A FORMULA FOR N-TIMES INTEGRATED SEMIGROUPS $(n \in \mathbb{N})$

RAMIZ VUGDALIC´

Dedicated to Professor Fikret Vajzović on the occasion of his 80th birthday

ABSTRACT. Motivated with Hille's first exponential formula for C_0 semigroups, we prove a formula for n−times integrated semigroups. At first we prove a formula for twice integrated semigroup, and, later, we generalize this formula for n−times integrated semigroups.

1. INTRODUCTION

The theory of integrated semigroups of operators on a Banach space was introduced and developed during the last twenty years by Kellermann, Arendt, Thieme, Hieber, Neubrander, and many other mathematicians (for example, see $[1, 2, 4, 5, 6, 7]$.

Denote by X a Banach space with the norm $\|\cdot\|$; $L(X) = L(X, X)$ is the space of bounded linear operators from X into X .

Definition 1. (Definition 4.1. in $[6]$). Let A be a linear operator on a Banach space X, with nonempty resolvent set, and domain $D(A)$. If there exists an $n \in \mathbb{N} \cup \{0\}$, constants M and ω , and a strongly continuous family $(S(t))_{t>0}$ in $L(X)$ with $||S(t)|| \leq Me^{\omega t}$ for all $t \geq 0$ such that resolvent $R(\lambda, A) = (\lambda I - A)^{-1}$ (*I*-the identity operator) exists and is given by

$$
R(\lambda, A)x = \lambda^{n} \int_{0}^{\infty} e^{-\lambda t} S(t)x dt
$$

for $x \in X$ and $Re\lambda > \omega$, then A is called the generator of the n-time integrated semigroup $(S(t))_{t\geq0}$.

Theorem 2. (Lemma 5.1. in $[6]$). Let A be the generator of the n-times integrated semigroup $(S(t))_{t\geq0}$. If $n=0$, then $(S(t))_{t\geq0}$ is a strongly continuous semigroup. If $n \in \overline{N}$, then, the following hold:

²⁰⁰⁰ Mathematics Subject Classification. 47D60, 47D62.

Key words and phrases. Linear operator on a Banach space, strongly continuous semigroup, exponentially bounded n -times integrated semigroup.

126 RAMIZ VUGDALIC´

- a) $S(t)x = 0$ for all $t \ge 0$ implies $x = 0$, and $S(0) = 0$.
- b) For every $x \in D(A)$ we have $S(t)x \in D(A)$, $AS(t)x = S(t)Ax$, and

$$
S(t)x = \int_0^t S(s)Ax ds + \frac{t^n}{n!}x.
$$

c) For every $x \in X$ we have $\int_0^t S(s)xds \in D(A)$ and

$$
A \int_0^t S(s)x \, ds = S(t)x - \frac{t^n}{n!}x.
$$

d) For all $x \in X$ and $t, s \geq 0$,

$$
S(t)S(s)x = \frac{1}{(n-1)!} \bigg[\int_0^{t+s} (t+s-r)^{n-1} S(r)x \, dr - \int_0^t (t+s-r)^{n-1} S(r)x \, dr - \int_0^s (t+s-r)^{n-1} S(r)x \, dr \bigg].
$$

The motivation for this paper is the well known Hille's first exponential formula for strongly continuous semigroups, and a result for once integrated semigroups.

Theorem 3. (Theorem 1.2.2. in [3]). Suppose $(T(t))_{t\geq0}$ is a strongly continuous semigroup on a Banach space X, with infinitesimal generator A. Then, for each $f \in X$ and each $t \geq 0$

$$
T(t)f = \lim_{\tau \to 0+} e^{tA_{\tau}}f,
$$

the limit existing uniformly with respect to t in any finite interval $[0, b]$.

In this theorem, the operator A_{τ} is defined as

$$
A_\tau := \frac{T(\tau) - I}{\tau}
$$

so that

$$
T(t)f = \lim_{\tau \to 0+} e^{\frac{t}{\tau}[T(\tau)-I]}f = \lim_{\tau \to 0+} e^{-\frac{t}{\tau}} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t}{\tau}\right)^k [T(\tau)]^k f
$$

=
$$
\lim_{\tau \to 0+} e^{-\frac{t}{\tau}} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t}{\tau}\right)^k T(k\tau) f.
$$

These facts were inspiration for the next result for once integrated semigroups.

Theorem 4. (Theorem 3.2. in [8]). Let $(S(t))_{t\geq0}$ be a once integrated exponentially bounded semigroup on a Banach space X, with generator A. Then for all $x \in X$ and $t \geq 0$ we have

$$
S(t)x = \lim_{h \to 0+} \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n A^{n-1} S^n(h)x,
$$

with the limit existing uniformly with respect to t in any finite interval $[0, T]$.

2. A formula for twice integrated semigroups

Theorem 5. Let $(S(t))_{t\geq0}$ be a twice integrated exponentially bounded semigroup on a Banach space X, with generator A. Then, for all $x \in D(A)$ and $t \geq 0$ we have:

$$
S(t)x = \lim_{h \to 0+} \left[\frac{t}{h} S(h)x + \sum_{n=2}^{\infty} \frac{1}{n!} \left(\frac{t}{h} \right)^n A^{n-2} (AS(h) + hI)^n x \right]
$$
 (1)

with the limit existing uniformly with respect to t in any finite interval $[0, T]$.

Proof. Let $x \in D(A)$ be fixed. Then, $S(t)x \in D(A)$ and $AS(t)x = S(t)Ax$, for all $t \geq 0$. Also, for all $t, s \geq 0$,

$$
S(t)S(s)x = \int_0^{t+s} (t+s-r)S(r)x dr - \int_0^t (t+s-r)S(r)x dr - \int_0^s (t+s-r)S(r)x dr.
$$
 (2)

For every $a \geq 0$, using integration by parts, the fact that operator A is For every $a \ge$
closed, and $A \int_0^r$ $\int_0^r S(u)x du = S(r)x - \frac{r^2}{2}$ $\frac{x^2}{2}x$, we have

$$
A \int_0^a (t+s-r)S(r)x dr
$$

= $(t+s-r) \left(S(r)x - \frac{r^2}{2}x \right) \Big|_0^a + \int_0^a \left(S(r)x - \frac{r^2}{2}x \right) dr$
= $(t+s-a) \left(S(a)x - \frac{a^2}{2}x \right) - \frac{a^3}{6}x + \int_0^a S(r)x dr.$ (3)

From (2) and (3) we obtain

$$
AS(t)S(s)x = \int_0^{t+s} S(r)x \, dr - \int_0^t S(r)x \, dr - \int_0^s S(r)x \, dr - sS(t)x - tS(s)x \tag{4}
$$

and

$$
A2S(t)S(s)x = S(t+s)x - S(t)x - S(s)x - sAS(t)x - tAS(s)x - stx.
$$
\n(5)

From (5) with $t = s = h$ we have:

$$
A^2S^2(h)x = S(2h)x - 2S(h)x - 2hAS(h)x - h^2x.
$$

Because of $AS(t)x = S(t)Ax$ (with $x \in D(A)$), we obtain

$$
(AS(h) + hI)^{2} x = S(2h)x - 2S(h)x.
$$
 (6)

We want to prove by induction that for every $n \in \mathbb{N}$, $n \geq 2$,

$$
A^{n-2} (AS(h) + hI)^n x = \sum_{k=0}^{n-1} (-1)^k \binom{n}{k} S[(n-k)h] x.
$$
 (7)

From (6) we see that (7) holds for $n = 2$. Assume that (7) holds for some fixed $n \in \mathbb{N}$, $n \geq 2$.

Then for
$$
n+1
$$
 we have

$$
A^{n-1} (AS(h) + hI)^{n+1} x = A [A^{n-2} (AS(h) + hI)^n] (AS(h) + hI) x
$$

=
$$
\sum_{k=0}^{n-1} (-1)^k {n \choose k} AS [(n-k)h] (AS(h) + hI) x
$$

=
$$
\sum_{k=0}^{n-1} (-1)^k {n \choose k} \{A^2 S [(n-k)h] S(h) x
$$

+
$$
hAS [(n-k)h] x \}.
$$

Now, using (5) we obtain

$$
A^{n-1} (AS(h) + hI)^{n+1} x = \sum_{k=0}^{n-1} (-1)^k {n \choose k} \{ S[(n+1-k)h] x
$$

- S[(n-k)h] x - S(h)x - (n-k)hAS(h)x - (n-k)h²x\}.

Because of: $\sum_{k=0}^{n-1} (-1)^k {n \choose k}$ k $(x - k) = 0$ and $\sum_{k=0}^{n-1} (-1)^k {n \choose k}$ k $) = (-1)^{n+1}$, we have further that

$$
A^{n-1} (AS(h) + hI)^{n+1} x = \sum_{k=0}^{n-1} (-1)^k {n \choose k} \{ S[(n+1-k)h] x - S[(n-k)h] x \}
$$

+ $(-1)^n S(h) x = \sum_{k=0}^n (-1)^k {n+1 \choose k} S[(n+1-k)h] x.$

Hence, (7) holds for $n + 1$ too, and, by induction, for every $n \in \mathbb{N}$, $n \ge 2$.

Therefore,

$$
\frac{t}{h}S(h)x + \sum_{n=2}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n A^{n-2} (AS(h) + hI)^n x = \frac{t}{h}S(h)x + \frac{1}{2!} \left(\frac{t}{h}\right)^2
$$

\n
$$
[S(2h)x - 2S(h)x] + \frac{1}{3!} \left(\frac{t}{h}\right)^3 [S(3h)x - 3S(2h)x + 3S(h)x]
$$

\n
$$
+ \frac{1}{4!} \left(\frac{t}{h}\right)^4 [S(4h)x - 4S(3h)x + 6S(2h)x + 4S(h)x] + \cdots
$$

\n
$$
= \left[1 - \frac{t}{h} + \frac{1}{2!} \left(\frac{t}{h}\right)^2 - \cdots\right] \cdot \left[\frac{t}{h}S(h)x + \frac{1}{2!} \left(\frac{t}{h}\right)^2 S(2h)x
$$

\n
$$
= e^{-\frac{t}{h}}
$$

\n
$$
+ \frac{1}{3!} \left(\frac{t}{h}\right)^3 S(3h)x + \cdots \right] = e^{-\frac{t}{h}} \cdot \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n S(nh)x.
$$

Hence, we need to prove that

$$
S(t)x = \lim_{h \to 0+} e^{-\frac{t}{h}} \cdot \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n S(nh)x.
$$
 (8)

This formula one can prove in the same manner as in proof of theorem 1.2.2. in [3], or in proof of theorem 3.2. in [8]. \Box

3. GENERALIZATION TO n -TIMES INTEGRATED SEMIGROUPS

In this section we give and prove the general case of the formula we are considering. In [6] Neubrander proved: If $(S(t))_{t\geq0}$ is an exponentially bounded k-times integrated semigroup on the Banach space X , with generator A, and the sets $C^m \subset X$ ($m \in \mathbb{N}$) are defined as follows:

$$
C^m := \{ x \in X : t \to S(t)x \in C^m(R^+, X) \},
$$

then

$$
\dots D(A^{3k}) \subset C^{3k} \subset D(A^{2k}) \subset C^{2k} \subset D(A^k) \subset C^k,
$$

and $(S^{(k)}(t))$ $t \geq 0$ is a C_0 semigroup on C^k .

We need the following lemma.

Lemma 6. Let $(S(t))_{t\geq 0}$ be a k-times integrated semigroup on Banach space X, with generator A. Then, for every $x \in C^k$, and every $n \geq k$ $(n \in \mathbf{N})$,

$$
A^{n-k}\left(S^{(k-1)}(t)\right)^nx = \sum_{i=0}^{n-1} (-1)^i \binom{n}{i} S\left((n-i)t\right)x.
$$

Proof. We can assume that $0 \in \rho(A)$ (the resolvent set of A), i.e. the operator A^{-1} exists, because, if A is generator of integrated semigroup $(S(t))_{t\geq 0}$, then $A_1 = A - \lambda$ is generator of some other integrated semigroup $(S_{\lambda}(t))_{t \geq 0}$, so that $0 \in \rho(A_1)$. The family $(S^{(k)}(t))_{t \geq 0}$ is a C_0 semigroup on C^k . Therefore, for $x \in C^k$,

$$
\[S^{(k)}(t) - I\]^{n} x = \sum_{i=0}^{n} (-1)^{i} {n \choose i} \left(S^{(k)}(t)\right)^{n-i} x
$$

=
$$
\sum_{i=0}^{n} (-1)^{i} {n \choose i} S^{(k)}((n-i)t) x.
$$

For $x \in C^k$, $S^{(k)}(t) - I$ $x = AS^{(k-1)}(t)x$. Hence,

$$
(AS^{(k-1)}(t))^{n}x = \sum_{i=0}^{n} (-1)^{i} {n \choose i} [AS^{(k-1)}((n-i)t) + I] x
$$

=
$$
\sum_{i=0}^{n} (-1)^{i} {n \choose i} AS^{(k-1)}((n-i)t)x,
$$

because $\sum_{i=0}^n (-1)^i \binom{n}{i}$ i ¢ = 0. Multiplying the relation above from the left with A^{-1} we obtain

$$
A^{n-1} \left(S^{(k-1)}(t) \right)^n x = \sum_{i=0}^n (-1)^i \binom{n}{i} S^{(k-1)}((n-i)t) x.
$$

Because of $S^{(k-1)}(t)x = AS^{(k-2)}(t)x + tx$, we have:

$$
A^{n-1} \left(S^{(k-1)}(t) \right)^n x = \sum_{i=0}^n (-1)^i \binom{n}{i} \left[A S^{(k-2)}((n-i)t) x + (n-i)t x \right].
$$

Because $\sum_{i=0}^n (-1)^i \binom{n}{i}$ i $(n - i) = 0$, multiplication of the relation above from the left with A^{-1} gives

$$
A^{n-2} \left(S^{(k-1)}(t) \right)^n x = \sum_{i=0}^n (-1)^i \binom{n}{i} S^{(k-2)}((n-i)t) x.
$$

If we continue to repeat this procedure $k - 2$ times, we obtain

$$
A^{n-k} \left(S^{(k-1)}(t) \right)^n x = \sum_{i=0}^n (-1)^i \binom{n}{i} S((n-i)t) x = \sum_{i=0}^{n-1} (-1)^i \binom{n}{i} S((n-i)t) x,
$$

because $S(0) = 0$.

Theorem 7. Let $(S(t))_{t\geq0}$ be a k- times integrated exponentially bounded semigroup on a Banach space X, with generator A ($k \in \mathbb{N}$). Then, for all $x \in C^k$ and $t \geq 0$ we have:

$$
S(t)x = \lim_{h \to 0+} \left[\sum_{j=1}^{k} \frac{1}{(j-1)!} \left(\frac{t}{h} \right)^{j-1} \sum_{i=0}^{j-1} (-1)^{i} {j-1 \choose i} S\left((j-i-1)h \right) x \right. \\ + \sum_{n=k}^{\infty} \frac{1}{n!} \left(\frac{t}{h} \right)^{n} A^{n-k} \left(S^{(k-1)}(h) \right)^{n} x \right],
$$

with the limit existing uniformly with respect to t in any finite interval $[0, T]$.

Proof. Note that we have proved the assertion of theorem for once and twice integrated semigroups. In the general case, for k-times integrated semigroup $(k \in N)$, using the previous lemma we obtain:

$$
S(t)x = \lim_{h \to 0+} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n \sum_{i=0}^n (-1)^i \binom{n}{i} S((n-i)h) x
$$

=
$$
\lim_{h \to 0+} e^{-\frac{t}{h}} \cdot \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{t}{h}\right)^n S(nh) x.
$$

The rest of proof is the same as in [8], using the last relationship. \Box

Acknowledgment. The authors are thankful to the referee for his/her valuable comments and suggestions.

REFERENCES

- [1] W. Arendt, Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., 54 (3), (1987), 321–349.
- [2] W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl., 186 (1994), 572–595.
- [3] Paul L. Butzer and Hubert Berens, Semi-Groups of Operators and Approximation, Springer-Verlag Berlin Heidelberg New York, 1967.
- [4] M. Hieber, *Integrated semigroups and differential operators on* L^p spaces, Math. Ann., 291 (1991), 1–16.
- [5] H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160–180.
- [6] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math., 135 (1988), 111–155.
- [7] H. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problem, J. Math. Anal. Appl., 152 (1990), 416–447.
- [8] R. Vugdalić, Representation theorems for integrated semigroups, Sarajevo J. Math., 1 (14) (2005), 243–250.

(Received: September 27, 2007) Department of Mathematics (Revised: January 17, 2008) Department of Mathematics $(Revised: January 17, 2008)$

75000 Tuzla Bosnia and Herzegovina E–mail: ramiz.vugdalic@untz.ba