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Dedicated to Professor Fikret Vajzović on the occasion of his 80th birthday

Abstract. In this paper we present new inequalities for means. If

0 < a < b, A(a, b) =
a + b

2
, G(a, b) =

√
ab, H(a, b) =

2ab

a + b
,

L(a, b) =
b− a

ln b− lna
, I(a, b) =

1

e

(
bb

aa

) 1
b−a

,

we will prove seven new theorems concerning these means.

1. Introduction

For x, y > 0 (x 6= y) the following well known inequality holds clearly:

H(x, y) < G(x, y) < L(x, y) < I(x, y) < A(x, y),

where A(x, y), G(x, y) and H(x, y) are the arithmetic, geometric and har-
monic means of two positive numbers x, y respectively, and L(x, y), I(x, y)
are special cases of the generalized logarithmic mean Lr(x, y) of two positive
numbers x and y, i.e.

(1) Lr(x, y) =
(

yr+1−xr+1

(r+1)(y−x)

) 1
r
, r 6= −1, 0;

(2) L−1(x, y) = y−x
ln y−ln x = L(x, y);

(3) L0(x, y) = 1
e

(
yy

xx

) 1
y−x = I(x, y).

L(x, y) and I(x, y) are respectively called the logarithmic and exponential
mean of two positive numbers x and y. When x 6= y, Lr(x, y) is a strictly
increasing function of r ∈ (−∞,+∞). In particular, limr→−∞ Lr(x, y) =
min{x, y}, limr→+∞ Lr(x, y) = max{x, y}
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2. New results

Theorem 1. If 0 < a < b, A(a, b) = a+b
2 , G(a, b) =

√
ab, H(a, b) =

2ab
a+b , L(a, b) = b−a

ln b−lna and I(a, b) = 1
e

(
bb

aa

) 1
b−a

, then the following inequali-
ties hold.

2L

I + G
<

A− L

I −G
<

L√
GI

(A)

and
(

I

G

) 2L
A+L

<
A

L
<

(
I

G

)√
L
A

. (B)

Proof. We have

ln I =
a ln a− b ln b

a− b
− 1 =

a

L
+ ln b− 1,

therefore
ln

I

b
=

a

L
− 1 and ln

I

a
=

b

L
− 1,

and from here
ln

I

G
=

A

L
− 1. (1)

1. If x > 1, then we have (See 3.6.18, page 273, using 1 + 1
x = t in [7]):

2(x− 1)
x + 1

< ln x <
x− 1√

x
. (2)

In (2) we take x = I
G , then we have

2
(

I
G − 1

)
I
G + 1

< ln
I

G
<

I
G − 1√

I
G

or from (1)
2(I −G)
I + G

<
A

L
− 1 <

I −G√
IG

,

and finally
2L

I + G
<

A− L

I −G
<

L√
GI

,

and this is the inequality (A).
2. In (2) we take x = A

L , therefore

2
(

A
L − 1

)
A
L + 1

< ln
A

L
<

A
L − 1√

A
L

.
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Using (1), we obtain
2 ln I

G
A
L + 1

< ln
A

L
<

ln I
G√
A
L

or (
I

G

) 2L
A+L

<
A

L
<

(
I

G

)√
L
A

and this is the inequality (B).
¤

Theorem 2. The following inequalities

(A− L)G
(I −G)L

<
G + 3

√
IG2

I + 3
√

IG2
(C)

and
(

A

L

)A+
3√

AL2

<

(
I

G

)L+
3√

AL2

(D)

hold.

Proof. If x > 1, then we have (See 3.6.16, page 272 in [7]):

ln x

x− 1
<

1 + 3
√

x

x + 3
√

x
. (3)

1. In (3) we take x = I
G , then

ln I
G

I
G − 1

<
1 + 3

√
I
G

I
G + 3

√
I
G

,

but using (1), we have
A
L − 1
I
G − 1

<
1 + 3

√
I
G

I
G + 3

√
I
G

or
(A− L)G
(I −G)L

<
G + 3

√
IG2

I + 3
√

IG2
,

i.e. the inequality (C) is proved.
2. In (3) we take x = A

L , then

ln A
L

A
L − 1

<
1 + 3

√
A
L

A
L + 3

√
A
L

,
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but from (1) we have

ln A
L

ln I
G

<
1 + 3

√
A
L

A
L + 3

√
A
L

or (
A

L

)A+
3√

AL2

<

(
I

G

)L+
3√

AL2

,

i.e. inequality (D) is proved. ¤
Theorem 3. The following inequalities

HL−GLH−G ≤ GH+L−2G, (E)

GI−LIG−L ≤ LG+I−2L, (F)

LA−IAL−I ≤ IL+A−2I (G)

hold.

Proof. If 0 < a ≤ x ≤ b, then

ab−xba−x ≤ xa+b−2x. (4)

If f(x) = (a + b− 2x) lnx− (b− x) ln a− (a− x) ln b, then

f ′(x) = −2 lnx +
a + b

x
− 2 + ln a + ln b

and

f ′′(x) = −2
x
− a + b

x
< 0

⇒ f is concave

⇒ f(x) ≥ min{f(a), f(b)} = 0.

In (4) we take (a, x, b) ∈ {(H, G, L), (G,L, I), (L, I,A)} and because H ≤
G ≤ L ≤ I ≤ A we get the inequalities (E), (F) and (G). ¤
Theorem 4. If f, g : (0, +∞) 7→ (0, +∞) are monotonic functions in the
same sense, f is convex and g is concave, then the inequalities

f(L)− f(G)
f(I)− f(G)

≤ L−G

I −G
≤ g(L)− g(G)

g(I)− g(G)
(H)

and

f(I)− f(L)
f(A)− f(L)

≤ I − L

A− L
≤ g(I)− g(L)

g(A)− g(L)
(I)

hold.
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Proof. Because f is convex, we get that∣∣∣∣∣∣

x1 f(x1) 1
x2 f(x2) 1
x3 f(x3) 1

∣∣∣∣∣∣
≥ 0

for x1 ≤ x2 ≤ x3. This is equivalent with
f(x2)− f(x1)
f(x3)− f(x1)

≤ x2 − x1

x3 − x1
. (5)

Function g is concave and we get that∣∣∣∣∣∣

x1 g(x1) 1
x2 g(x2) 1
x3 g(x3) 1

∣∣∣∣∣∣
≤ 0

for x1 ≤ x2 ≤ x3. This is equivalent to
g(x2)− g(x1)
g(x3)− g(x1)

≥ x2 − x1

x3 − x1
. (6)

It follows from (5) and (6):
f(x2)− f(x1)
f(x3)− f(x1)

≤ x2 − x1

x3 − x1
≤ g(x2)− g(x1)

g(x3)− g(x1)
. (7)

1. In (7) we take x1 = G, x2 = L and x3 = I and we obtain the inequality
(H).

2. In (7) we take x1 = L, x2 = I and x3 = A and we obtain the inequality
(I). ¤
Theorem 5. The following inequalities

n−1∑

k=0

1
(k + 1)I + (n− k − 1)G

<
A− L

L(I −G)
<

n−1∑

k=0

1
kI + (n− k)G

(J)

and
(

I

G

)α

<
A

L
<

(
I

G

)β

, (K)

where

α = L
n−1∑

k=0

1
(k + 1)A + (n− k − 1)L

and

β = L
n−1∑

k=0

1
kA + (n− k)L
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hold.

Proof. If x > 1, then we have

(x− 1)
n−1∑

k=0

1
n + (k + 1)(x− 1)

< lnx < (x− 1)
n−1∑

k=0

1
n + k(x− 1)

. (8)

(See 3.6.23, page 276 in [7]).
1. If in (8) we take x = I

G and using (1), then we obtain the inequality
(J).

2. If in (8) we take x = A
L and using (1) (x− 1 = A

L − 1 = ln I
G ), then we

obtain the inequality (K). ¤
Theorem 6. The following inequalities

2cL

I + G
<

A− L

I −G
<

2dL

I + G
(L)

where

c = 1 +
(I −G)2

12IG
− (I3 −G3)(I −G)3

360I3G3
,

d = 1 +
(I −G)2

12IG
− (I3 −G3)(I −G)3

(360 + ε)I3G3
,

ε =
30 + (I2 + 5GI + G2)(I −G)2

I2G2
,

and (
I

G

) 2αL
A+L

<
A

L
<

(
I

G

) 2βL
A+L

(M)

where

α = 1 +
(A− L)2

12AL
− (A3 − L3)(A− L)3

360A3L3
,

β = 1 +
(A− L)2

12AL
− (A3 − L3)(A− L)3

(360 + γ)A3L3
,

γ = 30
(

1 +
5L

A
+

L2

A2

)

hold.

Proof. If x > 1, then we have

2(x− 1)
x + 1

(
1 +

x− 1
12

− x− 1
12x

− (x− 1)3

360
+

(x− 1)3

360x3

)
< lnx

<
2(x− 1)
x + 1

(
1 +

x− 1
12

− x− 1
12x

− (x− 1)3

360 + u
+

(x− 1)3

(360 + u)x3

)
, (9)
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where u = 30
(
1 + 5

x + 1
x2

)
. (See 3.6.19, page 274, using 1 + 1

x = t in [7]).
1. In (9) we take x = I

G and using (1) we obtain the desired inequalities
(L).

2. In (9) we take x = A
L and using (1) we obtain the desired inequalities

(M), because
2(x− 1)
x + 1

=
2(A

L − 1)
A
L + 1

=
2 ln I

G
A
L + 1

, etc.

¤
Theorem 7. The following inequality

L(a, b) < L(
a + b

2
,
√

ab) <
(
A(
√

a,
√

b)
)2

< A(a, b) (N)

holds.

Proof. The inequality
(
A(
√

a,
√

b)
)2

< A(a, b) is simply the Power-Mean
Inequality. Applying the Hadamard’s Inequality to the convex function
f(x) = 1

x , we get

1

L
(

1
2(a + b),

√
ab

) =
1

1
2(a + b)−

√
ab

1
2
(a+b)∫

√
ab

f(x)dx

> f

(
1
2(a + b) +

√
ab

2

)
=

1(
A(
√

a,
√

b)
)2 .

This gives the inequality L(a+b
2 ,

√
ab) <

(
A(
√

a,
√

b)
)2

.

The inequality L(a, b) < L(a+b
2 ,

√
ab) transforms successively into

(b− a) ln
(

1
2
(a + b)

)
< (

√
ab− a) ln a + (b−

√
ab) ln b,

(
1
2
(a + b)

)√a+
√

b

< a
√

ab
√

b,

(
1
2(a + b)

)√a+
√

b

a
√

ab
√

b
< 1,

(
1
2(a + b)

a

)√
a (

1
2(a + b)

b

)√
b

< 1,

(
1
2

(
1 +

b

a

))√a (
1
2

(
1 +

a

b

))√b

< 1,
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1
2

(
1 +

b

a

)(
1
2

(
1 +

a

b

))√
b
a

< 1,

1
2
(1 + x2)

(
x2 + 1
2x2

)x

< 1,

with x =
√

b
a > 1 (because b > a).

Now, for x > 1, let

f(x) = ln
(

1
2
(1 + x2)

)
+ x ln

(
x2 + 1
2x2

)
.

Then

f ′(x) =
2(x− 1)
x2 + 1

+ ln
(

x2 + 1
2x2

)

and

f ′′(x) =
−2(x− 1)2(x + 1)

x(x2 + 1)2
< 0.

Hence f is strictly concave. Since f(1) = 0 and f ′(1) = 0, we conclude that
f(x) < 0. Therefore, the given inequality (N) is true. ¤
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