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Abstract. The main purpose of this paper is to study the fixed point
property of non-metric tree-like continua. It is proved, using the inverse
systems method, that if X is a non-metric tree-like continuum and if
h : X → X is a periodic homeomorphism, then h has the fixed point
property (Theorem 2.4). Some theorems concerning the fixed point
property of arc-like non-metric continua are also given.

1. Preliminaries

All spaces in this paper are compact Hausdorff and all mappings are
continuous. The weight of a space X is denoted by w(X). The cardinality
of a set A is denoted by card(A). We shall use the notion of inverse system
as in [3, pp. 135-142]. An inverse system is denoted by X = {Xa, pab, A}.

Suppose that we have two inverse systems X = {Xa, pab, A} and Y =
{Yb, qbc, B}. A morphism of the system X into the system Y [1, p. 15] is a
family {ϕ, {fb : b ∈ B}} consisting of a nondecreasing function ϕ : B → A
such that ϕ(B) is cofinal in A, and of maps fb : Xϕ(b) → Yb defined for all
b ∈ B such that the following

Xϕ(b)

pϕ(b)ϕ(c)←− Xϕ(c)

↓ fb ↓ fc

Yb
qbc←− Yc

(1.1)

diagram commutes. Any morphism {ϕ, {fb : b ∈ B}} : X → Y induces a
map, called the limit map of the morphism

lim{ϕ, {fb : b ∈ B}} : limX → limY
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In the present paper we deal with the inverse systems defined on the same
indexing set A. In this case, the map ϕ : A → A is taken to be the identity
and we use the following notation {fa : Xa → Ya; a ∈ A} : X → Y.

We say that an inverse system X = {Xa, pab, A} is factorizing [1, p. 17]
if for each real-valued mapping f : limX → R there exist an a ∈ A and a
mapping fa : Xa → R such that f = fapa.

An inverse system X = {Xa, pab, A} is said to be σ-directed if for each
sequence a1, a2, . . . , ak, . . . of the members of A there is an a ∈ A such that
a ≥ ak for each k ∈ N.

Lemma 1.1. [1, Corollary 1.3.2, p. 18]. If X = {Xa, pab, A} is a σ-directed
inverse system of compact spaces with surjective bonding mappings, then it
is factorizing.

An inverse system X = {Xa, pab, A} is said to be τ -continuous [1, p.
19] if for each chain B in A with card(B) < τ and supB = b, the diagonal
product ∆ {pab : a ∈ B}maps the space Xb homeomorphically into the space
lim{Xa, pab, B}.

An inverse system X = {Xa, pab, A} is said to be τ -system [1, p. 19] if:
a) w(Xa) ≤ τ for every a ∈ A,
b) The system X = {Xa, pab, A} is τ -continuous,
c) The indexing set A is τ -complete.

If τ = ℵ0, then τ -system is called a σ-system. The following theorem is
called the Spectral Theorem [1, p. 19].

Theorem 1.2. [1, Theorem 1.3.4, p. 19]. If a τ -system X = {Xa, pab,
A} with surjective limit projections is factorizing, then each map of its limit
space into the limit space of another τ -system Y = {Ya, qab, A} is induced by
a morphism of cofinal and τ -closed subsystems. If two factorizing τ -systems
with surjective limit projections and the same indexing set have homeomor-
phic limit spaces, then they contain isomorphic cofinal and τ -closed subsys-
tems.

Let us remark that the requirement of surjectivity of limit projections of
systems in Theorem 1.2 is essential [1, p. 21].

In the sequel we shall use the following result.

Theorem 1.3. [3, Exercise 2.5.D(b), p. 143]. If for every s ∈ S an inverse
system X(s) = {Xa(s), pab(s), A} is given, then the family Π{X(s) : s ∈
S} = {Π{Xa(s) : s ∈ S}, Π{ pab(s) : s ∈ S}, A} is an inverse system and
lim(Π{X(s) : s ∈ S}) is homeomorphic to Π{limX(s) : s ∈ S}.

A fixed point of a function f : X → X is a point p ∈ X such that
f(p) = p. A space X is said to have the fixed point property provided that
every surjective mapping f : X → X has a fixed point.
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The key theorem is the following.

Theorem 1.4. [8, Theorem 2, p. 17]. Let X = {Xa, pab, A} be a σ-system
of compact spaces with the limit X and onto projections pa : X → Xa.
Let {fa : Xa → Xa} : X → X be a morphism. Then the induced mapping
f = lim {fa} : X → X has a fixed point if and only if each mapping fa :
Xa → Xa, a ∈ A, has a fixed point.

As an immediate consequence of this theorem and the Spectral theorem
1.2 we have the following result.

Theorem 1.5. [8, Theorem 3, p.17]. Let a non-metric continuum X be the
inverse limit of an inverse σ-system X = {Xa, pab, A} such that each Xa

has the fixed point property and each bonding mapping pab is onto. Then X
has the fixed point property.

In the sequel we will need some expanding theorems of non-metric com-
pact spaces into σ-directed inverse systems of compact metric spaces.

Theorem 1.6. [7, Theorem 1.6, p. 402]. If X is the Cartesian product
X =

∏{Xs : s ∈ S}, where card(S) > ℵ0 and each Xs is compact, then
there exists a σ-directed inverse system X = {Ya, Pab, A} of the countable
products Ya =

∏{Xµ : µ ∈ a}, card(a) = ℵ0, such that X is homeomorphic
to limX.

Corollary 1.7. [7, Corollary 1.7, p. 402]. For each Tychonoff cube Im,
m ≥ ℵ1, there exists a σ-directed inverse system I = {Ia, Pab, A} of the
Hilbert cubes Ia such that Im is homeomorphic to lim I.

Theorem 1.8. [7, Theorem 1.8, p. 403]. Let X be a compact Hausdorff
space such that w(X) ≥ ℵ1. There exists a σ-directed inverse system X =
{Xa, pab, A} of metric compacta Xa such that X is homeomorphic to limX.

At the end of this section we give an application of Theorem 1.5.

Theorem 1.9. Let S be an infinite set and Q = Π{Xs : s ∈ S} Cartesian
product of compact spaces. If each product Xs1 ×Xs2 × · · · ×Xsn of finitely
many spaces Xs has the fixed point property, then Q has the fixed point
property.

Proof. We shall consider the following cases.
Case 1. card(S) = ℵ0. We may assume that S = N. The proof is a

straightforward modification of the proof of [10, Corollary 3.5.3, pp. 106-
107]. Let f : Q → Q be continuous. For every n ∈ N define

Kn = {x ∈ Q : (x1, . . . , xn) = (f(x)1, . . . , f(x)n)}.
It is clear that for every n the set Kn is closed in Q and that Kn+1 ⊂ Kn. For
every n ∈ N, let on be a given point of Xn and pn : Q → X1×· · ·× Xn be the
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projection. Define continuous function fn : X1 × · · · ×Xn → X1 × · · · ×Xn

by
fn(x1, . . . , xn) = (pnf)(x1, . . . , xn, on+1, on+2, . . . ).

By assumption of Theorem fn has the fixed point property, say (x1, . . . , xn).
It follows that

(x1, . . . , xn, on+1, on+2, . . . ) ∈ Kn.

We conclude that {Kn : n ∈ N} is a decreasing collection of nonempty closed
subsets of Q. By compactness of Q we have that

K = ∩{Kn : n ∈ N}
is nonempty. It is clear that every point in K is a fixed point of f .

Case 2. card(A) ≥ ℵ1. By Theorem 1.6 there exists a σ-directed inverse
system X = {Ya, Pab, A} of the countable products Ya =

∏{Xµ : µ ∈ a},
card(a) = ℵ0, such that Q is homeomorphic to limX. By Case 1 each Ya

has the fixed point property. Finally, by Theorem 1.5 we infer that Q has
the fixed point property. ¤

2. The fixed point property of the inverse limit space of
tree-like continua

A continuum X with precisely two non-separating points is called a gen-
eralized arc.

A simple n-od is the union of n generalized arcs A1O,A2O, . . . , AαO, each
two of which have only the point O in common. The point O is called the
vertex or the top of the n-od.

By a branch point of a compact space X we mean a point p of X which
is the vertex of a simple triod lying in X. A point x ∈ X is said to be end
point of X if for each neighborhood U of x there exists a neighborhood V
of x such that V ⊂ U and card(Bd(V )) = 1.

Let S be the set of all end points and of all branch points of a continuum
X. An arc pq in X is called a free arc in X if pq ∩ S = {p, q}.

A continuum is a graph if it is the union of a finite number of metric free
arcs. A tree is an acyclic graph.

A continuum X is tree-like if for each open cover U of X, there is a tree
XU and a U-mapping fU : X → XU (the inverse image of each point is
contained in a member of U).

Every tree-like continuum is hereditarily unicoherent. An expanding the-
orem of tree-like continua into inverse σ-systems of metric tree-like continua
is proven in [8, Theorem 4, p. 19].

Theorem 2.1. If X is a tree-like non-metric continuum, then there exists
a σ-system Xσ = {X∆, P∆Γ, Aσ} of metric tree-like continua X∆ and onto
mappings P∆Γ such that X is homeomorphic to limXσ.
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From [9, Theorem 1], [9, Theorem 2] and [9, Corollary 1] we obtain the
following well known result [11, Theorem 2.13, p. 24].

Theorem 2.2. Each metrizable tree-like continuum is homeomorphic with
the inverse limit of an inverse sequence of trees.

Now we shall investigate the fixed point property of non-metric tree-like
continua.

Let h : X → X be a homeomorphism. We will denote by hi : X → X the
i-th iterations of h and we will suppose that h0 = id. A homeomorphism
h : X → X is called periodic if hn = id for some integer n > 1.

In [4, Theorem 1.5] Fugate and McLean proved the following result.

Theorem 2.3. Tree-like metric continua have the fixed point property for
periodic homeomorphisms.

Now we shall prove that this is true in non-metrizable settings.

Theorem 2.4. Every non-metrizable tree-like continuum X has the fixed
point property for periodic homeomorphisms h : X → X.

Proof. The proof is broken into several steps.
Step 1. There exists a σ-directed inverse system X = {Xa, pab, A} of

metric tree-like continua Xa and surjective bonding mappings pab such that
X is homeomorphic to limX. This follows from 2.1.

Step 2. There exists a set B cofinal in A such that for each b ∈ B there
is a homeomorphism hb : Xb → Xb such that the diagrams

Xb
pbc←− Xc

↓ hb ↓ hc

Xb
pbc←− Xc

and
Xb

pb←− limX
↓ hb ↓ h

Xb
pb←− limX

(2.1)

commute and a collection {hb : b ∈ B} induces a homeomorphism h.
Apply Theorem 1.2.
Step 3. For each b ∈ B and each n ∈ N the diagrams

Xb
pbc←− Xc

↓ hn
b ↓ hn

c

Xb
pbc←− Xc

and
Xb

pb←− limX
↓ hn

b ↓ hn

Xb
pb←− limX

(2.2)

commute and a collection {hn
b : b ∈ B} induces a homeomorphism hn.

By Step 2 we infer that the statement is true for n = 1. Suppose that
it is true for n − 1. Let us prove that it is true for n. We have hn

b pbc =
hb(hn−1

b pbc) = hb(pbch
n−1
c ) = (hbpbc)hn−1

c = (pbchc)hn−1
c = pbch

n
c . Simi-

larly, hn
b pb = hb(hn−1

b pb) = hb(pbh
n−1) = (hbpb)hn−1 = (pbh)hn−1 = pbh

n.
Hence, the diagrams 2.2 commute. This means that {hn

b : b ∈ B} induces a
homeomorphism hn.
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Step 4. If a homeomorphism h is periodic then each homeomorphism
hb is periodic. Let xb ∈ Xb be any point and let n be a period of h, i.e.,
hn(x) = x for every x ∈ X. There exists a point x ∈ X such that pb(x) = xb.
From hn

b pb = pbh
n and hn(x) = x it follows that hn

b pb(x) = pbh
n(x) and

hn
b (xb) = pb(x) = xb.
Final Step. Now we are ready to finish the proof. From Steps 1-4 and

Theorem 2.3 it follows that inverse system X = {Xa, pab, A} from Step 1
satisfies the assumptions of Theorem 1.5. The proof is completed. ¤

3. The fixed point property of the inverse limit space of
arc-like continua

A continuum X is arc-like if for each open cover U of X, there is an arc
XU and a U-mapping fU : X → XU (the inverse image of each point is
contained in a member of U). Every arc-like continuum is tree-like since an
arc is a tree. Similarly as Theorem 2.2 we have the following theorem.

Theorem 3.1. If X is a arc-like non-metric continuum, then there exists a
σ-system X = {Xa, pab, A} of metric arc-like continua Xa and onto map-
pings pab such that X is homeomorphic to limX.

Now we investigate the fixed point property of non-metrizable arc-like
continua. In [2, Theorem 1, p. 663] showed the following result.

Theorem 3.2. Suppose that M is the Cartesian product of n compact arc-
like metric continua X1, X2, . . . , Xn and f is a continuous mapping of M
into itself. Then there is a point x ∈ M such that x = f(x).

For n = 2 we have the following result.

Theorem 3.3. [6, p. 199, Exercise 22.26]. If X and Y are metric arc-like
continua, then X × Y has the fixed point property.

If n = 1, then we have the following result.

Theorem 3.4. [11, p. 253, Corollary 12.30],[5]. If X is an arc-like metric
continuum, then X has the fixed point property.

Theorems 1.5 and 3.4 imply the following theorem.

Theorem 3.5. Let X = {Xa, pab, A} be an inverse σ-system of metric arc-
like continua Xa and surjective bonding mappings pab, then X = limX has
the fixed point property.

Now we shall prove that each arc-like continuum has the fixed point prop-
erty.

Theorem 3.6. Every arc-like continuum X has the fixed point property.
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Proof. If X is metrizable, then apply Theorem 3.4. If X is non-metrizable,
then there exists a σ-directed inverse system X = {Xa, pab, A} such that
each Xa is a metric arc-like continuum and each pab is a weakly confluent
surjection. This means that the system X = {Xa, pab, A} satisfies the
assumption of Theorem 1.5. We infer that limX has the fixed point property.
Hence X has the fixed point property since X is homeomorphic to limX. ¤

Using Theorem 1.9 Dyer [2, Corollary, p.665] showed the following general
result.

Theorem 3.7. The Cartesian product of the elements of any collection of
arc-like metric continua has the fixed point property.

We will show that Theorem 3.7 is true for non-metrizable arc-like con-
tinua.

Theorem 3.8. The Cartesian product of the elements of any collection of
arc-like continua of the same weight has the fixed point property.

Proof. If for every s ∈ S we have an arc-like non-metrizable continuum X(s),
then, for every s ∈ S, there exists an inverse system X(s) = {Xa(s), pab(s),
A(s)} such that X(s) is homeomorphic to limX(s) and every Xa(s) is a
metric arc-like continuum (Theorem 3.1). If w(X(s1)) = w(X(s2)), s1, s2 ∈
S, then A(s1) = A(s2) and we may suppose that A(s) = A for every s ∈ S.
By Theorem 1.3 the family Π{X(s) : s ∈ S} = {Π{Xa(s) : s ∈ S}, Π{
pab(s) : s ∈ S}, A} is an inverse system and lim(Π{X(s) : s ∈ S}) is
homeomorphic to Π{limX(s) : s ∈ S}. From Theorem 3.7 it follows that
each Π{Xa(s) : s ∈ S} has the fixed point property. Finally, from Theorem
1.5 it follows that Π{X(s) : s ∈ S} has the fixed point property. ¤

Question. Is it true that the assumption ”of the same weight” in Theo-
rem 3.8 can be omitted?

As an immediate application we give the following generalization of Brou-
wer Fixed-Point Theorem. Let L be a non-metric arc. The space X is said
to be a generalized n-cell if it is homeomorphic to Ln = L× L× · · · × L (n
factors).

Theorem 3.9. Every mapping f : Ln → Ln has a fixed point, i.e., Ln has
the fixed point property.

Now we can to prove the following result.

Theorem 3.10. If L1, . . . , Ln are arcs (metric or non-metric), then L1 ×
L2 × · · · × Ln has the fixed point property.



140 IVAN LONČAR

Proof. Step 1. If M is a subarc of the arc L, then there exists a retraction
r : L → M . Let a, b, c, d be end points of L and M such that a ≤ c < d ≤ b.
We define r : L → M as follows:

r(x) =





c if a ≤ x ≤ c,
x if c ≤ x ≤ d,
d if d ≤ x ≤ b.

Step 2. If L1, L2, . . . , Ln is a finite collection of arcs, then there is an
arc L such that L1, L2, . . . , Ln are subarcs of L. For each i ∈ {1, 2, . . . , n}
let ai, bi be a pair of end points of Li such that ai < bi. If we identify the
pair of points {b1, a2}, {b2, a3}, . . . , {bn−1, an} we obtain an arc L such that
Li ⊂ L for each i ∈ {1, 2, . . . , n}.

Step 3. L1×L2×· · ·×Ln is a retract of Ln. Let L and L1, L2, . . . , Ln be as
in Step 2. Let ri : L → Li, i ∈ {1, 2, . . . , n} be a retraction defined in Step 1.
Let us prove that r = r1×r2×· · ·×rn is a retraction of Ln onto L1, L2, . . . , Ln.
If (y1, y2, . . . , yn) ∈ Ln, then we have: r1 × r2 × · · · × rn(y1, y2, . . . , yn)
= (r1(y1), r2(y2), . . . , rn(yn)) ∈ L1 × L2 × · · · × Ln since ri(yi) ∈ Li. If
(x1, x2, . . . , xn) ∈ L1×L2×· · ·×Ln, then r1×r2×· · ·×rn(x1, x2, . . . , xn) =
(r1(x1), r2(x2), . . . , rn(xn)) = (x1, x2, . . . , xn) ∈ L1 × L2 × · · · × Ln since
ri(xi) ∈ xi.

Step 4. The product L1×L2×· · ·×Ln has the fixed point property since
it is retract of the product Ln which has the fixed point property (Theorem
3.9). The proof is completed. ¤
Theorem 3.11. If L = Π{Ls : s ∈ S} is a Cartesian product of arcs Ls,
then L has the fixed point property.

Proof. Apply Theorems 3.10 and 1.9. ¤
For Cartesian product of two arc-like continua the assumption concerning

the weight in Theorem 3.8 can be omitted.

Theorem 3.12. If X and Y are non-metrizable arc-like continua, then
X × Y has the fixed point property.

Proof. First we shall prove that if X is any arc-like continuum and if Y
is a metric arc-like continuum, then X × Y has the fixed point property.
By Theorem 3.1 there exists a σ-directed inverse system X = {Xa, pab, A}
such that each Xa is a metric arc-like continuum and X is homeomorphic to
limX. It is clear that X×Y = {Xa × Y, pab × id, A} is a σ-directed inverse
system whose limit is homeomorphic to X × Y. Every Xa × Y has the fixed
point property since it is the product of metric arc-like continua (Theorem
3.3). Applying Theorem 1.5 we infer that X×Y has the fixed point property.

Suppose now that X and Y are non-metric arc-like continua. Using again
Theorem 3.1 we obtain a σ-directed inverse system X = {Xa, pab, A} such
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that each Xa is a metric arc-like continuum and X is homeomorphic to
limX. It is clear that X×Y = {Xa×Y, pab× id, A} is a σ-representation of
X ×Y. From the first part of this proof it follows that every Xa×Y has the
fixed point property since it is the product of metric arc-like continuum Xa

and an arc-like continuum Y . Applying Theorem 1.5 we infer that X × Y
has the fixed point property. ¤

We close this section with the fixed point property for multifunctions on
arc-like continua.

A multifunction, F : X → Y , from a space X to a space Y is a point-to-
set correspondence such that, for each x ∈ X, F (x) is a subset of Y . For
any y ∈ Y , we write F−1(y) = {x ∈ X : y ∈ F (x)}. If A ⊂ X and B ⊂ Y ,
then F (A) = ∪{F (x) : x ∈ A} and F−1(B) = ∪{F−1(y) : y ∈ B}.

A multifunction F : X → Y is said to be continuous if and only if (i)
F (x) is closed for each x ∈ X, (ii) F−1(B) is closed for each closed set B in
Y , (iii) F−1(V ) is open for each open set V in Y .

A topological space X is said to have F.p.p ( fixed point property for multi-
valued functions) if for every multi-valued continuous function F : X → X
there exists a point x ∈ X such that x ∈ F (x). It follows that X has F.p.p if
for every single-valued continuous function F : X → 2X there exists a point
x ∈ X such that x ∈ F (x).

Theorem 3.13. [12]. If X is any metric arc-like continuum, then X has
the F.p.p.

Now we shall prove the following result.

Theorem 3.14. Each arc-like continuum X has the F.p.p.

Proof. If an arc-like continuum is metrizable, then it has F.p.p (Theorem
3.13). Suppose that arc-like continuum X is non-metrizable. By virtue of
Theorem 3.1 there exists a σ-system Xσ = {X∆, P∆Γ, Aσ} of metric arc-
like continua X∆ and onto mappings P∆Γ such that X is homeomorphic to
limXσ. Moreover, we have the inverse system 2X = {2Xa , 2pab , A} whose
limit is 2X . Let F : X → 2X be a continuous mapping. From Theorem 1.2
it follows that there exists a subset B cofinal in A such that for every b ∈ B
there exists a continuous mapping Fb : Xb → 2Xb with the property that
{Fb : b ∈ B} is a morphism which induce F . Theorem 3.13 implies that the
set Yb ⊂ Xb, b ∈ B, of fixed points of Fb is non-empty. Let us prove that
Yb is a closed subset of Xb. We shall prove that Ub = Xb�Yb is open. Let
xb ∈ Ub. This means that xb and Fb(xb) are disjoint closed subsets of Xb. By
the normality of Xb there exists a pair of open sets U, V such that x ∈ U and
Yb ⊂ V . From the upper semi-continuity of Fb it follows that there exists
an open set W ⊂ U such that for every x ∈ W we have f(x) ⊂ V. Hence,
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Ub is open and, consequently, Yb is closed. Now, we shall prove that the
collection {Yb, pbc|Yc, B} is an inverse system. To do this we have to prove
that if c > b, then pbc(Yc) ⊂ Yb. Let xc be a point of Yc. This means that
xc ∈ fc(xc). Hence, pbc(xc) ∈ pbc(Fc(xc)) = Fbpbc(xc). We conclude that
the point xb = pbc(xc) has the property xb ∈ fb(xb), i.e., xb = pbc(xc) ∈ Yb.
Finally, pbc(Yc) ⊂ Yb. and {Yb, pbc|Yc, B} is an inverse system with non-
empty limit. Let Y = lim {Yb, pbc|Yc, B}. In order to complete the proof we
shall prove that for every x ∈ Y we have x ∈ F (x). Now we have pb(x) ∈ Yb,
i.e., pb(x) ∈ Fb(pb(x)) = pbF (x), for every b ∈ B. It follows that x ∈ F (x)
since x /∈ F (x) implies that there is a b ∈ B such that pb(x) /∈ pbF (x). We
conclude that F has the fixed point property. ¤
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