1 − 1
3n

)
, f(xi) = 0 and extend f(x) linearly on all of

[a, b]. Then f is continuous on [a, b], ‖f‖∞ = 1,
∫ b
a f(x) dx = 2

3(b − a) but
since for any choice of the weights

∑n
i=0 aif(xi) = 0, we have cn ≥ 2

3(b− a)
for all n.
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Returning back to functions with bounded derivatives; since we require
the error to be bounded by cn ‖f ′‖∞ , the formula

∑n
i=0 aif(xi) integrates

f(x) ≡ 1 exactly, so the weights have to satisfy the condition
∑n

i=0 ai =
(b− a) . It turns out that this is also a sufficient condition for the error
to be bounded by cn ‖f ′‖∞ . We will be in a position to compare different
formulas that use the same nodes by comparing the corresponding sharp
cn’s.

Definition 1. We will say that cn is sharp if there is a bounded derivative
such that

∣∣∣
∫ b
a f(x) dx−∑n

i=0 aif(xi)
∣∣∣ = cn ‖f ′‖∞ . For given nodes x0 <

x1 < · · · < xn one formula is better than another if the corresponding sharp
cn has a smaller value.

It may come as a surprise that for functions with bounded derivatives
the composite trapezoidal rule is better than the composite Simpson’s rule.
First, notice that in order to compare the two rules we need 2n + 1 equally
spaced nodes with x0 = a and x2n = b. Namely in this case c2n = (b−a)2

8n for

trapezoidal and c2n = 5(b−a)2

36n for Simpson’s rule respectively.
The trapezoidal and Simpson’s rule for functions with bounded derivatives

are studied in [1] and [2].

2. Numerical integration of functions with bounded first
derivatives

For the rest of the paper; [a, b] is a fixed interval and a ≤ x0 < x1 <
· · · < xn ≤ b are fixed nodes. In the introduction we gave an example why
we need to impose smoother conditions on continuous functions, so we said
that we will consider continuous functions with bounded derivatives. This
condition can certainly be relaxed and we will do so by allowing that the
derivative may not exist on a countable set.

Definition 2. By ∆ we denote the set of all continuous functions, that are
differentiable at all but countabily many points in [a, b] and such that their
derivatives are bounded.

We will consider approximating
∫ b
a f(x) dx with formulas of the form∑n

i=0 aif(xi) where the weights satisfy the condition
∑n

i=0 ai = (b− a) .

In our first result we will use Heaviside function H(x) =
{

1 if x > 0
0 if x < 0 to

express the error.
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Theorem 1. Let f ∈ ∆. If the weights satisfy
∑n

i=0 ai = (b− a) then
∣∣∣∣∣

b∫

a

f(x) dx−
n∑

i=0

aif(xi)

∣∣∣∣∣ ≤
( b∫

a

∣∣∣∣∣(b− x)−
n∑

i=0

aiH(xi − x)

∣∣∣∣∣ dx

)
∥∥f ′

∥∥
∞ .

Moreover cn :=
∫ b
a |(b− x)−∑n

i=0 aiH(xi − x)| dx is a sharp bound.

Before we prove this theorem some remarks about the integrals used are
in order. Recall that a function is Riemann integrable if and only if it
is continuous almost everywhere. Thus the integrals in the statement of
Theorem 1 are Riemann integrals. However, since bounded derivatives could
be discontinuous on a set of positive measure we use Lebesgue integrals in
our proof. Because the two integrals agree whenever the Riemann integral
is defined the usual integral symbol is used for both integrals.

Proof. If f ∈ ∆, then for every x ∈ [a, b] by using the Lebesgue integral
we can write f(x)− f(a) =

∫ x
a f ′(t) dt. Thus f is absolutely continuous and

we can use integration by parts for Lebesgue integrals with u = f(x) and
v = (x− b) to write

b∫

a

f(x) dx = (x−b)f(x)|ba+

b∫

a

(b−x)f ′(x) dx = (b−a)f(a)+

b∫

a

(b−x)f ′(x) dx.

On the other hand
n∑

i=0

ai

xi∫

a

f ′(x) dx =
n∑

i=0

aif(xi)−
n∑

i=0

aif(a) =
n∑

i=0

aif(xi)− (b− a)f(a).

Combining these two equalities we obtain
b∫

a

f(x) dx−
n∑

i=0

aif(xi) =

b∫

a

(b− x)f ′(x) dx−
n∑

i=0

ai

xi∫

a

f ′(x) dx

=

b∫

a

[
(b− x)−

n∑

i=0

aiH(xi − x)

]
f ′(x) dx (1)

≤
( b∫

a

∣∣∣∣∣(b− x)−
n∑

i=0

aiH(xi − x)

∣∣∣∣∣ dx

)
∥∥f ′

∥∥
∞ = cn

∥∥f ′
∥∥
∞ .

In order to better understand the error, cn, it helps to graph gn(x) = (b −
x) −∑n

i=0 aiH(xi − x). A typical graph of gn(x) looks like function in the

Figure 1. Notice that on [xi, xi+1] , gn(x) = −x +
(
b−∑n

j=i+1 aj

)
so the
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breaks in the −45◦ lines occur only at the nodes. Let f(x) =
∫ t
af ′(t) dt

where f ′ ≡ 1 on intervals where gn(x) is positive and −1 where gn(x) is
negative. Since f ′ may not be defined only at the nodes and where gn = 0,
we have that the continuous function f is differentiable at all but finitely
many points and its derivative is equal to f ′.

a bx xx x0 1 2 3

Figure 1: A typical graph of g3(x) = (b− x)−∑3
i=0 aiH(xi − x)

Thus f ∈ ∆ and from (1) it follows that
∫ b
a f(x) dx − ∑n

i=0 aif(xi) =∫ b
a |(b− x)−∑n

i=0 aiH(xi − x)| dx = cn ‖f ′‖∞ . Thus cn is the sharp bound.
¤

Notice that cn =
∫ b
a |gn(x)| dx is the area bounded by gn(x) and the x-

axis. Geometrically it is clear that this area is the smallest possible if the
lines in the graph of gn(x) are crossing the midpoints of intervals [xi, xi+1]
as in the Figure 2.

In this case gn(xi+xi+1

2 ) = 0 for i = n−1, n−2, . . . , 1, 0. Hence the weights
satisfy the system





an = b− xn−1+xn

2

an−1 + an = b− xn−2+xn−1

2
...

a1 + a2 + · · ·+ an = b− x0+x1
2

a0 + a1 + · · ·+ an = b− a

.
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The unique solution is given by

an = b− xn−1 + xn

2
, an−1 =

xn − xn−2

2
, an−2 =

xn−1 − xn−3

2
, . . . ,

a1 =
x2 − x0

2
, a0 =

x1 + x0

2
− a.

a bx xx x0 1 2 3

Figure 2: The graph of g3(x) that produces the smallest error

In this case
∫ b
a |gn(x)| dx = (x0−a)2

2 +
∑n−1

i=0
(xi+1−xi)

2

4 + (b−xn)2

2 .

Corollary 1. Let [a, b] be a fixed interval with fixed nodes a ≤ x0 < x1 <

· · · < xn ≤ b. The best estimate of
∫ b
a f(x) dx given by

∑n
i=0 aif(xi) for

functions with bounded derivatives is achieved with weights a0 = x1+x0
2 − a,

a1 = x2−x0
2 , . . . , an−2 = xn−1−xn−3

2 , an−1 = xn−xn−2

2 , an = b − xn−1+xn

2 . In
this case∣∣∣∣∣

∫ b

a
f(x)dx−

n∑

i=0

aif(xi)

∣∣∣∣∣

≤
(

(x0 − a)2

2
+

n−1∑

i=0

(xi+1 − xi)
2

4
+

(b− xn)2

2

)
∥∥f ′

∥∥
∞ = cn

∥∥f ′
∥∥
∞ .

Moreover cn→0 as max {(x0− a), (b− xn), (xi+1− xi) | 0 ≤ i ≤ n− 1} → 0.

Proof. Let dn = max {(x0 − a), (b− xn), (xi+1 − xi) | 0 ≤ i ≤ n− 1} . It on-
ly remains to show that cn → 0 as dn → 0. This is obvious since cn <

dn

(
x0−a

2 +
∑n−1

i=0
xi+1−xi

2 + b−xn
2

)
= dn

b−a
2 . ¤



36 HAJRUDIN FEJZIĆ

The special case n = 0 of this Corollary is a well-known Ostrowski in-
equality (See [3].)

∣∣∣∣∣∣

b∫

a

f(x) dx− (b− a)f(x0)

∣∣∣∣∣∣
≤

(
(x0 − a)2

2
+

(b− x0)
2

2

)
∥∥f ′

∥∥
∞ .

Although usually for functions given by data points we do not have a
control for selecting nodes, an interesting question is if we could select nodes,
which formula is the best for integrating functions with bounded derivatives.

Corollary 2. Let [a, b] be a fixed interval. The best estimate,
∑n

i=0 aif(xi),
of

∫ b
a f(x) dx for functions with bounded derivatives is

n∑

i=0

b− a

n + 1
f

(
a +

b− a

2 (n + 1)
+

b− a

(n + 1)
i

)
.

The error is bounded by 1
4

(b−a)2

n+1 ‖f ′‖∞ .

Proof. By Corollary 1, if we introduce h0 = (x0 − a) , hn+1 = (b− xn) , and
for 1 ≤ i ≤ n we set hi = (xi − xi−1) then the problem reduces to finding the
minimum of the sum 1

2h2
0 +

∑n
i=1

1
4h2

i + 1
2h2

n+1 subject to
∑n+1

i=0 hi = b− a.
We can use Lagrange multipliers to find extrema. The solution to the system

h0 = λ, hn+1 = λ,
1
2
hi = λ for 1 ≤ i ≤ n and

n+1∑

i=0

hi = b− a

is

h0 =
b− a

2 (n + 1)
, hn+1 =

b− a

2 (n + 1)
and hi =

b− a

(n + 1)
for 1 ≤ i ≤ n− 1.

Since
∑n+1

i=0 hi = b− a it is routine to check that

1
2
h2

0 +
n∑

i=1

1
4
h2

i +
1
2
h2

n+1 =
1
4

(b− a)2

n + 1
+

1
2

(
h0 − b− a

2 (n + 1)

)2

+
n∑

i=1

1
4

(
hi − b− a

(n + 1)

)2

+
1
2

(
hn+1 − b− a

2 (n + 1)

)2

.

Thus Lagrange multipliers produced the minimum sum of 1
4

(b−a)2

n+1 . Hence
the nodes are xi = a + b−a

2(n+1) + b−a
(n+1) i for 0 ≤ i ≤ n. From Corollary 1 it

follows that the weights are ai = b−a
n+1 for 0 ≤ i ≤ n. ¤

In the introduction we gave the sharp error bounds for the trapezoidal
and Simpson’s rules. These errors can be obtained from Theorem 1, in the
same way as the errors in the following examples.
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Example 2. Boole’s Rule:

b∫

a

f(x) dx =
b− a

90

[
7f(a) + 32f(a +

1
4
(b− a)) + 12f(a +

1
2
(b− a))

+32f(a +
3
4
(b− a)) + 7f(b)

]
− 8

945

(
b− a

4

)7

f (6)(ξ).

However if f is just differentiable by Theorem 1 the error is

c4 :=

b∫

a

∣∣∣∣(b− x)− b− a

90

[
32H(a +

1
4
(b− a)− x)+

12H(a +
1
2
(b− a)− x) + 32H(a +

3
4
(b− a)− x) + 7

]∣∣∣∣ dx.

Introducing the substitution t = x−a
b−a we have

c4 := (b− a)2
1∫

0

∣∣∣∣(1− t)− 1
90

[
32H(

1
4
− t)+

12H(
1
2
− t) + 32H(

3
4
− t) + 7

]∣∣∣∣ dt.

Using Maple we can evaluate the last integral to obtain c4 = 239
3240(b− a)2.

Example 3. Composite Boole’s Rule: First subdivide the interval [a, b]
into m equal subintervals and apply Boole’s rule on each one of these m
intervals. We can use Theorem 1 on the subintervals to obtain that the
error over these intervals is 239

3240

(
b−a
m

)2
. Thus the total error is 239

3240
(b−a)2

m .

Since we used (m + 1) + 3m = 4m + 1 points we have that c4m = 239
810

(b−a)2

4m .
That c4m is sharp follows easily from the fact that the errors over each
subinterval are sharp.
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