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PROPERTIES OF NEHARI DISKS

LEILA MILLER-VAN WIEREN

Dedicated to Professor Fikret Vajzović on the occasion of his 80th birthday

Abstract. Let D be a simply connected plane domain and let B be
the unit disk. The inner radius of D, σ(D) is defined by σ(D) =
sup{a : a ≥ 0, ||Sf ||D ≤ a implies f is univalent in D}. Here Sf is
the Schwarzian derivative of f , ρD the hyperbolic density on D and
||Sf ||D = supz∈D |Sf (z)|ρ−2

D (z). Domains for which the value of σ(D)
is known include disks, angular sectors and regular polygons as well as
certain classes of rectangles and equiangular hexagons.

When the inner radius for the above-mentioned domains, except non
convex angular sectors, is computed it is seen that σ(D) = 2− ||Sh||B ,
where h : B −→ D is the Riemann mapping and B the unit disk, a fact
that yields a convenient method for computing σ(D). We introduce the
name Nehari disks for domains with the above property.

In this paper we generalize some results by Gehring, Pommerenke,
Ahlfors and Minda that were proved in the unit disk, to analogous results
for Nehari disks.

1. Introduction

We use the symbol C to denote the complex plane and C to denote the
extended complex plane. Within C, we use the symbol B to refer to the
unit disk (B = {z : |z| < 1}). The symbol D will denote a domain in C
with at least two points on its boundary.

For z ∈ B the hyperbolic density of B at z is the quantity ρB(z) given
by ρB(z) = 1/(1 − |z|2). For a general simply connected domain D, the
hyperbolic density ρD is then defined in terms of ρB and h : B −→ D
where h maps B conformally onto D (see [9]). It is not hard to verify that
ρD(z) ≥ ρD′(z) for z ∈ D, when D ⊂ D′ are simply connected domains.

For f holomorphic in D ⊂ C, with f ′(z) 6= 0 for z ∈ D, the Schwarzian de-
rivative Sf , of f , is defined in D by Sf (z) = (f ′′/f ′)′(z)− 1

2(f ′′/f ′)2(z). This
definition can easily be extended to include locally univalent meromorphic
functions. A detailed explanation of the extended definition can be found in
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[9]. To make our terminology more concise, locally univalent meromorphic
functions will be referred to simply as locally univalent functions.

In order to discuss a univalence criterion for f we introduce a norm for
Sf . Let D be a simply connected domain in C. For f locally univalent
in D, we define the hyperbolic norm of Sf with respect to D by ||Sf ||D =
supz∈D |Sf (z)|ρ−2

D (z).
Now we introduce a domain constant known as the inner radius of a

domain.

Definition 1.1. Suppose D is a simply connected domain in C. We define
the inner radius of D, σ(D), by

σ(D) = sup{a : a ≥ 0, ||Sf ||D ≤ a implies f is univalent in D}.

All images of D under Möbius transformations have the same inner radius
as D.

Nehari [15] and Hille [6] proved that σ(B) = 2. Later, Lehtinen showed
in [7] that σ(D) ≤ 2 for all simply connected domains in C with equal-
ity occurring only when D is a disk in C (i.e. an image of B under a
Möbius transformation). The inner radius of a domain has another impor-
tant meaning that is not apparent from its definition. Ahlfors and Weill [2]
proved that if f is locally univalent on D (a simply connected domain) with
||Sf ||D < σ(D), then f is univalent and can be extended to a quasiconformal
mapping of C. Ahlfors [1] and Gehring [4] proved that when D is a simply
connected domain, σ(D) > 0 if and only if D is a quasidisk.

Next, we list some known values of σ(D). Lehto and Lehtinen have cal-
culated the inner radii of angular sectors in [8] and [7]. If Ak = {z : z ∈
C, 0 < arg z < kπ}, then σ(Ak) = 2k2 for 0 < k < 1 and σ(Ak) = 4k − 2k2

for 1 < k < 2. Another class of domains for which the inner radii have been
calculated are regular polygons. Calvis [3] proved that σ(Pn) = 2(n−2)2/n2

where Pn is an open regular n-sided polygon.
In [12] we computed the inner radii for some classes of rectangles and

equiangular hexagons. We proved that if R is a rectangle whose ratio
of longer over shorter side is bounded from above by a specific constant
(1.52346 . . . ), then σ(R) = 1/2 and if H is an equiangular hexagon whose
sides form the sequence baabaa with b/a ≤ 1.67117 . . . , then σ(H) = 8/9.
In [10] we generalized the above mentioned results to classes of even-sided
equiangular polygons. Namely, we proved that if two parallel sides of a
n-sided regular polygon are stretched (shrunk) slightly, the inner radius re-
mains constant (equals 2(n− 2)2/n2).
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2. Nehari disks

In calculating the inner radii of domains mentioned earlier (angular sec-
tors, regular polygons and some classes of even-sided equiangular polygons)
the following simple but insightful lemma plays a key role.

Lemma 2.1. If D is a simply connected domain and if h maps B confor-
mally onto D, then σ(D) ≥ 2− ||Sh||B.

Proof. Suppose f is locally univalent on D with ||Sf ||D ≤ 2−||Sh||B. Then,
f ◦ h is locally univalent on B and ||Sf◦h||B = ||Sf − Sh−1 ||D ≤ ||Sf ||D +
||Sh||B ≤ 2 (see [11]). This implies that f ◦ h is univalent in B and hence f
is univalent in D. Thus σ(D) ≥ 2− ||Sh||B. ¤

It turns out that the lower bound 2− ||Sh||B is equal to σ(D) in the case
of many domains for which σ(D) is known—disks, parallel strips, convex
angular sectors and regular polygons, as well as the above-mentioned classes
of even-sided equiangular polygons (see [11], [12] and [10]). Moreover, this
yields a good method for computing σ(D) for many domains. This prompted
us to introduce a special name for these domains (we first introduced it in
[12]). A simply connected domain D in C is called a Nehari disk if

σ(D) = 2− ||Sh||B,

where h maps B conformally onto D. Hence disks, parallel strips, convex
angular sectors and the above-mentioned even-sided equiangular polygons
are all Nehari disks. Of course, there exist many simply connected domains
which are not (non convex angular sectors). By restricting our attention to
regulated domains with convex corners (a class wide enough to include the
domains mentioned earlier), we have proved the following characterization
of Nehari disks (see [13]).

Theorem 2.2. Suppose that D is a regulated domain with convex corners
and that h maps B conformally onto D. Then, D is a Nehari disk if and
only if lim sup

|z|→1
|Sh(z)|(1− |z|2)2 = ||Sh||B.

Thus, computing σ(D) for some domains can be based on merely under-
standing the behavior of the Riemann mapping h.

There are a number of known results, specifically proved about univalence
and extensions of mappings on B. Some of them clearly cannot be gener-
alized for arbitrary, simply connected domains. For others, the question
remains unanswered. Nehari disks allow generalizations of some of these
results. In this paper we state and prove some of them.
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3. Theorems of Gehring and Pommerenke

In view of the Ahlfors-Weill theorem mentioned in the introduction, we
know that the image of B under a locally univalent function f with ||Sf ||B <
2 is a quasidisk. In [5] Gehring and Pommerenke were able to show what
happens to f(B) when ||Sf ||B = 2. Let S denote the parallel strip S =
{z : 0 < Im z < π}.
Theorem 3.1. (Gehring-Pommerenke) If f is a locally univalent function
on B and if ||Sf ||B ≤ 2, then f(B) is a Jordan domain or the image of the
parallel strip S under a Möbius transformation.

It is natural to ask whether the conclusion of the above theorem still holds
if B is replaced by an arbitrary domain D and 2 by σ(D). In general, the
answer is no. For example, if 1 < k < 2 and if f : Ak −→ Bk is conformal,

where Bk =
{

z : | arg z| < kπ

2

} ⋂{
z : | arg(1− z)| < kπ

2

}
, then ||Sf ||Ak

=

σ(Ak), and Bk is clearly not a Jordan domain (see [9]). However, if we
include the assumption that D is a Nehari disk, a generalization of Theorem
3.1 is easily obtainable.

Theorem 3.2. Suppose D is a Nehari disk. If f is a locally univalent
function on D and if ||Sf ||D ≤ σ(D), then f(D) is a Jordan domain or the
image of the parallel strip S under a Möbius transformation.

Proof. Let h : B −→ D denote the Riemann mapping and let g = f ◦ h.
Then g is locally univalent on B and we have

||Sf ||D = ||Sg◦h−1 ||D = ||Sg − Sh||B ≥ ||Sg||B − ||Sh||B.

Since D is a Nehari disk, σ(D) = 2− ||Sh||B and

||Sg||B ≤ ||Sf ||D + ||Sh||B ≤ σ(D) + ||Sh||B = 2.

By Theorem 3.1, we conclude that g(B) is a Jordan domain or the image
of the parallel strip S under a Möbius transformation. Since f(D) = g ◦
h−1(D) = g(B), the proof is complete. ¤

We recall another result from [5].

Theorem 3.3. (Gehring-Pommerenke) Suppose f is a locally univalent
function on B and lim sup|z|→1 |Sf (z)|(1 − |z|2)2 < 2. If f(B) is a Jor-
dan domain, then f(B) is a quasidisk.

As before, a generalization for Nehari disks is possible.

Theorem 3.4. Suppose D is a Nehari disk, f is a locally univalent function
on D, and lim supz→δD |Sf (z)|ρ−2

D (z) < σ(D). If f(D) is a Jordan domain,
then f(D) is a quasidisk.
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Proof. Let h : B −→ D denote the Riemann mapping and let g = f ◦ h.
Then g is locally univalent on B and we have

lim sup
|z|→1

|Sg(z)|(1− |z|2)2 = lim sup
w→δD

|Sf (w)− S−1
h (w)|ρ−2

D (w)

≤ lim sup
w→δD

|Sf (w)|ρ−2
D (w) + lim sup

w→δD
|S−1

h (w)|ρ−2
D (w)

< σ(D) + ||S−1
h ||D = σ(D) + ||Sh||B = 2.

By Theorem 3.3 , we conclude that if g(B) is a Jordan domain, then it is a
quasidisk. Since f(D) = g ◦ h−1(D) = g(B), the proof is complete. ¤

4. A theorem of Ahlfors

We consider next some well-known results on the role of the Schwarzian
derivative in showing univalence and existence of quasiconformal extensions
of locally univalent functions. We must introduce the notion of complex
dilatation of a quasiconformal mapping.

Let f : D −→ D′ be a K-quasiconformal mapping. Then f is differen-
tiable with ∂f 6= 0 almost everywhere in D and the complex dilatation of
f , µf , defined almost everywhere in D by µf (z) = ∂f(z)

∂f(z) , satisfies

||µf ||∞ ≤ K − 1
K + 1

< 1

where ∂f(z) = 1
2(fx − fy) and ∂f(z) = 1

2(fx + fy). Here ||µf ||∞ is the
essential supremum of µf on D. The quantity ||µf ||∞ is an alternative to K
and measures the deviation of f from a conformal mapping. For details on
complex dilatation, see [9].

Now we are ready to state a theorem of Ahlfors [1].

Theorem 4.1. (Ahlfors) Let D be a L-quasidisk. There is a constant ε(L) >
0, depending only on L, such that if f is locally univalent in D with ||Sf ||D <
ε(L), then f is univalent in D and can be extended to a K-quasiconformal
mapping of C where K ≤ ε(L)+||Sf ||D

ε(L)−||Sf ||D .

The next theorem addresses the special case when D is a disk or a half-
plane. In fact, this theorem was proved earlier than Theorem 4.1, by Ahlfors
and Weill [2].

Theorem 4.2. (Ahlfors-Weill) Suppose D is a disk or a half-plane and f
is locally univalent on D. If ||Sf ||D < 2, then f is univalent in D and can
be extended to a K-quasiconformal mapping of C where K ≤ 2+||Sf ||D

2−||Sf ||D .
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Remark 4.3. In the proof of Theorem 4.2 it is shown that if D = U , where
U is the upper half-plane, then the complex dilatation of this extension
satisfies µf (z) = −2y2Sf (z) for z ∈ U .

From the above we see that we may choose ε(L) = σ(D) whenever D is a
disk or a half-plane. Lehto asked (in [9]) whether we may take ε(L) = σ(D)
for other quasidisks D. We answer this question positively for Nehari disks.
First, a preliminary lemma.

Lemma 4.4. Suppose D is a quasidisk and h maps U conformally onto
D. If f is locally univalent on D and if ||Sf ||D < 2− |Sh||U , then f can
be extended to a quasiconformal mapping of C whose complex dilatation
satisfies ||µf ||∞ ≤ 2||Sf ||D

4−||Sf◦h||U ·||Sh||U .

Proof. From our assumption clearly ||Sh||U < 2. Hence by Remark 4.3, h
can be extended to quasiconformal mapping of C, so that

µh(z) = −2y2Sh(z) for z ∈ U (1)

and consequently,

||µh||∞ ≤ ||Sh||U
2

. (2)

Next let g = f ◦h. Then g is univalent in U and ||Sg||U ≤ ||Sf ||D + ||Sh||U <
2. Thus, by Remark 4.3, g can be extended to a quasiconformal mapping of
C, so that

µg(z) = −2y2Sg(z) for z ∈ U (3)

and consequently,

||µg||∞ ≤ ||Sg||U
2

. (4)

Then f = g ◦ h−1 defines a quasiconformal extension of f on C with

µf (w) = µg◦h−1(w) =
µg(z)− µh(z)
1− µg(z)µh(z)

·
(

∂h(z)
|∂h(z)|

)2

where w = h(z) for almost all z ∈ C and hence for almost all w ∈ C (see
[9]). Thus

|µf (w)| ≤ |µg(z)− µh(z)|
1− |µg(z)||µh(z)|

for almost all w ∈ C, where z = h−1(w). Also from (2) and (4),

|µg(z)− µh(z)|
1− |µg(z)||µh(z)| ≤

|µg(z)− µh(z)|
1− ||µg||∞||µh||∞
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≤ |µg(z)− µh(z)|
1− ||Sg ||U ||Sh||U

4

≤ 4|µg(z)− µh(z)|
4− ||Sg||U ||Sh||U

for almost all z ∈ C, so we conclude that

|µf (w)| ≤ 4|µg(z)− µh(z)|
4− ||Sg||U ||Sh||U (5)

for almost all w ∈ C, where z = h−1(w). Finally, from (1) and (3),

µg(z)− µh(z) = −2y2(Sg(z)− Sh(z)) (6)

for z ∈ C \ U . Then since h is a quasiconformal self-mapping of C and
h(U) = D, h(C \ U) = C \D, (5) and (6) imply that

|µf (w)| ≤ 8y2|Sg(z)− Sh(z)|
4− ||Sg||U ||Sh||U

≤ 2||Sg − Sh||U
4− ||Sg||U ||Sh||U

≤ 2||Sf ||D
4− ||Sf◦h||U ||Sh||U

for almost all w ∈ C \D, where z = h−1(w).
As f is univalent in D and µf = 0 in D, from the above we conclude that

|µf (w)| ≤ 2||Sf ||D
4−||Sf◦h||U ||Sh||U for almost all w ∈ C. This shows that

||µf ||∞ ≤ 2||Sf ||D
4− ||Sf◦h||U ||Sh||U , (7)

so the lemma is proved. ¤
Now we can obtain the announced result.

Theorem 4.5. Suppose D is a Nehari quasidisk and f is locally univalent
on D. If ||Sf ||D < σ(D), then f is univalent in D and can be extended to a
K-quasiconformal mapping of C where

K ≤ σ(D) + ||Sf ||D
σ(D)− ||Sf ||D .

Proof. Suppose that h maps U onto D conformally. Then ||Sf ||D < 2 −
||Sh||U . From Lemma 4.4 we conclude that f can be extended to a quasi-
conformal mapping of C whose complex dilatation satisfies

||µf ||∞ ≤ 2||Sf ||D
4− ||Sf◦h||U ||Sh||U . (8)
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It also follows that ||Sf◦h||U ≤ ||Sf ||D + ||Sh||U < 2 and hence, as σ(D) =
2− ||Sh||U , it can be seen that

2||Sf ||D
4− ||Sf◦h||U ||Sh||U =

2||Sf ||D
2(σ(D) + ||Sh||U )− ||Sf◦h||U ||Sh||U

=
2||Sf ||D

2σ(D) + ||Sh||U (2− ||Sf◦h||U )

≤ ||Sf ||D
σ(D)

.

The above together with (8) yields ||µf ||∞ ≤ ||Sf ||D
σ(D) and consequently for

K = 1+||µf ||∞
1−||µf ||∞ , f is K-quasiconformal on C and

K ≤ σ(D) + ||Sf ||D
σ(D)− ||Sf ||D .

completing the proof of the theorem. ¤

5. A theorem of Minda

Minda [14] generalized the classical result of Nehari that σ(B) = 2 by
proving the following theorem.

Theorem 5.1. (Minda) Suppose f is a locally univalent function on B.
If ||Sf ||B ≤ 2(1 + δ2) for some δ ≥ 0, then f is univalent in the disk{
z : |z| < tanh

(
π
2δ

)}
and the radius of the disk is sharp for all δ ≥ 0.

The example Minda used to show sharpness was the function

Fδ(z) =
(

1 + z

1− z

)iδ

= exp
(

iδ log
(

1 + z

1− z

))

defined on B for any fixed δ > 0 (this function was first mentioned by Hille
[6]). For δ > 0, Fδ is univalent in

{
z : |z| < tanh

(
π
2δ

)}
but is not injective

on any larger disk centered at the origin.
There is another, more general formulation of this theorem in terms of

hyperbolic distance (for details see [9]). The advantage of using hyperbolic
distance is that it is invariant with respect to conformal mappings. We in-
troduce the following notation (see [14]). If f is a holomorphic function on
a domain D, then for z ∈ D we define r(z, f) to be the hyperbolic radius of
the largest hyperbolic disk in D centered at z in which f is univalent. We
define r(f) as inf{r(z, f) : z ∈ D}. By using the above notation and an ap-
propriate Möbius transformation, Minda proved a more general formulation
of Theorem 5.1. This can be stated as follows.
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Theorem 5.2. (Minda) Suppose f is a locally univalent function on D,
where D is a disk or a half-plane. If ||Sf ||D ≤ σ(D) + 2δ2, then r(f) ≥ π

2δ
and this lower bound is sharp for all δ ≥ 0.

The example used to show sharpness for disks in Theorem 5.2 is the same
as in Theorem 5.1 up to composition with a Möbius transformation.

Remark 5.3. When D = U , the function Gδ(z) = (−iz)iδ on U demon-
strates sharpness for δ ≥ 0.

Now, we prove a generalization of Theorem 5.2 for Nehari disks.

Theorem 5.4. Suppose f is a locally univalent function on D, where D is
a Nehari disk. If ||Sf ||D ≤ σ(D) + 2δ2, then r(f) ≥ π

2δ , for all δ ≥ 0.

Proof. Let g = f ◦ h on B, where h maps B onto D conformally. Then g is
locally univalent on B and

||Sg||B = ||Sf◦h||B
≤ ||Sf ||D + ||Sh||B
= ||Sf ||D + 2− σ(D)

≤ (σ(D) + 2δ2) + 2− σ(D)

= 2 + 2δ2

since D is a Nehari disk. Thus by Theorem 5.2, r(f ◦ h) = r(g) ≥ π
2δ and

since hyperbolic distance is invariant under conformal mapping, we get

r(f) ≥ π

2δ
.

¤
In some specific cases, we can verify the sharpness for this result. This is

shown in the following corollaries.

Corollary 5.5. Suppose that 0 < k < 1 and that f is locally univalent on
the angular sector Ak. If ||Sf ||Ak

≤ 2k2 +2δ2, then r(f) ≥ π
2δ and this lower

bound is sharp for all δ ≥ 0.

Proof. Let h(z) = zk for z ∈ U . Then h maps U conformally onto Ak and we
know that σ(Ak) = 2k2 = 2−||Sh||U so the first part of the statement follows
from Theorem 5.4. To show sharpness, we look at the function Gδ ◦ h−1 on
Ak for δ ≥ 0; Gδ ◦ h−1 is locally univalent on Ak and for δ ≥ 0,

||SGδ◦h−1 ||Ak
= ||SGδ

− Sh||U = sup
z∈U

4y2|1 + δ2

2z2
− 1− k2

2z2
| = 2k2 + 2δ2.

From Remark 5.3, r(Gδ ◦ h−1) = r(Gδ) = π
2δ for δ ≥ 0 so sharpness is

proved. ¤
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Corollary 5.6. Suppose f is locally univalent on the parallel strip S. If
||Sf ||S ≤ 2δ2, then r(f) ≥ π

2δ and this lower bound is sharp for all δ ≥ 0.

Proof. The proof is completely analogous to that of Corollary 5.5, with
h(z) = log z. ¤

Finally, Theorem 5.4 can be restated as follows, thus eliminating the use
of the constant δ.

Theorem 5.7. Suppose f is a locally univalent function on D, where D is
a Nehari disk. If ||Sf ||D > σ(D), then

r(f) ≥ π√
2(||Sf ||D − σ(D))

.

Proof. Let

δ =

√
||Sf ||D − σ(D)

2
.

The result immediately follows from Theorem 5.4. ¤
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