A MATRIX CHARACTERIZATION OF STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES

HARRY I. MILLER AND LEILA MILLER-VAN WIEREN

Dedicated to Professor Fikret Vajzović on the occasion of his 80th birthday

ABSTRACT. Fridy and Miller have given a characterization of statistical convergence for bounded single sequences using a family of matrix summability methods. In this paper we prove the analogous result for double sequences.

1. INTRODUCTION

The concept of the statistical convergence of a sequence of reals $x = (x_n)$ was first introduced by H. Fast [3].

The sequence $x = (x_n)$ is said to converge statistically to L and we write

$$\lim_{n \to \infty} x_n = L \text{ statistically if for every } \epsilon > 0,$$

$$\lim_{n \to \infty} n^{-1} |\{k \le n : |x_k - L| \ge \epsilon\}| = 0,$$

where |A| denotes the cardinality of the set A.

Properties of statistically convergent sequences were studied in [1], [2], [4] and [7]. In [5], Fridy and Miller gave a characterization of statistical convergence for bounded sequences using a family of matrix summability methods.

For recent results on double sequences one should consult other references in [6] which can be found online.

Concretely, in [5], the following is proved.

Theorem 1.1. (Fridy, Miller) Suppose $x = (x_n)$ is a bounded sequence of reals, then $\lim_{n\to\infty} x_n = L$ statistically if and only if the transformed

²⁰⁰⁰ Mathematics Subject Classification. 40D25, 40G99, 28A12.

sequence Ax converges, in the ordinary sense, to L for every $A \in \tau$, where

$$\tau = \{A = (a_{nk}) : A \text{ is triangular, non-negative, } \sum_{k} a_{nk} = 1 \text{ for each } n \}$$

and
$$\lim_{n\to\infty}\sum_{k\in T}a_{nk}=0$$
 for each T having natural density 0}

and (Ax) denotes the sequence whose n-th term is $\sum_{k=1}^{\infty} a_{nk} x_k$. Here A = (a_{nk}) . By a set $T, T \subseteq N$, having natural density 0, we man that $\lim_{n \to \infty} \frac{1}{n} |\{t : t \in \mathbb{N}\}|$ $t \le n, t \in T\}| = 0.$

We remark here that Fridy, earlier, showed that statistical convergence is not equivalent to any regular summability method.

In this paper we consider double sequences $x = (x_{ij})_{i=1,j=1}^{\infty,\infty}$ of real numbers.

Definition 1.2. We say that x is convergent to L (in the sense of Pringsheim) if for each $\epsilon > 0$ there exists an $N = N(\epsilon)$ such that $|x_{ij} - L| < \epsilon$ whenever $i, j \geq N$.

Definition 1.3. We say x is statistically convergent to L if for each $\epsilon > 0$ the double sequence (y_{mn}^{ϵ}) where $y_{mn}^{\epsilon} = \frac{1}{mn} |\{(i,j) : i \leq m, j \leq n, |x_{ij} - L| \geq \epsilon\}|$ converges (in the sense of Pringsheim) to zero.

Definition 1.4. If $A = (a_{m,n,i,j})$ is a 4-dimensional matrix and $x = (x_{ij})$ is a double sequence then the double (transformed) sequence, $Ax := (y_{mn})$, is defined by $y_{mn} := \sum_{i=1,j=1}^{\infty,\infty} a_{m,n,i,j} \cdot x_{ij}$, where it is assumed that the summation exists as a Pringsheim limit (of the partial sums) for each $m, n \in$ N.

Definition 1.5. τ denotes the collection of all 4-dimensional matrices A = $(a_{m,n,i,ij})$ satisfying:

- (i) $a_{m,n,i,j} \ge 0, \forall m, n, i, j \in N$,
- (ii) $a_{m,n,i,j} = 0$ if either i > m or j > n,
- (iii) $\sum_{i,j} a_{m,n,i,j} = 1$ for every $m, n \in N$, (iv) if $T \in NXN$ and T has density 0, then the sequence $(z_{m,n}) :=$ $(\sum_{(i,j)\in T} a_{m,n,i,j})$ has Pringsheim limit zero.

Here T having density zero means $\frac{1}{mn}|\{(i,j):(i,j)\in T, i\leq m, j\leq n\}|$ has Pringsheim limit zero as $m, n \to \infty$.

2. Result

We now prove the double sequence analogoue of the Fridy and Miller theorem.

Theorem 2.1. If $x = (x_{ij})$ is a bounded double sequence, then x is statistically convergent to L if and only if the transformed sequence Ax is convergent to L (in the sense of Pringsheim) for each 4-dimensional matrix $A \in \tau$.

Proof. a) Suppose $x = (x_{ij})$ is bounded and x is statistically convergent to L. Suppose further that $A = (a_{m,n,i,j}) \in \tau$ and $\epsilon > 0$ is given. Then

$$(Ax)_{m,n} = \sum_{(i,j)\in T} a_{m,n,i,j} x_{ij} + \sum_{\substack{\{(i,j):(i,j)\notin T, \\ i < m, j < n\}}} a_{m,n,i,j} x_{ij}$$
(1)

where $T := \{(i, j) : |x_{ij} - L| \ge \epsilon\}$. This yields

$$|(Ax)_{m,n} - L| = \left| \sum_{(i,j)} a_{m,n,i,j} (x_{ij} - L) \right|$$

$$\leq \left| \sum_{(i,j)\in T} a_{m,n,i,j} (x_{ij} - L) \right| + \left| \sum_{\substack{\{(i,j):(i,j)\notin T, \\ i \le m, j \le n\}}} a_{m,n,i,j} (x_{ij} - L) \right|$$

$$\leq \left(\sup_{(i,j)} |x_{ij} - L| \right) \sum_{(i,j)\in T} a_{m,n,i,j} + \epsilon \sum_{\substack{\{(i,j):(i,j)\notin T, \\ i \le m, j \le n\}}} a_{m,n,i,j}.$$

Since T has density zero and ϵ is arbitrary, property (iv) implies that $\lim_{m,n\to\infty} |(Ax)_{m,n} - L| = 0.$

b) Now we prove the reverse implication.

Suppose $x = (x_{ij})$ is a bounded double sequence that does not converge statistically to L. Then there exists an $\epsilon > 0$ such that T_{ϵ} does not have density zero, where $T_{\epsilon} := \{(i, j) : |x_{ij} - L| \ge \epsilon\}$. Then either:

Case 1. $T_{\epsilon}^+ := \{(i, j) : x_{ij} \ge L + \epsilon\}$ does not have density zero, Case 2. $T_{\epsilon}^- := \{(i, j) : x_{ij} \le L - \epsilon\}$ does not have density zero.

Suppose Case 1 holds. Then, there exists $\delta > 0$, and two strictly increasing sequences of natural numbers (m_k) and (n_k) such that:

$$\frac{1}{m_k n_k} |\{(i,j), i \le m_k, j \le n_k \text{ such that } x_{ij} \ge L + \epsilon\}| > \delta$$
(2)

for all $k \in N$. We now define a 4-dimensional matrix A as follows:

$$a_{m_k,n_k,i,j} = \left\{ \begin{array}{l} \frac{1}{\mu_k} \text{ if } i \leq m_k, j \leq n_k \text{ and } x_{ij} \geq L + \epsilon \\ \text{where } \mu_k = |\{(i,j) : i \leq m_k, j \leq n_k \text{ and } x_{ij} \geq L + \epsilon\}|, \\ 0 \text{ otherwise} \end{array} \right\},$$

$$a_{m,n,i,j} = \left\{ \begin{array}{ll} \frac{1}{mn} & \text{if } i \leq m, j \leq n \text{ and } (m,n) \neq (m_k, n_k) \forall k \in N, \\ 0 & \text{otherwise} \end{array} \right\}.$$

We now show that $A = (a_{m,n,i,j})$ given by (2) is in τ but Ax does not converge to L.

Clearly $\sum_{i,j} a_{m_k,n_k,i,j} x_{ij} \ge L + \epsilon$ for all $k \in N$, so Ax does not converge to L. It remains to show that A (given in (2)) is in τ . It is easy to see that A satisfies i), ii), and iii) from Definition 4. We now show that Asatisfies condition iv). Suppose $T \in NXN$ has density zero. Then, for $(m,n) \neq (m_k,n_k)$ from (2) $z_{m,n} = \frac{1}{mn} |\{(i,j) \in T, i \le m, j \le n\}|$ tends to zero as $m, n \to \infty$.

For $k \in N$, from (2) we get

$$\sum_{(i,j)\in T} a_{m_k,n_k,i,j} = \frac{1}{\mu_k} |\{(i,j):(i,j)\in T, i\leq m_k, j\leq n_k, x_{ij}\geq L+\epsilon\}|$$

$$\leq \frac{1}{\delta} \frac{1}{m_k n_k} |\{(i,j):(i,j)\in T, i\leq m_k, j\leq n_k, x_{ij}\geq L+\epsilon\}|.$$

So, $\lim_{k\to\infty} \sum_{(i,j)\in T} a_{m_k,n_k,i,j} = 0$ since T has density zero. Hence $A = (a_{m,n,i,j})$ is in τ . The proof for Case 2 is completely analogous.

Definition 2.2. $\tau^* \subset \tau$ is defined to consist of all 4-dimensional matrices $A = (a_{m,n,i,j})$ whose entries are all rational numbers.

Corollary 2.3. If $x = (x_{ij})$ is a bounded double sequence, then x is statistically convergent to L if and only if Ax is convergent to L for each $A \in \tau^*$.

Proof. a) If $x = (x_{ij})$ is bounded and is statistically convergent to L, then, by our Theorem, Ax is convergent to L for every $A \in \tau^*$.

b) Suppose x is not statistically convergent to L. In the proof of b) in our Theorem, we see that there exists $A \in \tau^*$, such that Ax is not convergent to L.

We note that τ has cardinality of the continium (i.e. of the real line) while τ^* is countable.

We conclude this note with an example. Namely, we show that our theorem cannot be extended to unbounded double sequences. This has already been noted for single sequences [5].

Example. Let $A = (a_{m,n,i,j})$ be the (C, 1, 1) 4-dimensional Cesaro matrix, i.e.

$$a_{m,n,i,j} = \left\{ \begin{array}{c} \frac{1}{mn} & \text{if } i \le m \text{ and } j \le n \\ 0 & otherwise \end{array} \right\}$$

Define $x = (x_{ij})$ as follows:

$$x_{ij} = \left\{ \begin{array}{c} n^2 \text{ if } i = j = n \\ otherwise \end{array} \right\}$$

94

Then x converges statistically to zero, but Ax does not converge to zero, and $A \in \tau^*$.

References

- J. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47–63.
- J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Math.Bull., 32 (1989), 194–198.
- [3] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- [4] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
- [5] J. A. Friday and H. I. Miller, A matrix characterization of statistical convergence, Analysis, 11 (1991), 59–66.
- [6] H. I. Miller and R. F. Patterson, Core theorems for double sequences and rearrangements, Acta Math. Hungar., (2007) – online.
- [7] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.

(Received: December 10, 2007)

Harry I. Miller Department of Mathematics University of Sarajevo Faculty of Natural Sciences 71000 Sarajevo Bosnia and Herzegovina E-mail: himiller@hotmail.com

Leila Miller-Van Wieren Department of Mathematics Sarajevo School of Science and Technology 71000 Sarajevo Bosnia and Herzegovina E-mail: lejla.miller@ssst.edu.ba