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Abstract. We investigate the period-two trichotomies of solutions of
the equation

xn+1 = f(xn, xn−1, xn−2), n = 0, 1, . . .

where the function f satisfies certain monotonicity conditions. We give
fairly general conditions for period-two trichotomies to occur and illus-
trate the results with numerous examples.

1. Introduction and preliminaries

We investigate the period-two trichotomies of solutions of the equation

xn+1 = f(xn, xn−1, xn−2), n = 0, 1, . . . (1)

where the function f satisfies some monotonicity conditions and the initial
conditions x−2, x−1, x0 are arbitrary non-negative real numbers.

The period-two trichotomy was discovered in [1], in the case of equation

xn+1 = p +
xn−1

xn
n = 0, 1, . . . , (2)

where p > 0 and x−1, x0 > 0, and can be stated as the following result:

Theorem 1. The following period-two trichotomy result holds for Eq. (2)

p < 1 ⇒ there exist unbounded solutions
p = 1 ⇒ every solution converges to a period-two solution
p > 1 ⇒ every solution converges to the equilibrium.
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Recently, this result, which is not global, has been improved in the sense
that the statement “there exist unbounded solutions” was replaced by the
statement that “every solution off the global stable manifold of the unique
equilibrium is unbounded”, see [15]. Further period-two trichotomy results
were obtained in a sequence of papers [7], [8], and [11] for the second order
rational difference equations. More precisely all period-two trichotomies
were described for the second order linear fractional difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
n = 0, 1, . . . ,

with non-negative parameters α, β, γ,A, B, and C and non-negative initial
conditions x−1, x0 such that A + Bxn + Cxn−1 > 0 for all n.

Also Theorem 1 was generalized to the global bifurcation result for the
general second order equation of the form

xn+1 = f(xn, xn−1), n = 0, 1, . . . (3)

where f satisfies some monotonicity and differentiability conditions. See [2].
The only bifurcation results obtained for Eq. (3) are period-doubling

bifurcation of Selgrade and Roberds [18] and Naimark-Sacker bifurcation
[6] and [12]. Both results are local as they guarantee the existence and
stability of bifurcating periodic solution in a neighborhood of the critical
value(s) of the parameter(s). Some global bifurcation results were obtained
for monotone discrete dynamical systems that includes Eq. (3) when f
is decreasing in first and increasing in second variable. Actually, we have
shown that period-two trichotomy described above is exactly global period-
doubling bifurcation. See [16]. Unfortunately, the tools of monotone discrete
dynamical systems that we used in [2] and [16] are two-dimensional and do
not extend to higher dimensions. The phenomenon of period-two trichotomy
extends to third order equation (1) as is seen from the following result:

Theorem 2. (see [5]) Consider the following equation

xn+1 =
α + γxn−1

A + Bxn + xn−2
, n = 0, 1, . . . (4)

where all parameters are non-negative and the initial conditions are positive.
The following period-two trichotomy result holds for Eq. (4):

γ > A ⇒ there exist unbounded solutions
γ = A ⇒ every solution converges to a period-two solution
γ < A ⇒ every solution converges to the equilibrium.

In this paper we extend the period-two trichotomy result for Eq. (4)
to the case of general third order difference equation (1), where f satisfies
certain monotonicity conditions. In particular we generalize first and third



PERIOD-TWO TRICHOTOMIES OF A DIFFERENCE EQUATION OF · · · 75

statement of Theorem 2 to the case of general third equation (1) and also to
the difference equation of any order. We illustrate our results with numerous
examples and conclude with two conjectures that give an indication of the
connection between the above mentioned period-two trichotomy result and
the global period-doubling bifurcation described in one of the conjectures.

Here we give some necessary definitions and results that we will use later.
Let I be an interval of real numbers and let f ∈ C1[I3, I]. Let x̄ ∈ I be

an equilibrium point of the difference equation (1) that is x̄ = f(x̄, x̄, x̄).
Let

r =
∂f

∂u
(x̄, x̄, x̄), s =

∂f

∂v
(x̄, x̄, x̄), t =

∂f

∂w
(x̄, x̄, x̄)

denote the partial derivatives of f(u, v, w) evaluated at an equilibrium x̄ of
Eq. (1). Then the equation

yn+1 = ryn + syn−1 + tyn−2, n = 0, 1, . . . (5)

is called the linearized equation associated with Eq. (1) about the equi-
librium point x̄. The following result is well known, see [11]

Theorem 3. (Linearized Stability)
(a) If all roots of the cubic equation

λ3 − rλ2 − sλ− t = 0 (6)

lie in the open unit disk |λ| < 1 of the complex plane C, then the
equilibrium x̄ of Eq.( 1) is locally asymptotically stable.

(b) If at least one of the roots of Eq.( 6) has modulus greater than one,
then the equilibrium x̄ of Eq.( 1) is unstable.

(c) A necessary and sufficient condition for all roots of Eq.( 6) to lie in
the open unit disk |λ| < 1, is

|r + t| < 1− s,

|r − 3t| < 3 + s,

t2 − s− rt < 1.

In this case the locally asymptotically stable equilibrium x̄ is also
called a sink.

We now give the definitions of positive and negative semicycle of a solution
of Eq. (1) relative to an equilibrium point x̄.

A positive semicycle of a solution {yn} of Eq. (1) consists of a string of
terms {yl, yl+1, . . . , ym}, all greater than or equal to the equilibrium x, with
l ≥ −1 and m ≤ ∞ and such that

either l = −1, or l > −1 and yl−1 < x
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and

either m = ∞, or m < ∞ and ym+1 < x.

A negative semicycle of a solution {yn} of Eq. (1) consists of a string of
terms {yl, yl+1, . . . , ym}, all less than the equilibrium x, with l ≥ −1 and
m ≤ ∞ and such that

either l = −1, or l > −1 and yl−1 ≥ x

and

either m = ∞, or m < ∞ and ym+1 ≥ x.

In a similar way one can define the oscillation and semicycles around the
interval [L,U ], L < U.

The following result holds.

Theorem 4. Let I be an interval in R. Let f : I3 → I be a continuous
function such that

(i) f is non-increasing in first and third variable and non-decreasing in
second variable.

(ii) there exist numbers L, U, 0 < L < x̄ < U such that

f(U,L, U) ≥ L, f(L, U,L) ≤ U. (7)

If Eq. (1) does not have prime period-two solution, then there exists exactly
one equilibrium x̄ of Eq. (1), and every solution of Eq. (1) converges to x̄.

Proof. Notice that the condition (7) implies that [L,U ] is an invariant in-
terval for a function f , that is f : [L,U ]3 → [L,U ]. Indeed, by using the
monotonicity of f we have

L ≤ f(U,L, U) ≤ f(x, y, z) ≤ f(L,U,L) ≤ U, for every x, y, z ∈ [L,U ].

Consequently, Theorem 4 follows from Theorem A.0.6 in [11] or the general
result in [12].

¤

2. Existence of unbounded solutions

In this section we present some results on the existence of unbounded
solutions of Eq. (1).

Theorem 5. Let x̄ be the unique equilibrium of Eq. (1).
(i) Assume that f : I3 → I, where I ⊂ R is an interval is a continuous

function which is non-increasing in first and third variable and non-
decreasing in second variable.
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(ii) Assume that there exist numbers L,U, 0 < L < x̄ < U and such that
the following holds

f(U,L, U) ≤ L, f(L,U,L) ≥ U (8)

and at least one inequality in (8) is strict.
If

x−1 ≤ L and x0, x−2 ≥ U,

then the corresponding solution {xn} satisfies

x2n−1 ≤ L and x2n ≥ U, n = 0, 1, . . . .

In other words, every solution of Eq. (1) oscillates around interval [L,U ],
0 ≤ L < x̄ < U with semicycles of length one.

Proof. Assume that x−1 ≤ L and x0, x−2 ≥ U. Then by using the mono-
tonicity of f and condition (8), we have

x1 = f(x0, x−1, x−2) ≤ f(U,L, U) ≤ L

x2 = f(x1, x0, x−1) ≥ f(L, U,L) ≥ U

x3 = f(x2, x1, x0) ≤ f(U,L, U) ≤ L

...

By using induction we complete the proof of Theorem 5. ¤
Adding another assumption in Theorem 5 leads to a stronger conclusion.

Corollary 1. If in addition to the hypotheses of Theorem 5 we assume that
there exists constant K > 0 such that

f(L, v, L) ≥ K + v, for all v ≥ U, (9)

then {x2n} is unbounded sequence and

lim
n→∞x2n = +∞.

Proof. If condition (9) holds, then we have

x2 = f(x1, x0, x−1) ≥ f(L, x0, L) ≥ x0 + K

x4 = f(x3, x2, x1) ≥ f(L, x0 + K, L) ≥ x0 + K + K = x0 + 2K

...

Continuing this process and using mathematical induction, we obtain

x2n ≥ x0 + nK for n = 1, 2 . . .

and so
lim

n→∞x2n = ∞.

¤
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Remark 1. Notice that conditions (7) and (8) are separated by the bound-
ary condition

f(U,L, U) = L, f(L,U,L) = U, (10)
which is equivalent to the existence of period-two solutions, and therefore
can be used to detect equations with the properties described in Theorems
4 and 5. An additional problem will be to show that when the monotonicity
conditions on f in Theorem 4 and (10) are satisfied, every solution of Eq.
(1) converges to a period two solution. It seems that such a result, for some
classes of function f has been established in the coming monograph [3]. The
conditions (7) of Theorem 4 and (8) of Theorem 5 can be checked effectively
in many special cases of linear fractional equations of the form

xn+1 =
A + A0xn + A1xn−1 + . . . + Akxn−k

B + B0xn + B1xn−1 + · · ·+ Bkxn−k
, n = 0, 1, . . . (11)

where all parameters A, B,Ai, Bi, i = 0, . . . , k and the initial conditions
x−i, i = 0, . . . , k are non-negative and the denominator is non-zero.

3. Applications

Now we present three applications of Theorems 4, 5, and Corollary 1.

Example 1. Consider Eq. (4) where all parameters are non-negative, α > 0
and the initial conditions are positive. Eq. (4) has been investigated in [5],
[7] and [17].

We check conditions of Theorem 5:

f(U,L, U) =
α + γL

A + (B + 1)U
≤ L ⇒ α + γL ≤ AL + UL(B + 1). (12)

f(L,U,L) =
α + γU

A + (B + 1)L
≥ U ⇒ α + γU ≥ AU + UL(B + 1). (13)

From (12) and (13), we have

UL(B + 1) ≥ α + γL−AL,

UL(B + 1) ≤ α + γU −AU,

which implies
α + γL−AL ≤ α + γU −AU,

that is,
γ(L− U)−A(L− U) ≤ 0 ⇔ (L− U)(γ −A) ≤ 0.

The previous inequality holds if and only if γ > A for L < U .
Now choose L = γ−A

B+1 , U = γ−A
B+1 + α

γ−A . We have

f(U,L, U) = L
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f(L, U,L) =
α

γ
+

γ −A

B + 1
+

α

γ −A
≥ U.

Next, we show that L < x̄ < U . The equilibrium x̄ is a positive solution
of quadratic equation

f(t) := (B + 1)t2 + (A− γ)t− α = 0.

The graph of quadratic polynomial f(t) is a parabola open upward with the
properties f(0) = −α, f(x̄) = 0. Thus in order to check that L < x̄ < U it
is enough to show that f(L) < 0 and f(U) > 0. Indeed f(L) = −α < 0 and
f(U) = α2(B+1)

(γ−A)2
> 0.

If we choose K such that 0 < K < α
γ , then we have

f(L, v, L) =
α

γ
+

γ −A

B + 1
+

α

γ −A
> K + v, for all v ≥ U.

We conclude: If γ > A, then the corresponding solution {xn} satisfies

x2n−1 ≤ L, x2n ≥ U, ∀n.

By Corollary 1, the sequence {x2n} is unbounded and

x2n →∞.

Finally, we check that the condition (7) is satisfied if γ < A. Choose L = 0
and U = α

A−γ . Then (7) is clearly satisfied and L < x̄. Furthermore x̄ < U

because f(U) = α2(B+1)
(γ−A)2

> 0 An immediate checking shows that Eq. (4)
does not have a prime period-two solution if γ < A, which by Theorem 4
implies that every solution of Eq. (4) converges to the unique equilibrium.
Finally, it can be seen that Eq. (4) has an infinite number of prime period-
two solutions if and only if γ = A.

Example 2. Consider the following equation

xn+1 = α +
xn−1

xn−2
, n = 0, 1, . . . , (14)

where α and the initial conditions are positive. This equation has been
investigated in [7].

We now check conditions of Theorem 5:

f(U,L, U) = α +
L

U
≤ L ⇒ αU + L ≤ UL,

f(L,U,L) = α +
U

L
≥ U ⇒ αL + U ≥ UL.

This implies

αU + L ≤ Lα + U ⇒ (U − L)(α− 1) ≤ 0.

The last inequality holds if and only if α ≤ 1.
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Now choose L and U such that L ∈ (α, 1) and U = L
L−α . An immediate

checking shows that (8) is satisfied and L < x̄ = α + 1. Finally, x̄ < U is
equivalent to L < x̄ and so is satisfied. Next, by choosing 0 < K < α we
have

f(L, v, L) = α =
v

L
> α + v > K + v, for all v ≥ U.

By using Theorem 5, we conclude: If α < 1, then the corresponding solution
{xn} satisfies

x2n−1 ≤ L, x2n ≥ U, ∀n.

By Corollary 1, the sequence {x2n} is unbounded and

x2n →∞.

Next, we check that the condition (7) is satisfied if α > 1. Choose L = α

and U = α2

α−1 = α+1+ 1
α−1 . Then (7) is satisfied and obviously L < x̄ < U .

A straightforward checking shows that Eq.(14) does not have prime period-
two solution if α > 1, which by Theorem 4 implies that every solution of Eq.
(14) converges to the unique equilibrium. Finally, an immediate checking
shows that Eq. (14) has an infinite number of prime period-two solutions if
and only if α = 1.

Example 3. Consider equation

xn+1 =
α + γxn−1 + δxn−2

A + xn−2
, n = 0, 1, . . . . (15)

where all parameters and initial conditions are nonnegative and α, A, γ > 0.
This equation has been investigated in [4], [7] and [17].

It was shown in [4] that Eq. (16) can be reduced to equation

yn+1 =
a + yn−1

b + yn−2
, n = 0, 1, . . . . (16)

Now, we check the conditions of Theorem 5:

f(L,U,L) =
a + L

b + U
≤ L ⇒ a + (1− b)L ≤ LU

f(L,U,L) =
a + U

b + L
≥ U ⇒ LU ≤ a + (1− b)U.

These inequalities hold if b < 1. Now choose: L = 1 − b, U = a+(1−b)2

1−b =
1− b + a

1−b . It can be checked that (8) is satisfied.
Next, we show that L < x̄ < U . The equilibrium x̄ is a positive solution

of quadratic equation

g(t) := t2 + (b− 1)t− a = 0.
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The graph of quadratic polynomial g(t) is a parabola open upward with the
properties g(0) = −a, g(x̄) = 0. Thus in order to check that L < x̄ < U it
is enough to show that g(L) < 0 and g(U) > 0. Indeed g(L) = −a < 0 and
g(U) = a2

(1−b)2
> 0. By using Theorem 5, we conclude: If b < 1, then the

corresponding solution {xn} satisfies

x2n−1 ≤ L, x2n ≥ U, ∀n.

Next, choose 0 < K < a. Then

f(L, v, L) = a + v > K + v, for all v ≥ U.

By Corollary 1, the sequence {x2n} is unbounded and

x2n →∞.

The condition (7) leads to the inequalities

a + (1− b)U ≤ LU ≤ a + (1− b)L

which are satisfied if and only if b > 1. Choose L = a(b−1)
a+(b−1)2

and U =
a

b−1 . An immediate checking shows that (7) is satisfied. To show that
L < x̄ < U it is enough to show that g(L) < 0 and g(U) > 0. Indeed,
g(L) = − a3

(a+(b−1)2)2
and g(U) = a2

(b−1)2
. An immediate checking shows that

Eq. (16) does not have a prime period-two solution if b > 1, which by
Theorem 4 implies that every solution of Eq. (16) converges to the unique
equilibrium. Finally, it can be seen that Eq. (16) has an infinite number of
prime period-two solutions if and only if b = 1.

4. Higher order extensions

Now, we consider the fourth order difference equation

xn+1 = f(xn, xn−1, xn−2, xn−3), n = 0, 1, . . . (17)

where x−3, x−2, x−1, x0 are arbitrary non-negative real numbers. Similarly,
as for Eq. (1), the following results hold.

Theorem 6. Consider Eq. (17) and assume that x̄ is the unique equilibrium
of Eq. (17).

(i) Assume that f : I4 → I is a continuous function which is non-
increasing in first and third variable and non-decreasing in second
and fourth variable.

(ii) Assume that there exist numbers L, U, 0 < L < x̄ < U and such that
the following holds

f(U,L, U, L) ≤ L, f(L, U,L, U) ≥ U (18)

and at least one inequality in (18) is strict.
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If
x−1, x−3 ≤ L and x0, x−2 ≥ U,

then the corresponding solution {xn} satisfies

x2n−1 ≤ L and x2n ≥ U, n = 0, 1, . . . .

In other words, every solution of Eq. (17) oscillates around interval [L,U ],
0 ≤ L < x̄ < U with semicycle of length one.

Proof. Assume that x−1, x−3 ≤ L and x0, x−2 ≥ U. Then by using the
monotonicity of f and conditions (18), we have

x1 = f(x0, x−1, x−2, x−3) ≤ f(U,L,U, L) ≤ L

x2 = f(x1, x0, x−1, x−2) ≥ f(L,U,L, U) ≥ U

x3 = f(x2, x1, x0, x−1) ≤ f(U,L, U, L) ≤ L

x4 = f(x3, x2, x1, x0) ≥ f(L,U,L, U) ≥ U

...

By using induction we complete the proof of Theorem 6. ¤
Corollary 2. Assume that all conditions of Theorem 6 hold. If in addition
we assume that there exists constant K > 0 such that

f(L, v, L, v) ≥ K + v, for all v ≥ U, (19)

then {x2n} is an unbounded sequence and

lim
n→∞x2n = +∞.

Proof. If the condition (19) holds, then we have

x2 = f(x1, x0, x−1, x−2) ≥ f(L, x0, L, x−2) ≥ x0 + K + x−2 > x0 + K

x4 = f(x3, x2, x1, x0) ≥ f(L, x0 + K, L, x0) ≥ x0 + K + K + x0 > x0 + 2K

...

Continuing this process and using mathematical induction, we obtain

x2n > x0 + nK for n = 1, 2 . . .

and so
lim

n→∞x2n = ∞.

¤

Theorem 6 is complemented by the following result, which follows from a
general attractivity theorem in [13].
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Theorem 7. Let I be an interval in R.

(i) Assume that f : I4 → I is a continuous function which is non-
increasing in first and third variable and non-decreasing in second
variable and fourth variable.

(ii) Assume that there exist numbers L and U , 0 < L < x̄ < U such that
the following holds

f(U,L, U, L) ≥ L, f(L,U,L, U) ≤ U. (20)

If Eq. (17) does not have prime period-two solution, then there exists exactly
one equilibrium x̄ of Eq. (17), and every solution of Eq. (17) converges to
x̄.

Example 4. Consider the following equation

xn+1 =
α + γxn−1 + δxn−3

A + Bxn + xn−2
, n = 0, 1, . . . (21)

where all parameters are non-negative and the initial conditions are positive.
To find the critical value of parameters we will attempt to find period-two
solutions . . . ,Φ,Ψ,Φ, Ψ, . . . of Eq. (21). We obtain

Φ =
α + (γ + δ)Φ
A + (B + 1)Ψ

, Ψ =
α + (γ + δ)Ψ
A + (B + 1)Φ

which implies

(B + 1)ΦΨ− α = (γ + δ −A)Φ = (γ + δ −A)Ψ.

Thus the necessary condition for the existence of a period-two solution be-
comes

γ + δ = A (22)
Straightforward checking shows that this is also a sufficient condition. When
(22) is satisfied Eq. (21) has an infinite number of period-two solutions
which satisfy (B + 1)ΦΨ = α. By using a similar method as in Example 1
and Theorem 7 we can show that for γ + δ < A every solution tend to an
equilibrium. Finally, by using Theorem 5 and Corollary 2 for γ + δ > A we
can show that Eq. (21) has unbounded solutions.

The following result extends and unifies Theorems 5 and 6.

Theorem 8. Let f : Ik+1 → I be a continuous function, where k is a
positive integer, and where I is an interval of real numbers. Consider the
difference equation of k + 1 order

xn+1 = f(xn, xn−1, xn−2, . . . xn−k), n = 0, 1, . . . (23)

where x−k, x−k+1, . . . , x−1 are arbitrary non-negative real numbers. Assume
that there exists unique equilibrium x̄ of Eq. (23).

Suppose that f satisfies the following conditions :
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(i) For each integer 0 ≤ i ≤ k+1, the function f(y1, y2, . . . , yk+1) is non-
increasing in first variable y1, non-decreasing in second variable y2,
and then alternately non-increasing and non-decreasing in remaining
variables.

(ii) Assume that there exist a numbers L and U, 0 < L < x̄ < U, such
that the following holds

f(U,L, U, . . . , L) ≤ L and f(L,U,L, . . . , U) ≥ U, if k odd , (24)

or

f(U,L, U, . . . , U) ≤ L and f(L,U,L, . . . , L) ≥ U, if k even . (25)

If

x−1, x−3, . . . , x−(2k−1) ≤ L and x0, x−2, . . . , x−(2k−2) ≥ U, k = 1, 2, . . .

then the corresponding solution {xn} satisfies

x2n−1 ≤ L and x2n ≥ U, n = 0, 1, . . . .

In other words, every solution of Eq. (23) oscillates around interval [L,U ],
0 ≤ L < x̄ < U with semicycle of length one.

Proof. The proof of this Theorem is similar to the proofs of Theorems 5 and
6, and will be omitted. ¤

The following Corollary extends and unifies Corollaries 1 and 2.

Corollary 3. Assume that all conditions of Theorem 8 hold. If in addition
we assume that there exists constant K > 0 such that

f(L, v, L, . . . , L) ≥ K + v, for all v ≥ U, if k even (26)

or
f(L, v, L, . . . , v) ≥ K + v, for all v ≥ U, if k odd (27)

then {x2n} is unbounded sequence and

lim
n→∞x2n = +∞.

Proof. The proof is similar to the proofs of the Corollaries 1 and 2, and will
be omitted. ¤

Theorem 8 has the following counterpart for a global attractivity, which
is an extension of Theorems 4 and 7. See [13].

Theorem 9. Let f : Ik+1 → I be a continuous function, where k is a positive
integer, and where I is an interval of real numbers. Consider Eq. (23) where
x−k, x−k+1, . . . , x−1 are arbitrary non-negative real numbers. Assume that
there exists unique equilibrium x̄ of Eq. (23).

Suppose that f satisfies the following conditions :
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(i) For each integer 0 ≤ i ≤ k + 1, the function f(y1, y2, . . . , yk+1) is
non-increasing in first variable y1, non-decreasing in second variable
y2, and then alternately non-increasing and non-decreasing in other
variables.

(ii) Assume that there exist a numbers L and U, 0 < L < x̄ < U, such
that the following holds

f(U,L, U, . . . , L) ≥ L and f(L,U,L, . . . , U) ≤ U, if k odd , (28)

or

f(U,L, U, . . . , U) ≥ L and f(L,U,L, . . . , L) ≤ U, if k even . (29)

If Eq. (23) does not have prime period-two solution, then there exists ex-
actly one equilibrium x̄ of Eq. (23), and every solution of Eq. (23) converges
to x̄.

Example 5. Consider the following equation

xn+1 =
α +

∑r
k=0 akxn−(2k+1)

β +
∑r

k=0 bkxn−(2k)
, n = 0, 1, . . . (30)

where all parameters are non-negative and the initial conditions are positive,
such that the expression in denominator is positive. To find the critical value
of parameters we will attempt to find period-two solutions . . . ,Φ, Ψ, Φ, Ψ, . . .
of Eq. (30). We obtain

Φ =
α + Φ

∑r
k=0 ak

β + Ψ
∑r

k=0 bk
, Ψ =

α + Ψ
∑r

k=0 ak

β + Φ
∑r

k=0 bk

which imply

ΦΨ
r∑

k=0

bk − α = Φ

(
r∑

k=0

ak − β

)
= Ψ

(
r∑

k=0

ak − β

)
.

Thus a necessary condition for the existence of a period-two solution becomes
r∑

k=0

ak = β (31)

Straightforward checking shows that this is also a sufficient condition. When
(31) is satisfied Eq. (30) has an infinite number of period-two solutions which
satisfy ΦΨ

∑r
k=0 bk = α. By using a similar method as in Example 1 and

Theorem 9 we can show that for
∑r

k=0 ak < β every solution of Eq. (30)
tend to an equilibrium. Finally, by using Theorem 8 and Corollary 3 for∑r

k=0 ak > β we can show that Eq. (30) has unbounded solutions.
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5. Existence of period-two solution for linear fractional
difference equation

In view of Examples 1-3 it seems that one can identify period-two tri-
chotomies in linear fractional difference equation (11) where all parameters
A,B, Ai, Bi, i = 0, . . . , k and the initial conditions x−i, i = 0, . . . , k are non-
negative and the denominator is non-zero by finding a condition for existence
of period-two solutions of Eq. (11). To accomplish this task we consider two
cases when k is odd and even. We have the following result

Proposition 1. Let

. . . , Φ, Ψ, Φ,Ψ, . . . , Φ < Ψ (32)

be a period-two solution of Eq. (11).
(a) If k is odd then the necessary and sufficient condition for the exis-

tence of a period-two solution (32) is

A1 + A3 + · · ·+ Ak −A0 −B ≥ 0, (33)

(B1 + B3 + · · ·+ Bk)(Φ + Ψ) = A1 + A3 + · · ·+ Ak −A0 −B. (34)
(b) If k is even then the necessary and sufficient condition for the exis-

tence of a period-two solution (32) is

A1 + A3 + · · ·+ Ak−1 ≥ A0 + A2 + A4 + · · ·+ Ak + B, (35)

(B1+B3+· · ·+Bk−1)(Φ+Ψ) = (A1+A3+· · ·+Ak−1)−(A0+A2+· · ·+Ak+B).
(36)

Proof. Case (a). Let k be odd. Period-two solution (32) satisfies

Ψ =
A + A0Φ + A1Ψ + A2Φ + · · ·+ AkΨ
B + B0Φ + B1Ψ + B2Φ + · · ·+ BkΨ

Φ =
A + A0Ψ + A1Φ + A2Ψ + · · ·+ AkΦ
B + B0Ψ + B1Φ + B2Ψ + · · ·+ BkΦ

.

Simplifying these two fractions and subtracting them we obtain the following
identity

(B1 + B3 + · · ·+ Bk)(Φ + Ψ) = A1 + A3 + · · ·+ Ak −A0 −B,

which implies (33) and (34). The converse statement can be obtained by
reversing the steps.

Case (b). Let k be even. Period-two solution (32) satisfies

Ψ =
A + A0Φ + A1Ψ + A2Φ + · · ·+ AkΦ
B + B0Φ + B1Ψ + B2Φ + · · ·+ BkΦ
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Φ =
A + A0Ψ + A1Φ + A2Ψ + · · ·+ AkΨ
B + B0Ψ + B1Φ + B2Ψ + · · ·+ BkΨ

.

Simplifying these two fractions and subtracting them we obtain the following
identity

(Φ + Ψ)(B1 + B3 + · · ·+ B − k − 1)

= (A1 + A3 + · · ·+ Ak−1)− (A0 + A2 + · · ·+ Ak + B).

Since (B1 +B3 + · · ·+B−k − 1) ≥ 0, we must have (A1 +A3 + · · ·+Ak−1)−
(A0 + A2 + · · · + Ak + B) ≥ 0 which implies (35) and (36). The converse
statement can be obtained by reversing the steps. ¤

Proposition 1 gives a simple test for detecting period-two trichotomies in
Eq. (11). We present two applications to the well known special cases of
Eq. (11).

Example 6. Consider equation

xn+1 =
p + qxn−1

1 + xn
, n = 0, 1, . . . (37)

where all parameters are positive and the initial conditions are nonnegative.
Eq. (37) has been investigated in [8].
In this case, we have that

A = p,A0 = 0, A1 = q

and
B = 1, B0 = 1, B1 = 0.

Condition (33) in Proposition 1, becomes

q − 0− 1 ≥ 0 ⇒ q ≥ 1

and the condition (34) becomes

(Φ + Ψ) · 0 = q − 1 ⇔ q = 1.

Intersection of these two conditions gives q = 1.
So, q = 1 is the necessary and sufficient condition for existence of period-two
solutions of Eq.(37).

Example 7. Consider equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + xn + xn−2
, n = 0, 1, . . . (38)

where all parameters are positive and the initial conditions are nonnegative.
Eq. (37) has been investigated in [7], p.167.
In this case , we have that

A = α,A0 = β, A1 = γ, A2 = δ
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and

B = A, B0 = 1, B1 = 0, B2 = 1.

Conditions (35) and (36) in Proposition 1, become

γ ≥ A + β + δ

and
(a + b)0 = γ − (A + β + δ)

which yields
γ = A + β + δ.

So, γ = A + β + δ is the necessary and sufficient condition for existence of
period-two solutions of Eq. (37).

6. Conjectures

We proved that the period-two trichotomy in the case of second-order
equation is actually the period-doubling bifurcation, see [2]. We used the
techniques of competitive systems in the plane which does not have higher
dimensional analogue at this time, but we believe that the similar result
holds for k-th order difference equation, k ≥ 3. Thus we are offering the
following conjectures:

Conjecture 1. Consider Eq. (11) subject to the conditions of Corollary 3.
Then every solution of Eq. (11) which starts in the complement of the union
of the stable manifolds of the zero and the positive equilibrium is unbounded.

This conjecture was proved for k = 1 in [2].

Conjecture 2. Let I = [a,∞), and let A be a connected subset of R. Given
a family of difference equations of k + 1 order

xn+1 = fα(xn, xn−1, xn−2, . . . xn−k), n = 0, 1, . . . (39)

where x−k, x−k+1, . . . , x−1 are arbitrary non-negative real numbers with fα

(u0, u1, . . . , uk+1) continuous on Ik+1, suppose that for each α ∈ A,
a1. fα(u0, u1, . . . , uk+1) is strictly decreasing in u2m and strictly increas-

ing in u2m+1 for m = 0, 1, . . . in the interior of Ik+1.
a2. fα(u0, u1, . . . , uk+1) is smooth in α and (u0, u1, . . . , uk+1)
a3. There is a unique interior equilibrium xα which varies continuously

in α.
a4. There exists a continuous function Γ : A → R such that for α in

the parametric region {α : Γ(α) < 0} ∪ {α : Γ(α) > 0} there are no
prime period-two solutions. There exists a prime period-two solution
for α in the parametric region {α : Γ(α) = 0}.
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a5. For α in the parametric region {α : Γ(α) < 0} all solutions of Eq.
(39) are bounded.

Then the equilibrium xα is globally asymptotically stable for α in the para-
metric region {α : Γ(α) < 0}. For α in the parametric region {α : Γ(α) = 0},
every solution of Eq. (39) converges to period-two solution (not necessarily
prime). For α in the parametric region {α : Γ(α) > 0}, every solution of
Eq. (39) is unbounded except for the solutions that belong to the the closure
of the global stable manifold of the equilibrium.

Conjecture 2 was proved for k = 1 in [2].

Acknowledgment. The authors are grateful to the referee for several in-
sightful observations which improved the quality of results.
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(Revised: January 23, 2008) Department of Mathematics

University of Tuzla, Tuzla
Bosnia and Herzegovina

S. Kalabušić
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