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THE BOUNDEDNESS OF THE B-RIESZ POTENTIAL IN
THE B-MORREY SPACES

JAVANSHIR J. HASANOV AND ANAR KH. NARIMANOV

ABSTRACT. We consider the generalized shift operator (B shift op-
erator), generated by the Laplace-Bessel differential operator Ap =

Zz 1B +Z] k+1827B:(Bl7"'aBk) B - 82 +71 7’YZ>O

x; Ox;

i=1,...,k |7 =m —|— -+ v,. The B-maximal functlons and the B-
Riesz potentials, generated by the Laplace-Bessel differential operator
Ap are investigated. We study the B-Riesz potentials in the B-Morrey
spaces. The inequality of Sobolev-Morrey type is established for the
B-Riesz potentials.

INTRODUCTION

The classical Riesz potential is an important technical tool in harmonic
analysis, theory of functions and partial differential equations. The maximal
function, singular integral, potential and related topics associated with the
Laplace—Bessel differential operator

62 Yi 0

A —E B; = — + — : =1,....k
B + ;162’ Bi 8x?+xiaxi7 %> 0, B

J

have been investlgated by many researchers, see B. Muckenhoupt and E.
Stein [15], I. Kipriyanov [14], K. Trimeche [19], L. Lyakhov [13], K. Stempak
[17],[18], A.D. Gadjiev and I.A. Aliev [3], I.A. Aliev and S. Bayrakeci [1], L.
Ekincioglu and A. Serbetci [11], V.S. Guliyev [4]-[7], V.S. Guliyev and J.J.
Hasanov [9] and others.

In this paper we consider the generalized shift operator, generated by the
Laplace-Bessel differential operator Ap in terms of which the B-maximal
functions and B-Riesz potentials are investigated. We study the B-Riesz
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potential in the B-Morrey spaces. The inequality of Sobolev-Morrey type is
established for the B-Riesz potentials.

The structure of the paper is as follows. In Section 1 we present some
definitions, auxiliary results and study some embeddings into the function
spaces (B-function spaces), associated with the Laplace-Bessel differential
operator. In Section 2 the boundedness of the B-maximal operator on B-
Morrey spaces Ly, »  is proved. The main result of the paper is the inequality
of Sobolev-Morrey type for the B-Riesz potentials, established in Section 3.
Note that all results of the paper in the case £ = 1 have been obtained in

[9]-

1. DEFINITIONS, NOTATION AND PRELIMINARIES

Suppose that R™ is n-dimensional Euclidean space, x = (x1,...,2,) €
R |z|2 = Y0 22, 1 <k <n,n>2 2 = (z1,...,75) € RF, 2 =
(Thi1y. .- 2n) € RVF 2= (2, 2") € R", Ry, ={z = (2/,2") e R% 21 >
0,...,zx > 0}, Ef(z,7) = {y eERy, s lz—yl <rh v = (1%

N>0 >0yl =n+. o, (@ )7_5'3?” .
For measurable E' C R} | suppose |E|, = Jp(@')Vdz, then |EL(0,r)|, =

w(n, k,~)r"thl, where

n—k k

Tz g (n+|y+2 v + 1
wn,kavz/ ) Vdx = Fl( ) F< .
( ) E+(0,1)( ) 2F 2 11_11 2

Denote by TV the generalized shift operator (B-shift operator) acting
according to the law

TVf(x / / (@', 9 )2 — ") dv(B),

where (xlvyz)ﬁz = (l‘z - 2%1/1 COS/BZ' +yi)§7 1 S 1 S ka (xlvy,)ﬁ = ((xlayl)ﬁp
(@ ye)s), dv (8) = [TE, sin% =1 3; dBy ... dBy, 1 < k < n and

k k-1
k1 (N Yi+1\ 2"y (A
Cop=m2T <2> Er( 5 >_ - o 1) w@ k).

We remark that the generalized shift operator TY is closely connected
with the Bessel differential operator B (for example, n = k = 1 see [12],
n>1, k=1 see [14] and n,k > 1 see [13] for details).

Let Ly (R} ,) be the space of measurable functions on R}, with finite
norm

1/p
s = Wiz = ([ 1F@PGae) T 1<p<o

k,+
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For p = oo the space Lo (R} ) is defined by means of the usual modifica-
tion

1l = fllzee = esssuplf(z)].
x

ERE+

The translation operator TY generates the corresponding B-convolution

(feg)(r) = F) [T g(x))(y') dy,

Ry +
for which the Young inequality
1 1
£ ©0ls,., <1715, Ny, 1<par<os, o= 41
holds.

Lemma 1. For all x € Ry + the following equality is valid

/ Tg(z)(y')"dy =/ g <\/Z% +5%,-.-,\/Z,3 +Zi72”> dp(z, 2'),
E4(0,t) E((2,0),t)

where E((x,0),t) = {(z,2') € R" x (0,00)F : |(z —2,2)| <t}, du(z,7') =
(/)7 Ydede!, d2' = dzy ---dzg, (/)= (z)" L ()L

The proof of Lemma 1 is straightforward via the following substitutions

2 =2, zi =wicosay, %z =ux;sineg, 0<a; <m i=1,...k,
reRE ., 2 = (Z1,...,%), (2,2/) €ER" x (0,00)F, 1 <k <n.

Definition 1. Let 1 < p < co. By WLPN(RZA_) we denote the weak Ly
spaces defined as the set of locally integrable functions f(x), x € Ry . with
the finite norm
1
| fllywp. . =supr Hx = RZ7+ s f()] > r}‘ /P
P r>0 v

Definition 2. [5] Let 1 < p < 00, 0 < A < n+|y]. We denote by
Ly~ (RE ) Morrey spaces (= B-Morrey spaces) as the set of locally in-

tegrable functions f(x), € R}, with the finite norm

1/p
= sup <t—A / Tﬂf(w)f’(y')wy) .
P E(0,t)

t>0, zeR} I

[nalr

Note that

LILO,’Y( Z,+) = Lp,v( Z,+)a

Lp,nﬂvm (RZ,+) = Loo ( Z+) :
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Definition 3. [5] Let 1 < p < 00, 0 < A < n+ |y]. We denote by
W Ly (R} ) the weak B-Morrey spaces as the set of locally integrable func-
tions f(x), s Ry . with finite norm

1/p
Flhwi, o, =supr swp (e wray)
>0  t>0,z€R} | {yeEL(0,t): TV|f(z)|>r}

Note that
WLZW( Z+) - WLnO,W(RZ,Jr)’

Lpay(RE 1) CWLp4(Ry ) and || flly g, <|fll,

PNy Py

2. L, »~-BOUNDEDNESS OF THE B-MAXIMAL OPERATOR

In this section we study the L, ) ,-boundedness of the B-maximal opera-
tor (see [4])

M, f(z) = sup |24 (0, )| /E o TN

r>0

Theorem 1. 1. If f € L1 (Rf,), 0 < A < n+ ||, then M,f €
WLi,RE ) and

My fllweos, < Craqllflls,, (1)
where Cy )~ depends only on \yy,k and n.
2. If f € Lppy(REL), 1 < p < 00,0 <A< m+|yf then Myf €
Lp,/\ﬁ(RZ,Jr) and

My fllzy sy < Cornllfllz, A (2)
where Cp, 5 4 depends only on p,\,y,k and n.

Proof. We need to introduce the maximal operator defined on a space of
homogeneous type (Y, d, ). By this we mean a topological space Y = R" x
(0,00)* equipped with a continuous pseudometric d and a positive measure
v satisfying

V(E((:C,?),QT)) < Cl’/(E(('%?)vT)) (
with a constant C; independent of (z,2’) and r > 0. Here E((z,2’),7)
{(v, ) €Y : d((z,2), (y,9") <1}, dv(y, ') = (y) " 'dy dy/, ( Nt
@)t @) d((, 7)), (y,y) = |(2,2)) = (9, 9)] = (Jo =y + (@ -
V).

Let (Y, d,v) be a space of homogeneous type. Define

w
~—

M, f(z, )—supV(E((m,a:’),T))l/(( 1) ‘f (,9) ‘dV

r>0
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where f(x,2') = f <\/x1 + 75, ..\ J22 + 72,0

It is well known that the maximal operator M, is of weak type (1, 1) and
is bounded on L,(Y,dv) for 1 < p < oo (see [2]). Here we are concerned
with the maximal operator defined by dv(y,v') = (/) ~'dy dy’. 1t is clear
that this measure satisfies the doubling condition (3).

It can be proved that

M, f <\/z%+z%,...,\/z,§+zi,z">
M7 (y/z%ﬁLz%,...,\/zi—i—zi,z'/,(]),

M, f(x) = My f(,0). (4)

or

Indeed, Lemma 1

/E 0) (\/214‘217-- \/zk+zk, >‘ "N dy
+ T

|[F(y )] dv(y,y)

- /E<<\/z%—i—z%,...,\/zz—l—zi,z”,()) ,r)

|E+(O,r)\7:yE<<\/z%—l—z%,...,\/z,%jtzz,z",O) ,7‘>

imply (2). Furthermore, taking z; = 0 in (2) we get (4).
Using Lemma 1 and equality (2) we have

/ TV (M, f(z))” ()" dy
(0,r)

p
= f(\/z + 7z ,...,\/z2+z2,z">) dv(z,2')
/E((:EO < ¥ 1 1 k k
:/ (Muf<\/z%+z%,.. \/zk+zk,z" 0>> dv(z,7).
E((x,0),r)

In [10] there was proved that the analogue of the Fefferman-Stein theorem
for the maximal operator defined on a space of homogeneous type is valid,
if condition (3) is satisfied. Therefore

and

/ (Mo ) vy, )

"’El) 7T)

<G e IPMA) dw ). ()
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Then taking ¢(y,vy') = f (\/yl +7v yl, cee \/y,% +?i,y”70) and ¢ (y,y') =

1 we obtain from 1nequahty (5) and Lemma 1 that

[ sy @y
E (0,r)

p
:/ <M f( yl +y17"'7 y]%—i_y[%ay//’o)) dl/(y,y,>
E((z,0),r
SCz/ < Yi+ 0%\ v T Y 0)
E((z,0),r)

E((z,0),r)

o / T ()P )y < Co ™ I FIE
E+(0 7") P

dv(y,y')

f( VY, YTy >

Corollary 1. Let f € Llffy(RZ’_s_), then

lin 20,0 [ T5(a) (/)dy = )
=0 B4 (0,t)
for almost all z € Ry

Corollary 2. [7]
L If f € Liy(Ry ), then My f € WLy (R} ) and

”M'YfHWLl,'y < Cl,'YHfHLl,w

where C1 ~ depends only on v,k and n.
2. If f € Lpy(RE ), 1 <p < oo, then My f € Ly, (R ) and

||M'Yf||Lp,’y S CprHfHLp,’y?
where Cp, 4 depends only on p,y.k and n.

In the Theorem 1 if we take A = 0, we obtain Corollary 2.

3. HARDY-LITTLEWOOD-SOBOLEV-MORREY TYPE INEQUALITY FOR
B-RIESZ POTENTIAL

Consider the B-Riesz potentials

f@) = [ Dl PR, 0<a <l
Ry +
For the B-Riesz potentials the following generalized Hardy—Littlewood—
Sobolev theorem is valid.
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Theorem 2. Let 0 <a<n+ |y, 1<p< %ﬁl and 0 < X < n+|y| — ap.
+
If f € LP,AN(RZ,+)7 where 1 < p < nTM and % —é = ﬁ, then
ITf e Lq,Aﬁ(RZ,Jr) and

127, < Corlil,

where C), \ 1s independent of f.

IFf€Liny(RE), 1= L = o then I9f € WLy (RE,) and

172y, < CalF I
where Cy is independent of f.
Proof. Let f € Ly (R} ). Then

</E / e >Tyf($)|y’a"|7l(y’)7dy

= A(x,t) + C (2,1). (6)
For A(x,t) we have

Al )] < / V| ()| |yl Pl ) dy

EL(0,t)

<> (@ TV () 3l

+ (072k+1t)\E+ (072kt)

)
PNy

k=—o00
Hence
on+17l
A )] € oM f(x)  with €y = 22 (7)
From (6), for C(x,t) by the Holder’s inequality we have
P
cwol<( [ BT\ @ ) )
Ry \E4(0,0)
1
B+ ot v An-hl
<( e pay) < =, @
RY \E4(0,) >

Thus, from (7) and (8) we have

|13 7(@)] < G (t“MJ(x) T

p«\v) ’

Minimizing with respect to ¢, at t = [(wa(ac))_l ||f||LpM ]p/(nﬂwﬂ\)
we arrive at

|15 f(z)| < C6 (M f(x DRl p/a

Ly~
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Hence, by Theorem 1, we have

[ el @y < il / T (M @) ()
EL(0,t) E4+(0,t)

< CAMIAEE AL, < G
Let f € Ly, )\77(RZ, ) It suffices to prove the inequality (2) with 23 instead
of 3 on the left-hand side of the inequality. So

[{y € E+(0.t) : TV|I5f(2)] > 28},

<y € E4(0,1) : TY|A(x,t)] > B} |4

+{y € E4(0,1) : TY|C(,t)| > B} |y

Taking into account inequality (7) and Theorem 1 we have

[{y € E4(0,1) : TY|A(z,t)[ > B} |4

= '{y € EL(0,t) « TH(Myf(2)) > cfta} - O;ft

A=n—|y]
and thus if Gyt~ o« |[f],, . = 0, then |C (z,1)| < § and consequently,
|[{y € E£(0,t) : TY|C(z,t)| > B} |y =0.

Finally

{y € Ex(0,t) : TY|If(x >25}\

q
_Cona Nl
< P, = Cot <5“

The theorem is proved. ]

P Ay DAY DAY

A
ANl

Corollary 3. [8] Let 0 < ao < n + |v].
If1<p<™hl | f € Lpy(RE,), then ISf € Loy (RY )
and

1 a
qa  nthl’

15 £, ,
where C), is independent of f.
If f e Ll,W(RZ#), % =1- n+|7|, then I9f € WLy, (R k+) and

125 1l i, , < Ol , - (10)
where Cy is independent of f.

| Ly (9)

Theorem 3. Let 0 < oo < n + ||

n+|vy| "y 1 1 .  « .
If 1 < p < = "5, then the condition > T g = mip s necessary for

[}

inequality (9) to be valid.
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If p =1, then the condition 1 — % = n_ﬁ,ﬂ is necessary for inequality (10)
to hold.

Proof. Let 1 < p < %M, fe Lp,V(RZ, ) and inequality (9) hold.
Define fi(z) =: f(tz). Then

1ill,, =t

and

_ o ntly]
HI’?/éftHqu =t

By the inequality (9)

12 e

1511, < Cpat™™ 0"

1
I 5 > G+
As Well as if < = +
all f e Lpﬁ(R” )
Therefore + = 1 +

P n+|7|
Now, let f € Llﬁ(Rh +) and inequality (10) hold. We have

then in the case ¢ — 0 we have HL?fHL = 0 for all
9,7

n+\7\’ then at t — oo we obtain HIﬁ;‘fHL = 0 for
9,7

+Iv|

15 il =t 5y,
By inequality (10)
ntlyl
155 7wy, < Cat™ " £,

If1>: +
fel ’Y(Rk +)

Similarly, if 1 < = +
all f e Ly, (R} +)

Therefore 1 = = +

+| E then in the case t — 0 we have HL‘;“fHWLM = 0 for all

iry]> then for ¢ — oo we obtain “I$f|‘WL =0 for
.,

T =
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