THE DIAMETER OF A ZERO-DIVISOR GRAPH FOR FINITE DIRECT PRODUCT OF COMMUTATIVE RINGS

S. EBRAHIMI ATANI AND M. SHAJARI KOHAN

ABSTRACT. This paper establishes a set of theorems that describe the diameter of a zero-divisor graph for a finite direct product $R_1 \times R_2 \times \cdots \times R_n$ with respect to the diameters of the zero-divisor graphs of $R_1, R_2, \cdots, R_{n-1}$ and $R_n(n > 2)$.

1. INTRODUCTION

All rings in this paper are commutative and not necessary with 1. The concept of zero divisor graph of a commutative ring R was introduced by Beck in [2]. He let all elements of the ring be vertices of the graph and was interested mainly in coloring. In [1], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are the non-zero zero-divisors. Among other things, they proved that $\Gamma(R)$ is always connected and its diameter is always less than or equal to 3 [1, Theorem 2.3]. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools (see, for example, [1], [3], [4]). In [5], J. Warfel describes the diameter of a zero-divisor graph for a direct product $R_1 \times R_2$ with respect to the diameters of the zero-divisor graphs of R_1 and R_2 . The main goal in this paper is to generalize some of the results in the paper listed as [5], from $R_1 \times R_2$ to $R_1 \times R_2 \times \cdots \times R_n (n > 2)$ (see section 2).

For the sake of completeness, we state some definitions and notations used throughout. Let R be a commutative ring. We used Z(R) to denote the set of zero-divisors of R; we use $Z^*(R)$ to denote the set of non-zero zero-divisors of R. By the zero-divisor graph of R, denoted $\Gamma(R)$, we mean the graph whose vertices are the non-zero zero-divisors of R, and for distinct $x, y \in Z^*(R)$, there is an edge connecting x and y if and only if xy = 0. A graph is said to be connected if there exists a path between any two distinct vertices. For two distinct vertices a and b in the graph $\Gamma(R)$, the

²⁰⁰⁰ Mathematics Subject Classification. 05C75, 13A15.

Key words and phrases. Zero-divisor graph, diameter, finite direct product.

distance between a and b, denoted d(a, b), is the length of the shortest path connecting a and b, if such a path exists; otherwise, $d(a, b) = \infty$. The diameter of a connected graph is the supremum of the distances between vertices. We will use the notation $diam(\Gamma(R))$ to denote the diameter of the graph of $Z^*(R)$. The diameter is zero if the graph consists of a single vertex and a connected graph with more than one vertex has diameter 1 if and only if it is complete; i.e. each pair of distinct vertices forms an edge. We tacitly assume that R has at least 2 non-zero zero-divisors. Also, though it be an abuse of notation, let $0 = (0, 0, \dots, 0)$.

2. FINITE DIRECT PRODUCT

In this section, we will investigate the relation between the diameter of a zero-divisor graph of a finite direct product $R_1 \times R_2 \times \cdots \times R_n$ with the diameters of the zero-divisor graphs of $R_1, R_2, \ldots, R_{n-1}$ and R_n . Our starting point is the following lemma:

Lemma 2.1. Let R be commutative ring with diam $(\Gamma(R)) = 1$ and R = Z(R). Then xy = 0 for all $x, y \in Z(R)$. In particular, $x^2 = 0$ for every nilpotent element of R.

Proof. Suppose not. Then there are elements $a, b \in Z(R)$ such that $ab \neq 0$, so by [1, Theorem 2.8], $R \cong Z_2 \times Z_2$; hence $R \neq Z(R)$ which is a contradiction, as required.

Theorem 2.2. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\operatorname{diam}(\Gamma(R_1)) = \cdots = \operatorname{diam}(\Gamma(R_n)) = 1$, and let $R = R_1 \times R_2 \times \cdots \times R_n$ (n > 2). Then the following hold:

- (i) diam($\Gamma(R)$) = 1 if and only if $R_i = Z(R_i)$ for every $i \in \{1, \ldots, n\}$.
- (ii) diam($\Gamma(R)$) = 2 if and only if $R_i = Z(R_i)$ and $R_j \neq Z(R_j)$ for some $i, j \in \{1, 2, ..., n\}$.
- (iii) diam($\Gamma(R)$) = 3 if and only if $R_i \neq Z(R_i)$ for every $i \in \{1, 2, ..., n\}$.

Proof. (i) Assume that $R_i = Z(R_i)$ for every i = 1, 2, ..., n and let $a = (a_1, ..., a_n), b = (b_1, ..., b_n)$ be elements of $Z^*(R)$. By Lemma 2.1, $a_i b_i = 0$ for all i, so ab = 0; hence diam $(\Gamma(R)) = 1$. Conversely, assume that $R_j \neq Z(R_j)$ for some $j \in \{1, 2, ..., n\}$. Then, for some $x_j, y_j \in R_j, x_j y_j \neq 0$. Set $x = (0, ..., x_j, 0, ..., 0), y = (0, ..., y_j, 0, ..., 0)$, and let $0 \neq a_i \in R_i$ where $i \neq j$. Since $x(0, ..., a_i, 0, ..., 0) = 0, y(0, ..., a_i, 0, ..., 0) = 0$ and $xy \neq 0$, we must have diam $(\Gamma(R)) > 1$ which is a contradiction.

(ii) If $R_i = Z(R_i)$ and $R_j \neq Z(R_j)$ for some $i, j \in \{1, 2, ..., n\}$, then by (i), the fact that $R_j \neq Z(R_j)$ implies that diam $(\Gamma(R)) > 1$. Then there exist $r = (r_1, ..., r_n) \in Z^*(R)$ and $s = (s_1, ..., s_n) \in Z^*(R)$ such that $d(r, s) \neq 1$, so $rs \neq 0$. Since $R_i = Z(R_i)$, there must exist $t_i \in R_i$ such that $t_i u_i = 0$ for all $u_i \in R_i$ by Lemma 2.1. Set $t = (0, 0, ..., t_i, 0, ..., 0)$. Then r-t-s is a path. Therefore, a path of length two can be found between any two vertices of $\Gamma(R)$ by way of t. Thus diam $(\Gamma(R)) = 2$. Conversely, assume that diam($\Gamma(R)$) = 2. If $R_i = Z(R_i)$ for every i = 1, 2, ..., n, then by (i), diam($\Gamma(R)$) = 1 which is a contradiction. So, let for each $i, R_i \neq Z(R_i)$. Then there must exist $x_i \in R_i - Z(R_i)$ for every $i \in \{1, 2, ..., n\}$. Let for each $i, z_i \in Z^*(R_i)$. So there is an element z'_i of $Z^*(R_i)$ such that $z_i z'_i = 0$ for all *i*. If $a = (z_1, x_2, \ldots, x_n)$ and $b = (x_1, z_2, x_3, \ldots, x_n)$, then $a(z'_1, 0, \dots, 0) = 0$ and $b(0, z'_2, 0, \dots, 0) = 0$, so $a, b \in Z^*(R)$. As $ab \neq 0$, the distance between the vertices is greater than one. Since diam($\Gamma(R)$) = 2, there must be some $c = (c_1, \ldots, c_n) \in Z^*(R)$ such that ac = bc = 0. Then c = 0, which is not an element of $Z^*(R)$. But this is a contradiction. Thus $R_i = Z(R_i)$ and $R_j \neq Z(R_j)$ for some $i, j \in \{1, 2, \dots, n\}$.

(iii) This follows from (i) and (ii).

We will need the following lemma from [5, Lemma 3.1].

Lemma 2.3. Let R be a commutative ring such that $\operatorname{diam}(\Gamma(R)) = 2$ and R = Z(R). Then for all $x, y \in R$, there exists an element z of $Z^*(R)$ such that xz = yz = 0.

Theorem 2.4. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\operatorname{diam}(\Gamma(R_1)) = \cdots = \operatorname{diam}(\Gamma(R_n)) = 2$, and let $R = R_1 \times R_2 \times \cdots \times R_n$ (n > 2). Then the following hold:

(i) diam $(\Gamma(R)) \neq 1$.

(ii) diam($\Gamma(R)$) = 2 if and only if $R_i = Z(R_i)$ for some $i \in \{1, 2, \dots, n\}$.

(iii) diam($\Gamma(R)$) = 3 if and only if $R_i \neq Z(R_i)$ for every $i \in \{1, 2, ..., n\}$

Proof. (i) Is clear.

(ii) Let $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$. By (i), there are elements $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ of $Z^*(R)$ such that $x \neq y$ and $xy \neq 0$. Since $x_i, y_i \in R_i$, Lemma 2.3 gives $x_i z_i = 0 = y_i z_i$ for some non-zero element z_i of $Z(R_i)$. Let $z = (0, \ldots, z_i, 0, \ldots, 0)$. Since xz = 0 = yz, we must have x-z-y is a path; hence a path of length two can be found between any two vertices of $\Gamma(R)$ by way of z. So, diam $(\Gamma(R)) = 2$. Conversely, assume that diam($\Gamma(R)$) = 2 and let $R_i \neq Z(R_i)$ for each $i \in \{1, 2, ..., n\}$. Let for each $i, e_i \in Z^*(R_i)$ and $m_i \in R_i - Z(R_i)$. So there is an element e'_i of $Z^*(R_i)$ such that $e_i e'_i = 0$ for all *i*. If $a = (e_1, m_2, \dots, m_n)$ and $b = (m_1, e_2, m_3, \dots, m_n)$, then $a(e'_1, 0, \dots, 0) = 0$ and $b(0, e'_2, 0, \dots, 0) = 0$, so $a, b \in Z^*(R)$. As $ab \neq 0$, the distance between the vertices is greater than one. Since diam $(\Gamma(R)) = 2$, there must be some $c = (c_1, \ldots, c_n) \in Z^*(R)$ such that ac = 0 = bc. Then c = 0, which is a contradiction. Thus $R_i \neq Z(R_i)$ for some $i \in \{1, 2, ..., n\}$. (iii) This follows from (i) and (ii).

Theorem 2.5. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\operatorname{diam}(\Gamma(R_1)) = \cdots = \operatorname{diam}(\Gamma(R_n)) = 3$, and let $R = R_1 \times R_2 \times \cdots \times R_n$ (n > 2). Then $\operatorname{diam}(\Gamma(R)) = 3$.

Proof. Since for each $i \in \{1, 2, ..., n\}$, diam $(\Gamma(R_i)) = 3$, there exist $x_i, y_i \in Z^*(R_i)$ with $x_i \neq y_i, x_i y_i \neq 0$ such that there is no $z_i \in Z^*(R_i)$ with $x_i z_i = 0 = y_i z_i$. Consider $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$. For each $i \in \{1, 2, ..., n\}$, there are elements $x'_i, y'_i \in Z^*(R_i)$ such that $x_i x'_i = 0$ and $y_i y'_i = 0$, so $x, y \in Z^*(R)$. As $xy \neq 0$, we must have diam $(\Gamma(R)) \neq 1$. If diam $(\Gamma(R)) = 2$, then $d(x, y) \neq 1$ implies there is an element $a = (a_1, ..., a_n) \in Z^*(R)$ with xa = 0 = ya; hence a = 0 by our assumption which is a contradiction, so diam $(\Gamma(R)) = 3$ must hold. \Box

Theorem 2.6. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\operatorname{diam}(\Gamma(R_i)) = 1$, $\operatorname{diam}(\Gamma(R_j)) = 2$ for some $i, j \in \{1, 2, \ldots, n\}$ and there is no $k \in \{1, 2, \ldots, n\}$ with $\operatorname{diam}(\Gamma(R_k)) = 3$, and let $R = R_1 \times R_2 \times \cdots \times R_n$ (n > 2). Then the following hold:

- (i) diam $(\Gamma(R)) \neq 1$.
- (ii) diam($\Gamma(R)$) = 2 if and only if $R_i = Z(R_i)$ for some $i \in \{1, 2, \dots, n\}$.
- (iii) diam($\Gamma(R)$) = 3 if and only if $R_i \neq Z(R_i)$ for every $i \in \{1, 2, \dots, n\}$.

Proof. (i) Is clear.

(ii) First, assume that $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$; we show that diam($\Gamma(R)$) = 2. By hypothesis, we divided the proof into two cases. **Case 1.** diam($\Gamma(R_i)$) = 1. It then follows from Lemma 2.2 that xy = 0 for all $x, y \in Z(R_i)$. By (i), there must exist $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in$ $Z^*(R)$ with $xy \neq 0$. If $z_i \in Z^*(R_i)$, then $x(0, ..., z_i, ..., 0) = 0$, so z = $(0, ..., z_i, ..., 0)$ is an element of $Z^*(R)$. Clearly, x - z - y is a path. Hence, a path of length two can be found between any two vertices of $\Gamma(R)$ by way of z. So, diam($\Gamma(R)$) = 2.

Case 2. diam $(\Gamma(R_i)) = 2$. By (i), there must exist $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in Z^*(R)$ with $xy \neq 0$. By Lemma 2.3, there is an element z_i of $Z^*(R_i)$ such that $x_i z_i = y_i z_i = 0$. Set $z = (0, \ldots, z_i, 0, \ldots, 0)$. Then x - z - y is a path, and hence a path of length two can be found between any two vertices of $\Gamma(R)$ by way of z. So, diam $(\Gamma(R)) = 2$.

Next assume that diam($\Gamma(R)$) = 2; we show that $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$. Suppose that for each $i \in \{1, 2, ..., n\}$, $R_i \neq Z(R_i)$. Let for each $i, x_i \in Z^*(R_i)$ and $m_i \in R_i - Z(R_i)$. So there is an element x'_i of $Z^*(R_i)$ such that $x_i x'_i = 0$ for all i. If $a = (x_1, m_2, ..., m_n)$ and $b = (m_1, x_2, m_3, ..., m_n)$, then $a(x'_1, 0, ..., 0) = 0$ and $b(0, x'_2, 0, ..., 0) = 0$, so $a, b \in Z^*(R)$. As $ab \neq 0$, the distance between the vertices is greater than one. Since diam($\Gamma(R)$) = 2, there must be some $c = (c_1, ..., c_n) \in Z^*(R)$

such that ac = 0 = bc. Then c = 0, which is a contradiction. Thus $R_i \neq Z(R_i)$ for some $i \in \{1, 2, ..., n\}$.

(iii) This follows from (i) and (ii).

Theorem 2.7. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\operatorname{diam}(\Gamma(R_i)) = 1$, $\operatorname{diam}(\Gamma(R_j)) = 3$ for some $i, j \in \{1, 2, \ldots, n\}$ and there is no $k \in \{1, 2, \ldots, n\}$ with $\operatorname{diam}(\Gamma(R_k)) = 2$, and let $R = R_1 \times R_2 \cdots \times R_n$ (n > 2). Then the following hold:

- (i) diam $(\Gamma(R)) \neq 1$.
- (ii) diam($\Gamma(R)$) = 2 if and only if diam($\Gamma(R_i)$) = 1 and $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$.
- (iii) diam($\Gamma(R)$) = 3 if and only if there is no $i \in \{1, 2, ..., n\}$ with diam($\Gamma(R_i)$) = 1 and $R_i = Z(R_i)$.

Proof. (i) Is clear.

(ii) Let i be such that diam($\Gamma(R_i)$) = 1 and $R_i = Z(R_i)$; we show that diam($\Gamma(R)$) = 2. It follows from [1, Theorem 2.8] that $a_i b_i = 0$ for every $a_i, b_i \in Z(R_i)$. By (i), there must exist $x = (x_1, \ldots, x_n), y =$ $(y_1,\ldots,y_n) \in Z^*(R)$ such that $xy \neq 0$. Assume that $a_i \in Z^*(R_i)$ and set $a = (0, 0, ..., a_i, 0, 0)$. Then ax = 0 = ay, so $a \in Z^*(R)$. Therefore, x - a - y is a path, and hence a path of length two can be found between any two vertices of $\Gamma(R)$ by way of a. So diam $(\Gamma(R)) = 2$. Conversely, assume that diam($\Gamma(R)$) = 2; we show that diam($\Gamma(R_i)$) = 1 and $R_i = Z(R_i)$ for some *i*. Suppose not. Let i_1, \ldots, i_k be such that diam $(\Gamma(R_{i_r})) = 1$ $(1 \leq r \leq k)$, and let j_1, \ldots, j_t be such that $\operatorname{diam}(\Gamma(R_{j_s})) = 3$ $(1 \leq s \leq t)$. Since for each s $(1 \leq s \leq t)$, diam $(\Gamma(R_{j_s})) = 3$, there exist $x_{j_s}, y_{j_s} \in$ $Z^*(R_{j_s})$ with $x_{j_s} \neq y_{j_s}, x_{j_s}y_{j_s} = 0$ such that there is no $z_{j_s} \in Z^*(R_{j_s})$ with $x_{j_s}z_{j_s} = y_{j_s}z_{j_s} = 0$. Moreover, for each s $(1 \leq s \leq t)$, there must exist $x'_{j_s}, y'_{j_s} \in Z^*(R_{j_s})$ with $x_{j_s}x'_{j_s} = 0$ and $y_{j_s}y'_{j_s} = 0$. Now for each r $(1 \le r \le k)$, let $m_{i_r} \in R_{i_r} - Z(R_{i_r})$. Set $c = (m_{i_1}, \dots, x_{j_1}, \dots, x_{j_t}, \dots)$ and $d = (m_{i_1}, \ldots, y_{j_1}, \ldots, y_{j_t}, \ldots)$. Then $c(0, \ldots, x'_{j_1}, 0, \ldots, 0) = 0$, so $c \in Z^*(R)$. Similarly, $d \in Z^*(R)$. As $cd \neq 0$ and $\operatorname{diam}(\Gamma(R)) = 2$, there must be some $e = (e_1, \ldots, e_n) \in Z^*(R)$ such that ce = de = 0. Then e = 0, which is a contradiction. Thus diam $(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$.

(iii) Since $\Gamma(R)$ is connected and diam $(\Gamma(R)) \leq 3$, we must have the diameter of $\Gamma(R)$ is either 2 or 3 by (i). If diam $(\Gamma(R)) = 2$, then by (ii), diam $(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some $i \in \{1, 2, n\}$ which is a contradiction. Thus diam $(\Gamma(R)) = 3$. The proof of the other implication is clear.

Theorem 2.8. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\operatorname{diam}(\Gamma(R_i)) = 2$, $\operatorname{diam}(\Gamma(R_j)) = 3$ for some $i, j \in \{1, 2, \ldots, n\}$ and there is

no $k \in \{1, 2, ..., n\}$ with diam $(\Gamma(R_k)) = 1$, and let $R = R_1 \times R_2 \cdots \times R_n$ (n > 2). Then the following hold:

- (i) diam $(\Gamma(R)) \neq 1$.
- (ii) diam($\Gamma(R)$) = 2 if and only if diam($\Gamma(R_i)$) = 2 and $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$.
- (iii) diam($\Gamma(R)$) = 3 if and only if there is no $i \in \{1, 2, ..., n\}$ with diam($\Gamma(R_i)$) = 2 and $R_i = Z(R_i)$.

Proof. (i) Is clear.

(ii) Let i be such that diam($\Gamma(R_i)$) = 2 and $R_i = Z(R_i)$; we show that diam($\Gamma(R)$) = 2. Then by Lemma 2.3, $a_i b_i = 0$ for every $a_i, b_i \in Z(R_i) = R_i$. By (i), there must exist $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in Z^*(R)$ such that $xy \neq 0$. Assume that $a_i \in Z^*(R_i)$ and set $a = (0, 0, \dots, a_i, 0, \dots, 0)$. Then ax = 0 = ay, so $a \in Z^*(R)$. Therefore x - a - y is a path, and hence a path of length two can be found between any two vertices of $\Gamma(R)$ by way of a. So, diam($\Gamma(R)$) = 2. Conversely, assume that diam($\Gamma(R)$) = 2; we show that diam($\Gamma(R_i)$) = 2 and $R_i = Z(R_i)$ for some *i*. Suppose that for each i $(1 \leq i \leq n)$, if diam $(\Gamma(R_i)) = 2$, then $R_i \neq Z(R_i)$. Let i_1, \ldots, i_k be such that diam $(\Gamma(R_{i_r})) = 2$ $(1 \le i \le k)$, and let j_1, \ldots, j_t be such that diam $(\Gamma(R_{i_s})) = 3 \ (1 \le s \le t)$. By assumption, for each $r \ (1 \le r \le k)$, $R_{i_r} \neq Z(R_{i_r})$. For each $r \ (1 \leq r \leq k)$, let $m_{i_r} \in R_{i_r} - Z(R_{i_r})$. Since for each s $(1 \leq s \leq t)$, diam $(\Gamma(R_{j_s})) = 2$, there exist $x_{j_s}, y_{j_s} \in Z^*(R_{j_s})$ with $x_{j_s} \neq y_{j_s}, x_{j_s}y_{j_s} = 0$ such that there is no $z_{j_s} \in Z^*(R_{j_s})$ with $x_{j_s}z_{j_s} =$ $0 = y_{j_s} z_{j_s}$. Moreover, for each $s \ (1 \le s \le t)$, there must exist $x'_{j_s}, y'_{j_s} \in$ $Z^*(R_{j_s})$ with $x_{j_s}x'_{j_s} = 0$ and $y_{j_s}y'_{j_s} = 0$. Set $c = (m_{i_1}, \ldots, x_{j_1}, \ldots, x_{j_t}, \ldots)$ and $cd = (m_{i_1}, \ldots, y_{j_1}, \ldots, y_{j_t}, \ldots)$. Then $c(0, \ldots, x'_{j_1}, 0, \ldots, 0) = 0$, so $c \in Z^*(R)$. Similarly, $d \in Z^*(R)$. As $cd \neq 0$ and diam $(\Gamma(R)) = 2$, there must be some $e = (e_1, \ldots, e_n) \in Z^*(R)$ such that ce = 0 = de. Then e = 0, which is a contradiction. Thus diam $(\Gamma(R_i)) = 2$ and $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}.$

(iii) This follow from (i) and (ii).

Theorem 2.9. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\operatorname{diam}(\Gamma(R_i)) = 1$, $\operatorname{diam}(\Gamma(R_j)) = 2$ and $\operatorname{diam}(\Gamma(R_k)) = 3$ for some elements i, j and k of the set $\{1, 2, \ldots, n\}$, and let $R = R_1 \times R_2 \cdots \times R_n$ (n > 2). Then the following hold:

- (i) diam($\Gamma(R)$) $\neq 1$.
- (ii) diam($\Gamma(R)$) = 2 if and only if diam($\Gamma(R_i)$) ≤ 2 and $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$.
- (iii) diam($\Gamma(R)$) = 3 if and only if there is no $i \in \{1, 2, ..., n\}$ with diam($\Gamma(R_i)$) ≤ 2 and $R_i = Z(R_i)$.

Proof. (i) Is clear.

154

(ii) Let diam($\Gamma(R_i)$) ≤ 2 and $R_i = Z(R_i)$ for some $i \in \{1, 2, ..., n\}$; we show that diam($\Gamma(R)$) = 2. We divided the proof into two cases.

Case 1. diam $(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some *i*. By a similar argument as in Theorem 2.7 (ii), we get diam $(\Gamma(R)) = 2$.

Case 2. diam($\Gamma(R_i)$) = 2 and $R_i = Z(R_i)$ for some *i*. By a similar argument as in Theorem 2.8 (ii), we get diam($\Gamma(R)$) = 2. Conversely, suppose that diam($\Gamma(R)$) = 2. It is easy to see from Theorem 2.8 (ii) that diam($\Gamma(R_i)$) \leq 2 and $R_i = Z(R_i)$ for some *i*.

(iii) This follow from (i) and (ii).

Corollary 2.10. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings with identity, and let $R = R_1 \times R_2 \cdots \times R_n$ (n > 2). Then diam $(\Gamma(R)) = 3$.

Proof. For each $i \in \{1, 2, ..., n\}$, $R_i \neq Z(R_i)$ since $1_{R_i} \notin Z(R_i)$. Now the assertion follows from Theorem 2.2, Theorem 2.4 and Theorem 2.6 (for an alternative proof see [3, 2.6 (4)]).

Example 1. (i) Assume that R is a commutative ring (not necessary with 1) and let S = Mat(R) be the set of all 2×2 matrices of the form

$$A = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}$$

where $a \in R$. It is easy to see that if A, B are non-zero elements of S, then AB = 0; hence Z(S) = S and $\operatorname{diam}(\Gamma(S)) = 1$.

(ii) Let Z_{25} denote the ring of integers modulo 25. Then $Z^*(Z_{25}) = \{5, 10, 15, 20\}, Z_{25} \neq Z(Z_{25})$ and diam $(\Gamma(Z_{25})) = 1$. Clearly, $Z(Z_2 \times Z_4) \neq Z_2 \times Z_4$ and diam $(\Gamma(Z_2 \times Z_4)) = 3$.

(iii) If $R_1 = R_2 = \cdots = R_n = S$ and $R = R_1 \times \cdots \times R_n$, then diam $(\Gamma(R)) = 1$ by Theorem 2.2 (i).

(iv) If $R_1 = Z_{25}$, $R_2 = \cdots = R_n = S$ and $R = R_1 \times \cdots \times R_n$, then diam $(\Gamma(R)) = 2$ by Theorem 2.2 (ii).

(v) If $R_1 = Z_{25} = R_2 = \cdots = R_n$ and $R = R_1 \times \cdots \times R_n$, then diam $(\Gamma(R)) = 3$ by Theorem 2.2 (iii).

(vi) If $R_1 = Z_2 \times Z_4 = R_2 = \cdots = R_n$ and $R = R_1 \times \cdots \times R_n$, then diam $(\Gamma(R)) = 3$ by Theorem 2.5 (or Corollary 2.10).

References

- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447.
- [2] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226.
- [3] T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra, 301 (2006), 174-193.
- [4] S. P. Remond, An ideal-based zero-divisor graph of a commutative ring, Commun. Algebra, 31 (2003), 4425–4443.

[5] J. Warfel, Zero divisor graphs for direct product of commutative rings, Huston J. Mathematics, to appear.

(Received: October 19, 2006) (Revised: June 3, 2007)

Department of Mathematics University of Guilan P.O. Box 1914, Rasht Iran

156