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THE DIAMETER OF A ZERO-DIVISOR GRAPH FOR
FINITE DIRECT PRODUCT OF COMMUTATIVE RINGS

S. EBRAHIMI ATANI AND M. SHAJARI KOHAN

Abstract. This paper establishes a set of theorems that describe the
diameter of a zero-divisor graph for a finite direct product R1 × R2 ×
· · · × Rn with respect to the diameters of the zero-divisor graphs of
R1, R2, · · · , Rn−1 and Rn(n > 2).

1. Introduction

All rings in this paper are commutative and not necessary with 1. The
concept of zero divisor graph of a commutative ring R was introduced by
Beck in [2]. He let all elements of the ring be vertices of the graph and was
interested mainly in coloring. In [1], Anderson and Livingston introduced
and studied the zero-divisor graph whose vertices are the non-zero zero-
divisors. Among other things, they proved that Γ(R) is always connected
and its diameter is always less than or equal to 3 [1, Theorem 2.3]. The zero-
divisor graph helps us to study the algebraic properties of rings using graph
theoretical tools (see, for example, [1], [3], [4]). In [5], J. Warfel describes the
diameter of a zero-divisor graph for a direct product R1 × R2 with respect
to the diameters of the zero-divisor graphs of R1 and R2. The main goal in
this paper is to generalize some of the results in the paper listed as [5], from
R1 ×R2 to R1 ×R2 × · · · ×Rn(n > 2) (see section 2).

For the sake of completeness, we state some definitions and notations
used throughout. Let R be a commutative ring. We used Z(R) to denote
the set of zero-divisors of R; we use Z∗(R) to denote the set of non-zero
zero-divisors of R. By the zero-divisor graph of R, denoted Γ(R), we mean
the graph whose vertices are the non-zero zero-divisors of R, and for distinct
x, y ∈ Z∗(R), there is an edge connecting x and y if and only if xy = 0.
A graph is said to be connected if there exists a path between any two
distinct vertices. For two distinct vertices a and b in the graph Γ(R), the
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distance between a and b, denoted d(a, b), is the length of the shortest path
connecting a and b, if such a path exists; otherwise, d(a, b) = ∞. The
diameter of a connected graph is the supremum of the distances between
vertices. We will use the notation diam(Γ(R)) to denote the diameter of the
graph of Z∗(R). The diameter is zero if the graph consists of a single vertex
and a connected graph with more than one vertex has diameter 1 if and only
if it is complete; i.e. each pair of distinct vertices forms an edge. We tacitly
assume that R has at least 2 non-zero zero-divisors. Also, though it be an
abuse of notation, let 0 = (0, 0, · · · , 0).

2. Finite direct product

In this section, we will investigate the relation between the diameter of
a zero-divisor graph of a finite direct product R1 × R2 × · · · × Rn with
the diameters of the zero-divisor graphs of R1, R2, . . . , Rn−1 and Rn. Our
starting point is the following lemma:

Lemma 2.1. Let R be commutative ring with diam(Γ(R)) = 1 and R =
Z(R). Then xy = 0 for all x, y ∈ Z(R). In particular, x2 = 0 for every
nilpotent element of R.

Proof. Suppose not. Then there are elements a, b ∈ Z(R) such that ab 6=
0, so by [1, Theorem 2.8], R ∼= Z2 × Z2; hence R 6= Z(R) which is a
contradiction, as required. ¤
Theorem 2.2. Let R1, R2, . . . , Rn−1 and Rn be commutative rings such that
diam(Γ(R1)) = · · · = diam(Γ(Rn)) = 1, and let R = R1 × R2 × · · · × Rn

(n > 2). Then the following hold:
(i) diam(Γ(R)) = 1 if and only if Ri = Z(Ri) for every i ∈ {1, . . . , n}.
(ii) diam(Γ(R)) = 2 if and only if Ri = Z(Ri) and Rj 6= Z(Rj) for some

i, j ∈ {1, 2, . . . , n}.
(iii) diam(Γ(R)) = 3 if and only if Ri 6= Z(Ri) for every i ∈ {1, 2, . . . , n}.

Proof. (i) Assume that Ri = Z(Ri) for every i = 1, 2, . . . , n and let a =
(a1, . . . , an), b = (b1, . . . , bn) be elements of Z∗(R) . By Lemma 2.1, aibi = 0
for all i, so ab = 0; hence diam(Γ(R)) = 1. Conversely, assume that Rj 6=
Z(Rj) for some j ∈ {1, 2, . . . , n}. Then, for some xj , yj ∈ Rj , xjyj 6= 0. Set
x = (0, . . . , xj , 0, . . . , 0), y = (0, . . . , yj , 0, . . . , 0), and let 0 6= ai ∈ Ri where
i 6= j. Since x(0, . . . , ai, 0, . . . , 0) = 0, y(0, . . . , ai, 0, . . . , 0) = 0 and xy 6= 0,
we must have diam(Γ(R)) > 1 which is a contradiction.

(ii) If Ri = Z(Ri) and Rj 6= Z(Rj) for some i, j ∈ {1, 2, . . . , n}, then by
(i), the fact that Rj 6= Z(Rj) implies that diam(Γ(R)) > 1. Then there
exist r = (r1, . . . , rn) ∈ Z∗(R)) and s = (s1, . . . , sn) ∈ Z∗(R)) such that
d(r, s) 6= 1, so rs 6= 0. Since Ri = Z(Ri), there must exist ti ∈ Ri such that
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tiui = 0 for all ui ∈ Ri by Lemma 2.1. Set t = (0, 0, . . . , ti, 0, . . . , 0). Then
r−t−s is a path. Therefore, a path of length two can be found between any
two vertices of Γ(R) by way of t. Thus diam(Γ(R)) = 2. Conversely, assume
that diam(Γ(R)) = 2. If Ri = Z(Ri) for every i = 1, 2, . . . , n, then by (i),
diam(Γ(R)) = 1 which is a contradiction. So, let for each i, Ri 6= Z(Ri).
Then there must exist xi ∈ Ri − Z(Ri) for every i ∈ {1, 2, . . . , n}. Let
for each i, zi ∈ Z∗(Ri). So there is an element z′i of Z∗(Ri) such that
ziz

′
i = 0 for all i. If a = (z1, x2, . . . , xn) and b = (x1, z2, x3 . . . , xn), then

a(z′1, 0, . . . , 0) = 0 and b(0, z′2, 0, . . . , 0) = 0, so a, b ∈ Z∗(R). As ab 6= 0, the
distance between the vertices is greater than one. Since diam(Γ(R)) = 2,
there must be some c = (c1, . . . , cn) ∈ Z∗(R) such that ac = bc = 0. Then
c = 0, which is not an element of Z∗(R). But this is a contradiction. Thus
Ri = Z(Ri) and Rj 6= Z(Rj) for some i, j ∈ {1, 2, . . . , n}.

(iii) This follows from (i) and (ii). ¤

We will need the following lemma from [5, Lemma 3.1].

Lemma 2.3. Let R be a commutative ring such that diam(Γ(R)) = 2 and
R = Z(R). Then for all x, y ∈ R, there exists an element z of Z∗(R) such
that xz = yz = 0.

Theorem 2.4. Let R1, R2, . . . , Rn−1 and Rn be commutative rings such that
diam(Γ(R1)) = · · · = diam(Γ(Rn)) = 2, and let R = R1 × R2 × · · · × Rn

(n > 2). Then the following hold:
(i) diam(Γ(R)) 6= 1.
(ii) diam(Γ(R)) = 2 if and only if Ri = Z(Ri) for some i ∈ {1, 2, . . . , n}.
(iii) diam(Γ(R)) = 3 if and only if Ri 6= Z(Ri) for every i ∈ {1, 2, . . . , n}

Proof. (i) Is clear.
(ii) Let Ri = Z(Ri) for some i ∈ {1, 2, . . . , n}. By (i), there are elements

x = (x1, . . . , xn) and y = (y1, . . . , yn) of Z∗(R) such that x 6= y and xy 6= 0.
Since xi, yi ∈ Ri, Lemma 2.3 gives xizi = 0 = yizi for some non-zero element
zi of Z(Ri). Let z = (0, . . . , zi, 0, . . . , 0). Since xz = 0 = yz, we must have
x−z−y is a path; hence a path of length two can be found between any two
vertices of Γ(R) by way of z. So, diam(Γ(R)) = 2. Conversely, assume that
diam(Γ(R)) = 2 and let Ri 6= Z(Ri) for each i ∈ {1, 2, . . . , n}. Let for each
i, ei ∈ Z∗(Ri) and mi ∈ Ri−Z(Ri). So there is an element e′i of Z∗(Ri) such
that eie

′
i = 0 for all i. If a = (e1,m2, . . . , mn) and b = (m1, e2,m3, . . . ,mn),

then a(e′1, 0, . . . , 0) = 0 and b(0, e′2, 0, . . . , 0) = 0, so a, b ∈ Z∗(R). As ab 6= 0,
the distance between the vertices is greater than one. Since diam(Γ(R)) = 2,
there must be some c = (c1, . . . , cn) ∈ Z∗(R) such that ac = 0 = bc. Then
c = 0, which is a contradiction. Thus Ri 6= Z(Ri) for some i ∈ {1, 2, . . . , n}.

(iii) This follows from (i) and (ii). ¤
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Theorem 2.5. Let R1, R2, . . . , Rn−1 and Rn be commutative rings such that
diam(Γ(R1)) = · · · = diam(Γ(Rn)) = 3, and let R = R1 × R2 × · · · × Rn

(n > 2). Then diam(Γ(R)) = 3.

Proof. Since for each i ∈ {1, 2, . . . , n}, diam(Γ(Ri)) = 3, there exist xi, yi ∈
Z∗(Ri) with xi 6= yi, xiyi 6= 0 such that there is no zi ∈ Z∗(Ri) with
xizi = 0 = yizi. Consider x = (x1, . . . , xn) and y = (y1, . . . , yn). For each
i ∈ {1, 2, . . . , n}, there are elements x′i, y

′
i ∈ Z∗(Ri) such that xix

′
i = 0 and

yiy
′
i = 0, so x, y ∈ Z∗(R). As xy 6= 0, we must have diam(Γ(R)) 6= 1.

If diam(Γ(R)) = 2, then d(x, y) 6= 1 implies there is an element a =
(a1, . . . , an) ∈ Z∗(R) with xa = 0 = ya; hence a = 0 by our assumption
which is a contradiction, so diam(Γ(R)) = 3 must hold. ¤

Theorem 2.6. Let R1, R2, . . . , Rn−1 and Rn be commutative rings such that
diam(Γ(Ri)) = 1, diam(Γ(Rj)) = 2 for some i, j ∈ {1, 2, . . . , n} and there is
no k ∈ {1, 2, . . . , n} with diam(Γ(Rk)) = 3, and let R = R1 ×R2 × · · · ×Rn

(n > 2). Then the following hold:

(i) diam(Γ(R)) 6= 1.
(ii) diam(Γ(R)) = 2 if and only if Ri = Z(Ri) for some i ∈ {1, 2, . . . , n}.
(iii) diam(Γ(R)) = 3 if and only if Ri 6= Z(Ri) for every i ∈ {1, 2, . . . , n}.

Proof. (i) Is clear.
(ii) First, assume that Ri = Z(Ri) for some i ∈ {1, 2, . . . , n}; we show

that diam(Γ(R)) = 2. By hypothesis, we divided the proof into two cases.
Case 1. diam(Γ(Ri)) = 1. It then follows from Lemma 2.2 that xy = 0 for
all x, y ∈ Z(Ri). By (i), there must exist x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Z∗(R) with xy 6= 0. If zi ∈ Z∗(Ri), then x(0, . . . , zi, . . . , 0) = 0, so z =
(0, . . . , zi, . . . , 0) is an element of Z∗(R). Clearly, x− z−y is a path. Hence,
a path of length two can be found between any two vertices of Γ(R) by way
of z. So, diam(Γ(R)) = 2.
Case 2. diam(Γ(Ri)) = 2. By (i), there must exist x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Z∗(R) with xy 6= 0. By Lemma 2.3, there is an element zi of
Z∗(Ri) such that xizi = yizi = 0. Set z = (0, . . . , zi, 0, . . . , 0). Then x−z−y
is a path, and hence a path of length two can be found between any two
vertices of Γ(R) by way of z. So, diam(Γ(R)) = 2.

Next assume that diam(Γ(R)) = 2; we show that Ri = Z(Ri) for some
i ∈ {1, 2, . . . , n}. Suppose that for each i ∈ {1, 2, . . . , n}, Ri 6= Z(Ri). Let
for each i, xi ∈ Z∗(Ri) and mi ∈ Ri − Z(Ri). So there is an element
x′i of Z∗(Ri) such that xix

′
i = 0 for all i. If a = (x1,m2, . . . , mn) and

b = (m1, x2,m3, . . . , mn), then a(x′1, 0, . . . , 0) = 0 and b(0, x′2, 0, . . . , 0) = 0,
so a, b ∈ Z∗(R). As ab 6= 0, the distance between the vertices is greater than
one. Since diam(Γ(R)) = 2, there must be some c = (c1, . . . , cn) ∈ Z∗(R)
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such that ac = 0 = bc. Then c = 0, which is a contradiction. Thus
Ri 6= Z(Ri) for some i ∈ {1, 2, . . . , n}.

(iii) This follows from (i) and (ii). ¤
Theorem 2.7. Let R1, R2, . . . , Rn−1 and Rn be commutative rings such that
diam(Γ(Ri)) = 1, diam(Γ(Rj)) = 3 for some i, j ∈ {1, 2, . . . , n} and there is
no k ∈ {1, 2, . . . , n} with diam(Γ(Rk)) = 2, and let R = R1 × R2 · · · × Rn

(n > 2). Then the following hold:
(i) diam(Γ(R)) 6= 1.
(ii) diam(Γ(R)) = 2 if and only if diam(Γ(Ri)) = 1 and Ri = Z(Ri) for

some i ∈ {1, 2, . . . , n}.
(iii) diam(Γ(R)) = 3 if and only if there is no i ∈ {1, 2, . . . , n} with

diam(Γ(Ri)) = 1 and Ri = Z(Ri).

Proof. (i) Is clear.
(ii) Let i be such that diam(Γ(Ri)) = 1 and Ri = Z(Ri); we show

that diam(Γ(R)) = 2. It follows from [1, Theorem 2.8] that aibi = 0
for every ai, bi ∈ Z(Ri). By (i), there must exist x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Z∗(R) such that xy 6= 0. Assume that ai ∈ Z∗(Ri) and
set a = (0, 0, . . . , ai, 0, , 0). Then ax = 0 = ay, so a ∈ Z∗(R). Therefore,
x − a − y is a path, and hence a path of length two can be found between
any two vertices of Γ(R) by way of a. So diam(Γ(R)) = 2. Conversely, as-
sume that diam(Γ(R)) = 2; we show that diam(Γ(Ri)) = 1 and Ri = Z(Ri)
for some i. Suppose not. Let i1, . . . , ik be such that diam(Γ(Rir)) = 1
(1 ≤ r ≤ k), and let j1, . . . , jt be such that diam(Γ(Rjs)) = 3 (1 ≤ s ≤ t).
Since for each s (1 ≤ s ≤ t), diam(Γ(Rjs)) = 3, there exist xjs , yjs ∈
Z∗(Rjs) with xjs 6= yjs , xjsyjs = 0 such that there is no zjs ∈ Z∗(Rjs)
with xjszjs = yjszjs = 0. Moreover, for each s (1 ≤ s ≤ t), there must
exist x′js

, y′js
∈ Z∗(Rjs) with xjsx

′
js

= 0 and yjsy
′
js

= 0. Now for each r

(1 ≤ r ≤ k), let mir ∈ Rir − Z(Rir). Set c = (mi1 , . . . , xj1 , . . . , xjt , . . . )
and d = (mi1 , . . . , yj1 , . . . , yjt , . . . ). Then c(0, . . . , x′j1 , 0, . . . , 0) = 0, so
c ∈ Z∗(R). Similarly , d ∈ Z∗(R). As cd 6= 0 and diam(Γ(R)) = 2,
there must be some e = (e1, . . . , en) ∈ Z∗(R) such that ce = de = 0. Then
e = 0, which is a contradiction. Thus diam(Γ(Ri)) = 1 and Ri = Z(Ri) for
some i ∈ {1, 2, . . . , n}.

(iii) Since Γ(R) is connected and diam(Γ(R)) ≤ 3, we must have the di-
ameter of Γ(R) is either 2 or 3 by (i). If diam(Γ(R)) = 2, then by (ii),
diam(Γ(Ri)) = 1 and Ri = Z(Ri) for some i ∈ {1, 2, , n} which is a con-
tradiction. Thus diam(Γ(R)) = 3. The proof of the other implication is
clear. ¤
Theorem 2.8. Let R1, R2, . . . , Rn−1 and Rn be commutative rings such that
diam(Γ(Ri)) = 2, diam(Γ(Rj)) = 3 for some i, j ∈ {1, 2, . . . , n} and there is
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no k ∈ {1, 2, . . . , n} with diam(Γ(Rk)) = 1, and let R = R1 × R2 · · · × Rn

(n > 2). Then the following hold:
(i) diam(Γ(R)) 6= 1.
(ii) diam(Γ(R)) = 2 if and only if diam(Γ(Ri)) = 2 and Ri = Z(Ri) for

some i ∈ {1, 2, . . . , n}.
(iii) diam(Γ(R)) = 3 if and only if there is no i ∈ {1, 2, . . . , n} with

diam(Γ(Ri)) = 2 and Ri = Z(Ri).

Proof. (i) Is clear.
(ii) Let i be such that diam(Γ(Ri)) = 2 and Ri = Z(Ri); we show that

diam(Γ(R)) = 2. Then by Lemma 2.3, aibi = 0 for every ai, bi ∈ Z(Ri) = Ri.
By (i), there must exist x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Z∗(R) such that
xy 6= 0. Assume that ai ∈ Z∗(Ri) and set a = (0, 0, . . . , ai, 0, . . . , 0). Then
ax = 0 = ay, so a ∈ Z∗(R). Therefore x − a − y is a path, and hence a
path of length two can be found between any two vertices of Γ(R) by way
of a. So, diam(Γ(R)) = 2. Conversely, assume that diam(Γ(R)) = 2; we
show that diam(Γ(Ri)) = 2 and Ri = Z(Ri) for some i. Suppose that for
each i (1 ≤ i ≤ n), if diam(Γ(Ri)) = 2, then Ri 6= Z(Ri). Let i1, . . . , ik
be such that diam(Γ(Rir)) = 2 (1 ≤ i ≤ k), and let j1, . . . , jt be such that
diam(Γ(Rjs)) = 3 (1 ≤ s ≤ t). By assumption, for each r (1 ≤ r ≤ k),
Rir 6= Z(Rir). For each r (1 ≤ r ≤ k), let mir ∈ Rir − Z(Rir). Since
for each s (1 ≤ s ≤ t), diam(Γ(Rjs)) = 2, there exist xjs , yjs ∈ Z∗(Rjs)
with xjs 6= yjs , xjsyjs = 0 such that there is no zjs ∈ Z∗(Rjs) with xjszjs =
0 = yjszjs . Moreover, for each s (1 ≤ s ≤ t), there must exist x′js

, y′js
∈

Z∗(Rjs) with xjsx
′
js

= 0 and yjsy
′
js

= 0. Set c = (mi1 , . . . , xj1 , . . . , xjt , . . . )
and cd = (mi1 , . . . , yj1 , . . . , yjt , . . . ). Then c(0, . . . , x

′
j1

, 0, . . . , 0) = 0, so
c ∈ Z∗(R). Similarly, d ∈ Z∗(R). As cd 6= 0 and diam(Γ(R)) = 2, there
must be some e = (e1, . . . , en) ∈ Z∗(R) such that ce = 0 = de. Then e = 0,
which is a contradiction. Thus diam(Γ(Ri)) = 2 and Ri = Z(Ri) for some
i ∈ {1, 2, . . . , n}.

(iii) This follow from (i) and (ii). ¤
Theorem 2.9. Let R1, R2, . . . , Rn−1 and Rn be commutative rings such that
diam(Γ(Ri)) = 1, diam(Γ(Rj)) = 2 and diam(Γ(Rk)) = 3 for some elements
i, j and k of the set {1, 2, . . . , n}, and let R = R1 × R2 · · · × Rn (n > 2).
Then the following hold:

(i) diam(Γ(R)) 6= 1.
(ii) diam(Γ(R)) = 2 if and only if diam(Γ(Ri)) ≤ 2 and Ri = Z(Ri) for

some i ∈ {1, 2, . . . , n}.
(iii) diam(Γ(R)) = 3 if and only if there is no i ∈ {1, 2, . . . , n} with

diam(Γ(Ri)) ≤ 2 and Ri = Z(Ri).

Proof. (i) Is clear.
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(ii) Let diam(Γ(Ri)) ≤ 2 and Ri = Z(Ri) for some i ∈ {1, 2, . . . , n}; we
show that diam(Γ(R)) = 2. We divided the proof into two cases.
Case 1. diam(Γ(Ri)) = 1 and Ri = Z(Ri) for some i. By a similar argument
as in Theorem 2.7 (ii), we get diam(Γ(R)) = 2.
Case 2. diam(Γ(Ri)) = 2 and Ri = Z(Ri) for some i. By a similar argument
as in Theorem 2.8 (ii), we get diam(Γ(R)) = 2. Conversely, suppose that
diam(Γ(R)) = 2. It is easy to see from Theorem 2.8 (ii) that diam(Γ(Ri)) ≤
2 and Ri = Z(Ri) for some i.

(iii) This follow from (i) and (ii). ¤
Corollary 2.10. Let R1, R2, . . . , Rn−1 and Rn be commutative rings with
identity, and let R = R1 ×R2 · · · ×Rn (n > 2). Then diam(Γ(R)) = 3.

Proof. For each i ∈ {1, 2, . . . , n}, Ri 6= Z(Ri) since 1Ri /∈ Z(Ri). Now the
assertion follows from Theorem 2.2, Theorem 2.4 and Theorem 2.6 (for an
alternative proof see [3, 2.6 (4)]). ¤
Example 1. (i) Assume that R is a commutative ring (not necessary with
1) and let S = Mat(R) be the set of all 2× 2 matrices of the form

A =
(

0 0
a 0

)

where a ∈ R. It is easy to see that if A,B are non-zero elements of S, then
AB = 0; hence Z(S) = S and diam(Γ(S)) = 1.

(ii) Let Z25 denote the ring of integers modulo 25. Then Z∗(Z25) =
{5, 10, 15, 20}, Z25 6= Z(Z25) and diam(Γ(Z25)) = 1. Clearly, Z(Z2 × Z4) 6=
Z2 × Z4 and diam(Γ(Z2 × Z4)) = 3.

(iii) If R1 = R2 = · · · = Rn = S and R = R1×· · ·×Rn, then diam(Γ(R)) =
1 by Theorem 2.2 (i).

(iv) If R1 = Z25, R2 = · · · = Rn = S and R = R1 × · · · × Rn, then
diam(Γ(R)) = 2 by Theorem 2.2 (ii).

(v) If R1 = Z25 = R2 = · · · = Rn and R = R1 × · · · × Rn, then
diam(Γ(R)) = 3 by Theorem 2.2 (iii).

(vi) If R1 = Z2 × Z4 = R2 = · · · = Rn and R = R1 × · · · × Rn, then
diam(Γ(R)) = 3 by Theorem 2.5 (or Corollary 2.10).
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