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ON A NONLINEAR VOLTERRA-FREDHOLM INTEGRAL
EQUATION

B.G. PACHPATTE

Abstract. In this paper we study the existence, uniqueness and other
properties of solutions of a certain nonlinear Volterra-Fredholm integral
equation. The well known Banach fixed point theorem and the new
integral inequality with explicit estimate are used to establish the results.

1. Introduction

Consider the system of Volterra-Fredholm integral equations

x (t) = f (t) +
∫ t

0
g (t, s, x (s)) ds +

∫ ∞

0
h (t, s, x (s)) ds, (VF)

for 0 ≤ t < ∞, where x, f, g, h are in Rn, the n-dimensional Euclidean
space with appropriate norm denoted by |.| . We denote by R+ = [0,∞) ,
the given subset of R, the set of real numbers and throughout assume
that f ∈ C (R+, Rn), and for 0 ≤ s ≤ t < ∞; g ∈ C

(
R2

+, Rn
)

and
h ∈ C

(
R2

+, Rn
)
. Equations of the form (VF) arise naturally in the study of

boundary value problems on the infinite half line, see [7]. In [11] Nohel has
studied the special version of (VF) with g (t, s, x (s)) = v (t, s) g1 (s, x (s))
h (t, s, x (s)) = k (t, s) h1 (s, x (s)) by using the Schauder-Tychonoff fixed
point theorem, when g1, h1 are in Rn and v, k are given n by n matrices
( see also [1,4,9,12]). The advantage of the technique used in [11] (see also
[9]) is that the solution to (VF) is obtained as the fixed point on the entire
interval, avoiding the necessity of using continuation theorem. Frequently, it
happens that the method which works very efficiently to establish existence
does not yield other properties of the solutions in any ready fashion. The
main objective of this paper is to study the existence, uniqueness and other
properties of the solutions of equation (VF) by using Banach fixed point
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theorem ( see [6, p.37]) coupled with Bielecki type norm [2,13] and the new
integral inequality recently established by the present author in [15] ( see
also [16, p. 41]).

2. Existence and uniqueness

Let E be the space of those functions φ : R+ → Rn which are continuous
and fulfill the condition

|φ (t)| = O (exp (λt)) , (2.1)

where λ is a positive constant. In the space E we define the norm ( see [2,
13])

|φ|E = sup
t∈R+

[|φ (t)| exp (−λt)] . (2.2)

It is easily seen that E with norm defined in (2.2) is a Banach space. We
note that the condition (2.1) implies that there exists a constant N ≥ 0 such
that |φ (t)| ≤ N exp (λt) . Using this fact in (2.2) we observe that

|φ|E ≤ N. (2.3)

We need the following slight variant of the new integral inequality estab-
lished by Pachpatte in [15] (see also [16, Theorem 1.5.1 part (a2) ), to study
various properties of solutions of equation (VF). For a detailed account on
such inequalities, see [14,16].

Lemma. Let u (t) , a (t) , b (t) , c (t) , p (t) , q (t) ∈ C (R+, R+) and suppose

u (t) ≤ a (t) + b (t)
∫ t

0
p (s) u (s) ds + c (t)

∫ ∞

0
q (s) u (s) ds, (2.4)

for t ∈ R+. If

d =
∫ ∞

0
q (s) M (s) ds < 1, (2.5)

then
u (t) ≤ L (t) + KM (t) , (2.6)

for t ∈ R+, where

L (t) = a (t) + b (t)
∫ t

0
p (τ) a (τ) exp

(∫ t

τ
p (σ) b (σ) dσ

)
dτ, (2.7)

M (t) = c (t) + b (t)
∫ t

0
p (τ) c (τ) exp

(∫ t

τ
p (σ) b (σ) dσ

)
dτ, (2.8)

and
K =

1
1− d

∫ ∞

0
q (s)L (s) ds. (2.9)

Our main result in this section is given in the following theorem.
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Theorem 1. Assume that

(i) g, h satisfy the conditions

|g (t, s, x (s))− g (t, s, y (s))| ≤ v (t, s) |x (s)− y (s)| , (2.10)

|h (t, s, x (s))− h (t, s, y (s))| ≤ k (t, s) |x (s)− y (s)| , (2.11)

where v, k ∈ C
(
R2

+, R+

)
,

(ii) for λ as in (2.1), there exist nonnegative constants α1, α2 such that
α1 + α2 < 1 and

∫ t

0
v (t, s) exp (λs) ds ≤ α1 exp (λt) , (2.12)

∫ ∞

0
k (t, s) exp (λs) ds ≤ α2 exp (λt) , (2.13)

(iii) for λ as in (2.1), there exists a nonnegative constant β such that

|f (t)|+
∫ t

0
|g (t, s, 0)| ds +

∫ ∞

0
|h (t, s, 0)| ds ≤ β exp (λt) . (2.14)

Then the equation (VF) has a unique solution x (t) , t ∈ R+ in E.

Proof. Let x ∈ E and define the operator T by

(Tx) (t) = f (t) +
∫ t

0
g (t, s, x (s)) ds +

∫ ∞

0
h (t, s, x (s)) ds. (2.15)

First we shall show that Tx maps E into itself. Evidently, Tx is continuous
on R+ and Tx ∈ Rn . We verify that (2.1) is fulfilled. From (2.15) and using
the hypotheses we have

|(Tx) (t)| ≤ |f (t)|+
∫ t

0
|g (t, s, x (s))− g (t, s, 0)| ds

+
∫ ∞

0
|h (t, s, x (s))− h (t, s, 0)| ds +

∫ t

0
|g (t, s, 0)| ds +

∫ ∞

0
|h (t, s, 0)| ds

≤ β exp (λt) +
∫ t

0
|v (t, s)| |x (s)| ds+

∫ ∞

0
|k (t, s)| |x (s)| ds

≤ β exp (λt) +
∫ t

0
|v (t, s)| exp (λs) |x|E ds+

∫ ∞

0
|k (t, s)| exp (λs) |x|E ds

≤ [β + N (α1 + α2)] exp (λt) . (2.16)

From (2.16) it follows that Tx ∈ E. This proves that T maps E into itself.
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Next, we verify that the operator T is a contraction map. Let x, y ∈ E.
From (2.15) and using the hypotheses we have

|(Tx) (t)− (Ty) (t)| ≤
∫ t

0
|g (t, s, x (s))− g (t, s, y (s))| ds

+
∫ ∞

0
|h (t, s, x (s))− h (t, s, y (s))| ds

≤
∫ t

0
v (t, s) |x (s)− y (s)| ds +

∫ ∞

0
k (t, s) |x (s)− y (s)| ds

≤
∫ t

0
v (t, s) exp (λs) |x− y|Eds +

∫ ∞

0
k (t, s) exp (λs) |x− y|Eds

≤ |x− y|E (α1 + α2) exp (λt) .

Consequently, we have

|Tx− Ty|E ≤ (α1 + α2) |x− y|E .

Since α1 + α2 < 1, it follows from Banach fixed point theorem (see [6, p.
37]) that T has a unique fixed point in E . The fixed point of T is however
a solution of equation (VF). The proof is complete. ¤

Remark 1. We note that the norm |.|E defined by (2.2) was first used by
Bielecki [2] (see [5] for developments related to this topic), and has the role
of improving the length of the interval on which the existence is assured. In
[11] Nohel has obtained the global existence of solutions of the special version
of (VF) by giving up uniqueness. Here, Theorem 1 yields the existence and
uniqueness of solutions of equation (VF) in E.

Indeed, the following theorem is true concerning the uniqueness of solu-
tions of equation (VF) in Rn.

Theorem 2. Assume that the functions g, h in equation (VF) satisfy the
conditions (2.10), (2.11) with v(t, s) = b(t) p(s), k(t, s) = c(t) q(s) where
b, p, c, q ∈ C (R+, R+) . Let d, M(t) be as in (2.5), 2(8). Then the equation
(VF) has at most one solution on R+.

Proof. Let x1 (t) and x2 (t) be two solutions of equation (VF). Then we have

x1 (t)− x2 (t) =
∫ t

0
{g (t, s, x1 (s))− g (t, s, x2 (s))} ds

+
∫ ∞

0
{h (t, s, x1 (s))− h (t, s, x2 (s))} ds. (2.17)
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From (2.17) and using the hypotheses we have

|x1 (t)− x2 (t)| ≤ b (t)
∫ t

0
p (s) |x1 (s)− x2 (s)| ds

+ c (t)
∫ ∞

0
q (s) |x1 (s)− x2 (s)| ds. (2.18)

Here, it is easy to observe that L(t) and K defined by (2.7) and (2.9) reduces
to L(t) = 0 and K = 0. Now an application of Lemma to (2.18) yields
|x1 (t)− x2 (t)| ≤ 0, and hence x1 (t) = x2 (t). Thus there is at most one
solution to the equation (VF). ¤

3. Estimates on solutions

In this section we obtain estimates on the solutions of the equation (VF)
under some suitable assumptions on the functions involved in equation (VF).

Theorem 3. Assume that the functions g, h satisfy the conditions

|g (t, s, x (s))| ≤ b (t) p (s) |x (s)| , (3.1)

|h (t, s, x (s))| ≤ c (t) q (s) |x (s)| , (3.2)

where b, p, c, q ∈ C (R+, R+) . Let d,M(t) be as in (2.5), (2.8) and

K1 =
1

1− d

∫ ∞

0
q (s) L1 (s) ds, (3.3)

where L1 (t) is defined by the right hand side of (2.7) by replacing a(t) by
|f (t)| . If x (t) , t ∈ R+ is any solution of equation (VF), then

|x (t)| ≤ L1 (t) + K1M (t) , (3.4)

for t ∈ R+.

Proof. By using the fact that x(t) is a solution of equation (VF) and the
hypotheses we have

|x (t)| ≤ |f (t)|+
∫ t

0
|g (t, s, x (s))| ds +

∫ ∞

0
|h (t, s, x (s))| ds

≤ |f (t)|+ b (t)
∫ t

0
p (s) |x (s)| ds + c (t)

∫ ∞

0
q (s) |x (s)| ds. (3.5)

Now an application of Lemma to (3.5) yields (3.4). ¤

Next, we shall obtain the estimation on the solution of equation (VF)
assuming that the functions g, h satisfy Lipschitz type conditions.
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Theorem 4. Suppose that the functions g, h be as in Theorem 2. Let d,M(t)
be as in (2.5), (2.8) and

F (t) =
∫ t

0
g (t, s, f(s)) ds +

∫ ∞

0
h (t, s, f(s)) ds, (3.6)

K2 =
1

1− d

∫ ∞

0
q (s)L2 (s) ds, (3.7)

where L2 (t) is defined by the right hand side of (2.7) by replacing a(t) by
|F (t)| . If x (t) , t ∈ R+ is any solution of equation (VF), then

|x (t)− f (t)| ≤ L2 (t) + K2M (t) , (3.8)

for t ∈ R+.

Proof. Using the fact that x(t) is a solution of (VF) we observe that

x (t)− f (t) =
∫ t

0
{g (t, s, x (s))− g (t, s, f (s))} ds

+
∫ ∞

0
{h (t, s, x (s))− h (t, s, f (s))} ds

+
∫ t

0
g (t, s, f (s)) ds +

∫ ∞

0
h (t, s, f (s)) ds. (3.9)

From (3.9) and using the hypotheses we have

|x (t)− f (t)| ≤ |F (t)|+ b (t)
∫ t

0
p (s) |x (s)− f (s)| ds

+ c (t)
∫ t

0
q (s) |x (s)− f (s)| ds. (3.10)

Now an application of Lemma to (3.10) yields (3.8). ¤
Next, consider the system (VF) and the system of Volterra integral equa-

tions

y (t) = f (t) +
∫ t

0
g (t, s, y (s)) ds, (3.11)

for t ∈ R+, where f, g are as in equation (VF).
The following theorem deals with the estimate on the difference between

the solutions of equations (VF) and (3.11).

Theorem 5. Suppose that the functions g, h be as in Theorem 2 and further
assume that h(t, s, 0) = 0. Let y (t) , t ∈ R+ be a solution of equation (3.11)
such that |y (t)| ≤ Q, where Q ≥ 0 is a constant. Let

ā (t) = Qc(t)
∫ ∞

0
q (s) ds,
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and d,M(t) be as in (2.5), (2.8) and

K3 =
1

1− d

∫ ∞

0
q (s)L3 (s) ds, (3.12)

where L3 (t) is defined by the right hand side of (2.7) by replacing a(t) by
ā (t) . If x (t) , t ∈ R+ is a solution of equation (VF), then

|x (t)− y (t)| ≤ L3 (t) + K3M (t) , (3.13)

for t ∈ R+.

Proof. Using the facts that x(t) and y(t) for t ∈ R+ are the solutions of
equations (VF) and (3.11) we observe that

x (t)− y (t) =
∫ t

0
{g (t, s, x (s))− g (t, s, y (s))} ds

+
∫ ∞

0
{h (t, s, x (s))− h (t, s, y (s))} ds

+
∫ ∞

0
{h (t, s, y (s))− h (t, s, 0)} ds. (3.14)

From (3.14) and using the hypothes we have

|x (t)− y (t)| ≤ b (t)
∫ t

0
p (s) |x (s)− y (s)|ds + c (t)

∫ ∞

0
q (s) |x (s)− y (s)|ds

+ c (t)
∫ ∞

0
q (s) |y (s)|ds

≤ ā (t) + b (t)
∫ t

0
p (s) |x (s)− y (s)|ds

+ c (t)
∫ ∞

0
q (s) |x (s)− y (s)|ds. (3.15)

Now as an application of Lemma to (3.15) yields (3.13). ¤

4. Continuous dependence

In this section we study the continuous dependence of solutions of equa-
tion (VF) on the functions involved on the right hand side of equation (VF)
and also the continuous dependence of solutions of equations of the forms
(VF) on parameters.
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Consider the system (VF) and the system of Volterra-Fredholm integral
equations

y (t) = r (t) +
∫ t

0
G (t, s, y (s)) ds +

∫ ∞

0
H (t, s, y (s)) ds, (4.1)

for t ∈ R+, where r,G,H are in Rn, r ∈ C (R+, Rn) and for 0 ≤ s ≤ t < ∞,
G,H ∈ C

(
R2

+ ×Rn, Rn
)
.

The following theorem shows the continuous dependence of solutions of
equation (VF) on the right hand side of equation (VF).

Theorem 6. Suppose that the functions g, h be as in Theorem 2. Assume
that

|f (t)− r (t)|+
∫ t

0
|g (t, s, y (s))−G (t, s, y (s))| ds

+
∫ ∞

0
|h (t, s, y (s))−H (t, s, y (s))| ds ≤ ε, (4.2)

where f, g, h and r,G,H are the functions involved in equations (VF) and
(4.1), y(t) is a solution of equation (4.1) and ε > 0 is an arbitrary small
constant. Let d,M(t) be as in (2.5), (2.8) and

K4 =
1

1− d

∫ ∞

0
q (s)L4 (s) ds, (4.3)

where L4 (t) is defined by the right hand side of (2.7) by replacing a(t) by ε.
Then the solution x (t) , t ∈ R+ of equation (VF) depends continuously on
the functions involved on the right hand side of equation (VF).

Proof. Let x(t) and y(t) for t ∈ R+ be the solutions of equations (VF) and
(4.1) respectively. Then

x (t)− y (t) = f (t)− r (t)

+
∫ t

0
{g (t, s, x (s))− g (t, s, y (s)) + g (t, s, y (s))−G (t, s, y (s))} ds

+
∫ ∞

0
{h (t, s, x (s))− h (t, s, y (s)) + h (t, s, y (s))−H (t, s, y (s))} ds.

(4.4)
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From (4.4) and using the hypotheses we have

|x (t)− y (t)| ≤ |f (t)− r (t)|+
∫ t

0
|g (t, s, x (s))− g (t, s, y (s))| ds

+
∫ t

0
|g (t, s, y (s))−G (t, s, y (s))| ds +

∫ ∞

0
|h (t, s, x (s))− h (t, s, y (s))| ds

+
∫ ∞

0
|h (t, s, y (s))−H (t, s, y (s))| ds

≤ ε + b (t)
∫ t

0
p (s) |x (s)− y (s)| ds + c (t)

∫ ∞

0
q (s) |x (s)− y (s)| ds. (4.5)

Now an application of Lemma to (4.5) yields

|x (t)− y (t)| ≤ L4 (t) + K4M (t) , (4.6)

for t ∈ R+. From (4.6) it follows that the solutions of equation (VF) depends
continuously on the functions involved on the right hand side of equation
(VF). ¤

Remark 2. From (4.6) it is easy to observe that, if L4 (t) and M(t) are
bounded for t ∈ R+ and ε → 0, then |x (t)− y (t)| → 0 on R+.

We, next consider the following systems of Volterra-Fredholm integral
equations

z (t) = f (t) +
∫ t

0
A (t, s, z (s) , µ)ds +

∫ ∞

0
B (t, s, z (s) , µ)ds, (4.7)

and

z (t) = f (t) +
∫ t

0
A (t, s, z (s) , µ0)ds +

∫ ∞

0
B (t, s, z (s) , µ0)ds, (4.8)

for t ∈ R+, where f, A,B are in Rn; µ, µ0 are real parameters, f ∈C (R+, Rn)
and for 0 ≤ s ≤ t < ∞, A,B ∈ C

(
R2

+ ×Rn ×R,Rn
)
.

The next theorem shows the dependency of solutions of equations (4.7)
and (4.8) on parameters.

Theorem 7. Assume that the functions A,B satisfy the conditions

|A (t, s, z, µ)−A (t, s, z̄, µ)| ≤ b (t) p (s) |z − z̄| , (4.9)

|A (t, s, z, µ)−A (t, s, z, µ0)| ≤ r1 (t, s) |µ− µ0| , (4.10)

|B (t, s, z, µ)−B (t, s, z̄, µ)| ≤ c (t) q (s) |z − z̄| , (4.11)

|B (t, s, z, µ)−B (t, s, z, µ0)| ≤ r2 (t, s) |µ− µ0| , (4.12)
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where b, p, c, q ∈ C (R+, R+) , r1, r2 ∈ C
(
R2

+, R+

)
. Let

a0 (t) = |µ− µ0|
[∫ t

0
r1 (t, s) ds +

∫ ∞

0
r2 (t, s) ds

]
,

and d,M(t) be as in (2.5), (2.8) and

K5 =
1

1− d

∫ ∞

0
q (s)L5 (s) ds, (2.13)

where L5 (t) is defined by the right hand side of (2.7) by replacing a(t) by
a0 (t) as given above. Let z1 (t) and z2 (t) be the solutions of equations (4.7)
and (4.8) respectively. Then

|z1 (t)− z2 (t)| ≤ L5 (t) + K5M (t) , (4.14)

for t ∈ R+.

Proof. Let z (t) = z1 (t)− z2 (t) . Since z1 (t) and z2 (t) are the solutions of
equations (4.7) and (4.8) we have

z (t) = z1 (t)− z2 (t) =
∫ t

0

{
A (t, s, z1 (s) , µ)−A (t, s, z2 (s) , µ)

+A (t, s, z2 (s) , µ)−A (t, s, z2 (s) , µ0)
}

ds

+
∫ ∞

0

{
B (t, s, z1 (s) , µ)−B (t, s, z2 (s) , µ)

+B (t, s, z2 (s) , µ)−B (t, s, z2 (s) , µ0)
}

ds. (4.15)

From (4.15) and using the hypotheses we have

|z (t)| ≤
∫ t

0
|A (t, s, z1 (s) , µ)−A (t, s, z2 (s) , µ)| ds

+
∫ t

0
|A (t, s, z2 (s) , µ)−A (t, s, z2 (s) , µ0)| ds

+
∫ ∞

0
|B (t, s, z1 (s) , µ)−B (t, s, z2 (s) , µ)| ds

+
∫ ∞

0
|B (t, s, z2 (s) , µ)−B (t, s, z2 (s) , µ0)| ds

≤ b (t)
∫ t

0
p (s) |z1 (s)− z2 (s)|ds +

∫ t

0
r1 (t, s) |µ− µ0| ds

+c (t)
∫ ∞

0
q (s) |z1 (s)− z2 (s)|ds +

∫ ∞

0
r2 (t, s) |µ− µ0| ds

= a0 (t) + b (t)
∫ t

0
p (s) z (s) ds + +c (t)

∫ ∞

0
q (s) z (s) ds. (4.16)
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Now an application of Lemma to (4.16) yields (4.14), which shows the de-
pendence of solutions of equations (4.7) and (4.8) on parameters. ¤
Remark 3. We note that the equation considered in (VF) is of more general
type and in the special case, it contains both Volterra and Fredholm type
integral equations. The literature concerning such equations is particularly
rich, and we refer the readers to the books [3,6,10].

References

[1] S. Asirov and Ja. D. Mamedov, Investigation of solutions of nonlinear Volterra-
Fredholm operator equations, Dokl. Akad. Nauk SSSR, 229 (1976), 982–986.

[2] A. Bielecki, Un remarque sur l’application de la méthode de Banach-Caccioppli-
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