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ABOUT CHARACTERS AND THE DIRICHLET KERNEL
ON VILENKIN GROUPS

MEDO PEPIĆ

Dedicated to Professor Fikret Vajzović on the occasion of his 80th birthday

Abstract. In this paper we study properties of characters and the
Dirichlet kernel on Vilenkin groups which are of key importance for an-
alyzing convergence, integrability and summability of Fourier-Vilenkin
series.

1. Introduction and preliminaries

In this paper we work on a Vilenkin group G (i.e. an infinite, totally
unconnected, compact Abelian group which satisfies the second axiom of
countability). We can introduce the topology on G using the zero neighbor-
hood chain

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn ⊃ . . . ,∩∞n=0Gn = {0} , (1)

which consists of open subgroups of group G, such that quotient group
Gn�Gn+1 is a cyclic group of prime order pn+1, ∀n ∈ N0. G is called
bounded iff a sequence

(pn)n∈N = (p1, p2, . . . ),

is bounded. For n ∈ N we denote

mn := p1p2 . . . pn (m0 := 1).

A classical example of a Vilenkin group is the product space
∞∏

k=1

Gk,
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where Gk = {0, 1} is a cyclic group of the second order for all k ∈ N,
equipped with the discrete topology, with component addition (note that
addition in each component is done by module 2). Its direct generalization
is the group

G =
∞∏

k=0

Z(nk),

where Z(nk) := {0, 1, 2, . . . , nk − 1} , nk ≥ 2, is cyclic group of order nk

(k ∈ N0) equipped with the discrete topology. An arbitrary x ∈ G has a
unique representation in the following form

x =
∞∑

n=0

anxn, an ∈ {0, 1, 2, . . . , pn+1 − 1} (2)

where xn ∈ Gn�Gn+1 are previously arbitrary chosen and fixed, and for all
n ∈ N0 and

Gn =

{
x ∈ G :

∞∑

i=0

aixi, ai = 0, for 0 ≤ i < n

}
. (3)

G can be equipped with a Haar measure which is normalized (in the sense
of µ(G) = 1) and for all n ∈ N0 and for all x ∈ G:

µ(x + Gn) =
1

mn
. (4)

The class of all continuous functions f : G → C is denoted by C(G). For
1 ≤ p < ∞, Lp(G) is the set of all functions f on G, measurable (according
to µ) such that ∫

G
|f(x)|p dµ(x) < ∞.

L∞(G) is the set of all essentially bounded functions on G. All of these sets
become Banah spaces in the case when we define the norm in the usual way.
From compactness of the group G follows

Lq(G) ⊂ Lp(G), for 1 ≤ p < q ≤ ∞;

and using the fact that Haar measure is invariant with respect to translation
it follows that norm ‖.‖p is invariant in respect to translation for all 1 ≤ p ≤
∞. If functions f , ϕ on G are such as that the function f(x− h) ϕ(h) on G
is integrable for almost all x ∈ G, then

∫
G f(x− h) ϕ(h) dµ(h) is called the

convolution of functions f and ϕ and we write

f ∗ ϕ(x) :=
∫

G
f(x− h)ϕ(h) dµ(h).
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For all sequences of numbers (bn)n∈N, with the property bn ↓ 0, we can
introduce metrics in G, invariant with respect to translation, by

d(x, y) =
{

bn, x− y ∈ Gn�Gn+1;
0, x = y.

It is a common to take bn = µ(Gn) or bn = µ(Gn+1).
In G there is countable collection of Γ characters - continuous complex

value functions χ, which satisfies the following conditions

|χ(x)| = 1(∀x ∈ G), χ(x + y) = χ(x)χ(y)(∀x, y ∈ G).

The characters form an Abelian group with respect to the pointwise product
of functions. We topologize (Γ, ·) by defining a neighborhood basis around
the unit

χ0 ∈ Γ(χ0(x) = 1,∀x ∈ G)

using the collection of all sets

U(A, ε) := {χ ∈ Γ : |χ(a)− 1| < ε,∀a ∈ A} ,

where A denotes the collection of all compact subsets in G and ε rangs over
all positive numbers. It is known that [4, Th. 24.15 and Th. 24.26] (Γ, ·)
is discrete, countable Abelian group with torsion. Additionally, Vilenkin
proved [8, Chapters 1.1, 1.2, 1.3 and 1.4] that in Γ there exists a chain

Γ0 = {χ0} ⊂ Γ1 ⊂ Γ2 ⊂ · · ·Γn ⊂ · · ·
consists of subgroups Γn = G⊥

n of the group Γ, with following properties:

(∀n ∈ N0)G⊥
n := {χ ∈ Γ : χ(x) = 1, ∀x ∈ Gn} = Γ(G/Gn); (5)

∞⋃

n=0

Γn = Γ; (∀n ∈ N0)Γn+1�Γn is cyclic group with prime order pn+1 .

(6)
If for n ∈ N0 we arbitrary choose χ ∈ Γn+1�Γn and we assign to it the
index mn, then for x ∈ Gn�Gn+1 is χ

pn+1
mn (x) = 1 and therefore

χpn+1
mn

∈ Γn ∧ χmn(x) ∈
{

e2πik / pn+1 : 1 ≤ k < pn+1

}
. (7)

It is possible in (2) (∀n ∈ N0) to choose

xn ∈ Gn�Gn+1 such that χmn(xn) = e2πi / pn+1 . (8)

In the main part of this paper e will assume that this holds. Hence, further
we will ∀n ∈ N0, by xn denote element from Gn�Gn+1 for which we have
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χmn(xn) = e2πi / pn+1 . Each n ∈ N we can uniquely represent in the following
form

n=
N∑

i=0

aimi, ai∈{0, 1, 2, . . . , pi+1 − 1}∧aN 6= 0 ∧N = N(n). (9)

Note that (9) is equivalent to

mN ≤ n < mN+1.

Putting

χn=
N∏

i=0

χai
mi

(10)

we obtain complete numeration of elements in group (Γ, ·). According to this
numeration we have

(∀n∈ N0)Γn= {χ0, χ1, . . . , χmn−1} . (11)

From the invariance of Haar measure under translation it follows that for
all χ 6= χ0, is

∫
G

χ(x) dµ(x) = 0.

Besides, the group (Γ, ·) forms a complete and orthonormal system (in
L2(G)) according to Haar measure on G [1, p.77].

The order relation < on Γ we introduce by:

(∀m,n ∈ N0)(χm < χn ⇔ m < n).

Let

x =
∞∑

n=0

anxn, an ∈ {0, 1, 2, . . . , pn+1 − 1} ,

y =
∞∑

n=0

bnxn, bn ∈ {0, 1, 2, . . . , pn+1 − 1} ,

are arbitrarily chosen elements from group G. Order relation < in G we
introduce by putting

x < y ⇔ (∃k ∈ N0)(ai = bi, ∀i ∈ {0, 1, 2, . . . , k}) ∧ (ak+1 < bk+1).

In other words, order relation in G we introduce using lexicographical or-
dering of suitable sequences

(an) = (a0, a1, a2, . . .).

Using (3) , we can also enumerate elements in factor group G/Gn according
to the lexicographical ordering of their representatives

n−1∑

i=0

aixi = z
(n)
j (0 ≤ j ≤ mn − 1). (12)
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Each [
z
(n)
j

]
= z

(n)
j + Gn (1 ≤ j < mn),

is generating element of cyclic group G/Gn of order mn. In a such way each
of groups

G, Γ = Γ(G) and G/Gn(n ∈ N0)

are equipped by an appropriate order relation.
When f ∈ L1(G) and n ∈ N0, then:

a) cn = cn(f) = f̂(χn) = f̂(n) :=
∫
G f(x)χn(x) dµ(x) (n ∈ N0) are

Fourier coefficients of function f.
b) S(f) = S(f, x):=

∑∞
n=0 f̂(n)χn(x) is Fourier series (precisely: Fo-

urier-Vilenkin series) of function f , and Sn(f) = Sn(f, x) :=∑n−1
i=0 f̂(i)χi(x) is partial sum index n of series S(f, x). Especially,

S0(f, x) := 0.
c) Dn(x) :=

∑n−1
i=0 χi(x) is the Dirichlet kernel of index n. Especially,

D0(x) := 0.

For all n ∈ N0, all f ∈ L1(G) and all x ∈ G holds

Dn ∗ f(x) = Sn(f, x), i.e. Dn ∗ f = Snf,

since

Dn ∗ f(x) =
∫

G
Dn(x− t)f(t) dµ(t) =

∫

G

( n−1∑

i=0

χi(x− t)
)

f(t) dµ(t)

=
n−1∑

i=0

χi(x)
∫

G

f(t)χi(t) dµ(t) =
n−1∑

i=0

f̂(i)χi(x) = Sn(f, x).

If H is open and compact subgroup in G and if function f ∈ L1(G) has
property

f(x) =

{
1, ∀x ∈ H;
0, ∀x ∈ G \H,

then
f̂(χ) = µ(H).ζH⊥(χ), ∀χ ∈ Γ,

where χA is the characteristic function of a set A [1, p.81]. Especially we
have ∫

Gn

χ(x) dµ(x) = µ(Gn).ζG⊥n (χ),∀χ ∈ Γ, ∀n ∈ N0. (13)



114 MEDO PEPIĆ

As consequences we have
∫

x0+Gn

χ(x) dµ(x) = χ(x0)µ(Gn).ζG⊥n (χ), ∀χ ∈ Γ, ∀n ∈ N0, ∀x0 ∈ G (14)

and ∫

x0+Gn

χk(x) dµ(x) = 0, ∀n ∈ N0, ∀k ≥ mn. (15)

Properties of Dirichlet kernel on Vilenkin group are discussed in papers
[8], [5] and monograph [1]. Results from these references we quote in a
following theorem.

Theorem 1.

(D1) Dmn(x) =
n−1∏
i=0

1−χ
pi+1
mi

1−χmi
∧Dmn(x) = mn.ζGn(x) [8, 2.2. p.4].

(D2) If n ∈ N is given by (9) , then

Dn = χn.

N∑

i=0

Dmi

χai
mi

.
1− χai

mi

1− χmi

[8, 2.3. p.5] and [1, p.97 and 98].

(D3) x ∈ G�Gn ⇒ (∀k ∈ N0) |Dk(x)| ≤ mn [8, 3.61. p.14].
(D4) (∀n ∈ N0)

∫
G

Dn(x) dµ(x) = 1 [5, Lemma 2, p.267].

(D5) mk ≤ n < mk+1 ∧ n = akmk + r ∧ 0 < ak < pk+1 ∧ 0 ≤ r < mk ⇒

Dn =
1− χak

mk

1− χmk

Dmk
+ χak

mk
.Dr [5, Lemma 3, p.267].

2. Results

Theorem 2.

(D6) (∀n ∈ N0)(∀j ∈ {0, 1, 2, . . . , pn+1 − 1})
(j+1)mn−1∑

i=jmn

χi = Dmn .χj
mn .

(D7) (∀n ∈ N0)(∀an ∈ {0, 1, 2, . . . , pn+1 − 1})Dan.mn = Dmn .
1−χan

mn
1−χmk

.

(D8) (∀n ∈ N0)
mn+1−1∑

i=mn

χi = Dmn .

pn+1−1∑

j=1

χj
mn .

(D9) (∀n ∈ N0)Dmn+1 = Dmn .
1−χ

pn+1
mn

1−χmn
(Recurrent formulae).



DIRICHLET KERNEL ON VILENKIN GROUPS 115

(D10)1 n =
N∑

i=0
aimi , ai ∈ {0, 1, 2, . . . , pi+1 − 1} ∧ aN 6= 0 ⇒

Dn =
N∑

i=0

Dmi

1− χai
mi

1− χmi

χ(ai+1.mi+1+···+aN .mN ),

with

χ(ai+1.mi+1+···+aN .mN ) :=
{

χ
ai+1
mi+1 . . . χaN

mN
, i ∈ {0, 1, . . . , N − 1} ;

χ0, i = N.

(D11) (∀n =
N∑

i=0
aimi, ai ∈ {0, 1, 2, . . . , pi+1 − 1} ∧ aN 6= 0)

(∀k ∈ {1, 2, . . . , N})(n = akmk + r) ⇒

Dr =
N∑

i∈{0,1,...,N}�{k}
Dmi

1− χai
mi

1− χmi

χ(ai+1.mi+1+···+aN .mN ),

and

Dn = Dr + Dmk

1− χak
mk

1− χmk

.χ(ak+1.mk+1+···+aN .mN ).

Proof. (D6)
(j+1)mn−1∑

i=jmn

χi = χjmn + χjmn+1 + · · ·+ χjmn+(mn−1)

= χj
mn

(χ0 + χ1 + · · ·+ χ(mn−1)) = Dmn .χj
mn

.

(D7) Using (D6) in third step we have

Dan.mn =
anmn−1∑

i=0

χi =
an−1∑

j=0

( (j+1)mn−1∑

i=jmn

χi

)

= Dmn .

an−1∑

j=0

χj
mn

= Dmn .
1− χan

mn

1− χmk

.

(D8)
mn+1−1∑
i=mn

χi =
pn+1−1∑

j=1

(
(j+1)mn−1∑

i=jmn

χi

)
= Dmn .

pn+1−1∑
j=1

χj
mn (in last step we

used (D6)).

1From (D1), (10) and (11) follows that (D10) is just another form of (D2). Here we
present our proof of this property, which is considerably shorter than the proof given in
[1, p.97 and 98].
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(D9) Using (D8) we have

Dmn+1 −Dmn =
mn+1−1∑
i=mn

χi = Dmn .
pn+1−1∑

j=1
χj

mn

⇒ Dmn+1 = Dmn

(
χ0 +

pn+1−1∑
j=1

χj
mn

)
= Dmn

1−χ
pn+1
mn

1−χmn
.

(D10) For the proof we will use mathematical induction. If n = 1 = 1.m0,
then N = 0 ∧ a0 = 1, so (D10) obviously is true. Let us assume
(D10) holds for arbitrarily chosen n ∈ N given by (9), and let us
prove that (D10) also holds for n + 1. Really, if n is such that there
exist s = mini∈{0,1,...,N} {i : ai < pi+1 − 1}, then

n + 1 = (p1 − 1)m0 + · · ·+ (ps − 1)ms−1 + asms + · · ·+ aNmN + 1

= (as + 1)ms + as+1ms+1 + ldots + aNmN + 1 =
N∑

i=0

bimi,

where

bi :=





0, i < s;
as + 1, i = s;
ai, s < i ≤ N .

Thereby and by 0 ≤ bi ≤ pi+1 − 1 (∀i ∈ {0, 1, . . . , N}), using induc-
tive step we obtain

Dn+1 =
N∑

i=0

Dmi

1− χbi
mi

1− χmi

χ(bi+1.mi+1+···+bN .mN ).

If n is such that does not exist number s, then ai = pi+1 − 1(∀i ∈
{0, 1, . . . , N}), then

n + 1 = (p1 − 1)m0 + · · ·+ (pN+1 − 1)mN + 1 = mn+1 =
N+1∑

i=0

cimi,

with

ci :=
{

0, 0 ≤ i ≤ N ;
1, i = N + 1.

Now
1− χci

mi

1− χmi

=
{

0, 0 ≤ i ≤ N ;
1, i = N + 1.

then (D10) becomes clearly true equality DmN+1 = DmN+1 .1.χ0.
(D11) Let n be given by (9) . Then

n =
N∑

i=0

aimi = akmk + r ⇔ r =
∑

i∈{0,1,2,...,N}�{k}
aimi.
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Then we have

Dn =
n−1∑

i=0

χi

=
a0m0+···+ak−1mk−1−1∑

i=0

χi +
a0m0+···+akmk−1∑

i=a0m0+...+ak−1mk−1

χi +
a0m0+...+aNmN−1∑

i=a0m0+···+akmk

χi

= S1 + S2 + S3,

otherwise
Dn = Dr + S2 ∧Dr = S1 + S3. (16)

S1 =
a0m0+···+ak−1mk−1−1∑

i=0

χi

=
a0m0+···+aNmN−1∑

i=a1m1+···+aNmN

χi +
a1m1+···+aNmN−1∑

i=a2m2+···+aNmN

χi + · · ·+
ak−1mk−1+···+aNmN−1∑

i=akmk+···+aNmN

χi

=
k∑

j=1

Lj−1−1∑

i=Lj

χi,

where we put

Lj :=
{

ajmj + · · ·+ aNmN , 0 ≤ j ≤ N ;
0, j = N + 1. (17)

Because
Lj−1−1∑

i=Lj

χi =
Lj+aj−1mj−1−1∑

i=Lj

χi =
aj−1mj−1−1∑

i=0

χLj+i

= χLj

aj−1mj−1−1∑

i=0

χi = χLj

aj−1−1∑

s=0

(s+1)mj−1−1∑

i=smj−1

χi

= χLj .Dmj−1

aj−1−1∑

s=0

χs
mj−1

= χLj .Dmj−1

1− χ
aj−1
mj−1

1− χmj−1

,

we have

S1 =
k∑

j=1

χLj .Dmj−1

1− χ
aj−1
mj−1

1− χmj−1

=
k−1∑

j=0

Dmj

1− χ
aj
mj

1− χmj

χ
(aj+1.mj+1+···+aN .mN )

.

(18)
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S3 =
a0m0+···+aNmN−1∑

i=a0m0+···+akmk

χi =
ak+1mk+1+...+aNmN−1∑

i=ak+2mk+2+···+aNmN

χi

+
ak+2mk+2+...+aNmN−1∑

i=ak+3mk+3+···+aNmN

χi + . . . +
aN−1mN−1+aNmN−1∑

i=aNmN

χi +
aNmN−1∑

i=0

χi

=
N+1∑

j=k+2

Lj−1−1∑

i=Lj

χi =
N+1∑

j=k+2

Dmj−1

1− χ
aj−1
mj−1

1− χmj−1

χLj

=
N∑

j=k+1

Dmj

1− χ
aj
mj

1− χmj

χLj+1 .

So,

S3 =
N∑

j=k+1

Dmj

1− χ
aj
mj

1− χmj

χ
(aj+1.mj+1+···+aN .mN )

. (19)

S2 =
a0m0+···+akmk−1∑

i=a0m0+···+ak−1mk−1

χi =
akmk+···+aNmN−1∑

i=ak+1mk+1+···+aNmN

χi

=
Lk−1∑

i=Lk+1

χi =
Lk+1+akmk−1∑

i=Lk+1

χi = χLk+1

akmk−1∑

i=0

χi.

So,

S2 = Dmk

1− χak
mk

1− χmk

χ
(ak+1.mk+1+···+aN .mN )

. (20)

(D11) follows form (16) , (18) , (19) and (20).
¤

Remark 1.
a) (D11) can be written in the following form

Dn−akmk
=

∑

i∈{0,1,2,...,N}�{k}
Dmi

1− χai
mi

1− χmi

χ
(ai+1.mi+1+···+aN .mN )

.

b) Putting k = N, in (D11), we obtain (D5), i.e.

Dn =
1− χaN

mN

1− χmN

DmN + χaN
mN

.Dr.

Corollary 1. (i) x ∈ Gn�Gn+1 ⇒ Dmk
(x) =

{
mk, 0 ≤ k ≤ n;
0, k > n.
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(ii) Dmn(x) = mn.ζGn(x) (see (D1)).

(iii) x ∈ G�Gn ⇒
∞∑

i=mn

χi(x) = 0.

(iv) (∀x ∈ G� {0})(∃1n = n(x) ∈ N0) Dmk
(x) =

{
mk, 0 ≤ k ≤ n;
0, k > n.

(v) (∀x ∈ G� {0})
∞∑

n=0
χn(x) = 0.

Proof. (i) x ∈ Gn ⇒ x ∈ Gk(∀k ≤ n) (from (1)). Therefore and from
(11) using fact that is G⊥

k ⊆ G⊥
n (∀k ≤ n) we obtain

Dmk
(x) = mk.

By x /∈ Gn+1 ⇒ x /∈ Gk(∀k ≥ n + 1). Therefore, using (5) , follows

Dmk
(x) =

k−1∏

i=0

1− χ
pi+1
mi (x)

1− χmi(x)
= 0,

because this product contains the factor 1−χ
pn+1
mn (x)

1−χmn(x) = 1−εpn+1

1−ε = 0,
where ε = χmn(x) is pn+1 − th root of unit.

(ii) Follows directly from (i).
(iii) x /∈ Gn ⇒ x /∈ Gk(∀k ≥ n). Hence, by (ii), Dmk

(x) = 0(∀k ≥ n).
Therefore we have

∞∑

i=mn

χi(x) =
∞∑

k=n

(Dmk+1
(x)−Dmk

(x)) = 0.

(iv) By G� {0} =
∞⋃

n=0

(Gn�Gn+1) and fact that is {Gn�Gn+1}n∈N0

tasselation of set G� {0} , we conclude that an arbitrarily chosen
x ∈ G� {0} there exists one (and only one) n = n(x) ∈ N0 such
that x ∈ Gn�Gn+1. Hence and by (i) follows (iv).

(v) Let n = n(x) from (iv). Then we have

∞∑

n=0

χn(x) =
mn−1∑

i=0

χi(x) +
∞∑

i=mn

χi(x)

= Dmn(x) +
∞∑

k=n

(Dmk+1
(x)−Dmk

(x))

= mn + (0−mn) = 0.

¤



120 MEDO PEPIĆ

Theorem 3. For all n =
N∑

i=0
aimi, aN 6= 0 and for all k ∈ N0 and all

x ∈ Gk�Gk+1

Dn(x) =
{

n, k > N ;
Dn,k.χ(ak+1.mk+1+···+aN .mN )

(x), k ≤ N ,

where

Dn,k := εak .

( k−1∑

i=0

aimi

)
+ mk

1− εak

1− ε
(∀k ≤ N),

ε = χmk
(x) is some primitive pk+1-th root of unit.

Proof. a) k > N ⇒ G⊥
k ⊇ G⊥

i (∀i ≤ N). Hence and from (D10) we have

Dn(x) =
N∑

i=0

Dmi(x)
1− χai

mi
(x)

1− χmi(x)
χ

ai+1
mi+1(x) . . . χaN

mN
(x) =

N∑

i=0

aimi = n.

b) k ≤ N ⇒ (G⊥
k ⊇ G⊥

i (∀i ≤ k)) ∧ χmi /∈ G⊥
k (∀i ≥ k) ∧ x /∈ Gi(∀i >

k)∧Dmi(x) = 0 (∀i ≥ k)∧χmk
(x) = ε (some primitive pk+1-th root

of unit). Hence and from (D10) we have

Dn(x) =

(
k−1∑

i=0

aimi

)
.χak

mk
(x) . . . χaN

mN
(x)

+ mk

1− χak
mk

(x)
1− χmk

(x)
χ

ak+1
mk+1(x) . . . χaN

mN
(x)

= Dn,k.χ
ak+1
mk+1(x) . . . χaN

mN
(x).

¤

Corollary 2. For all n =
N∑

i=0
aimi, aN 6= 0 and for all k ∈ N0 and all

x ∈ Gk�Gk+1

|Dn(x)| =




n, k > N ;

|Dn,k| ≤
k∑

i=0
aimi, k ≤ N .

Theorem 4. a)
∫

Gk

Dn(x) dµ(x) =
{ n

mk
, n < mk;

1, n ≥ mk.

b)
∫

Gk�Gk+1

Dn(x) dµ(x) =





n(pk+1−1)
mk+1

, n ≤ mk;
1− n

mk+1
, mk < n < mk+1;

0, n ≥ mk+1.
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Proof. a) By (11) we have
∫

Gk

Dn(x) dµ(x) =
∫

Gk

n−1∑

i=0

χi(x) dµ(x) = n

∫

Gk

dµ(x) =
n

mk
(if n < mk).

If n ≥ mk, then
∫

Gk

Dn(x) dµ(x) =
∫

Gk

n−1∑

i=0

χi(x) dµ(x)

=
∫

Gk

( mk−1∑

i=0

χi(x) +
n−1∑

i=mk

χi(x)
)

dµ(x)

= mk

∫

Gk

dµ(x) = 1 (by (15)).

b)
∫

Gk�Gk+1

Dn(x) dµ(x) =
∫

⋃pk+1−1

j=1 (jxk+Gk+1)

n−1∑

i=0

χi(x) dµ(x)

=
pk+1−1∑

j=1

∫

j.Gk+Gk+1

( n−1∑

i=0

χi(x)
)

dµ(x)

=
pk+1−1∑

j=1

n−1∑

i=0

∫

j.Gk+Gk+1

χi(x) dµ(x)

=
pk+1−1∑

j=1

n−1∑

i=0

∫

Gk+1

χi(j.xk + x) dµ(j.xk + x)

=
pk+1−1∑

j=1

n−1∑

i=0

χj
i (xk).µ(Gk+1).ζ⊥Gk+1

(χi).

So,
∫

Gk�Gk+1

Dn(x) dµ(x) = µ(Gk+1).
pk+1−1∑

j=1

n−1∑

i=0

χj
i (xk).ζG⊥k+1

(χi). (21)

Now we discuss separately each of the three (only) possible cases:
b1) n ≤ mk; b2) mk < n < mk+1; b3) n ≥ mk+1.



122 MEDO PEPIĆ

In the case b1) we have χi(xk) = 1 (∀i < mk), then
∫

Gk�Gk+1

Dn(x) dµ(x) =
pk+1−1∑

j=1

n−1∑

i=0

1.
1

mk+1
.1 =

n(pk+1 − 1)
mk+1

.

In the case b2) we have
∫

Gk�Gk+1

Dn(x) dµ(x) =
pk+1−1∑

j=1




mk−1∑

i=0

1j +
n−1∑

i=mk

χj
i (xk)


 .

1
mk+1

.1

=
1

mk+1
.

pk+1−1∑

j=1


mk +

n−1∑

i=mk

(
εj
i

)

 = 1− n

mk+1
,

because
∑pk+1−1

j=1 εj
i = −1, for each fixed i ∈ {mk,mk+1, . . . , n−1} .

In the case b3) we have
∫

Gk�Gk+1

Dn(x) dµ(x) =
1

mk+1

pk+1−1∑

j=1




mk−1∑

i=0

1j +
mk+1−1∑

i=mk

χj
i (xk)




=
mk(pk+1 − 1)

mk+1
+

1
mk+1

mk+1−1∑

i=mk

pk+1−1∑

j=1

εj
i = 0,

because εi is some primitive pk+1-th root of unit (we take in account
that ζ⊥Gk+1

(χi) = 0, for i ≥ mk+1).
¤
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