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NEW CLASSES OF NON-NORMALIZED
MEROMORPHICALLY MULTIVALENT FUNCTIONS

HÜSEYIN IRMAK AND R.K. RAINA

Abstract. Making use of certain differential operators, this paper in-
troduces two new classes:

Mκ
m,n,δ(q; p) and SKκ

m,n,δ(q; p)

which consist of non-normalized meromorphically multivalent functions
with complex coefficients in the punctured unit disk. A theorem is
established concerning an inclusion property for the above classes, and
in the concluding section, several consequences of the main result are
pointed out.

1. Introduction and definitions

Recently, Chen et al. ([1], [2]) introduced and studied certain subclasses of
the class Mκ

p,q consisting of (non-normalized) meromorphically multivalent
functions f(z) of the form :

f(z) =
κ

zq
+

∞∑

k=p

akz
k (κ 6= 0; q, p ∈ N = {1, 2, 3, . . . }), (1.1)

which are analytic in the punctured unit disk D = U − {0}, where U =
{z : z ∈ C and |z| < 1}, and which (in the special cases when q = 1) have a
simple pole at the origin (z = 0) with residue κ. See also [6], [9] and [14].

A function f(z) is said to be in the subclass Sκ
p (q) of meromorphically

multivalent starlike functions (or, meromorphically starlike when q = 1) if
and only if

<e

(
−zf ′(z)

f(z)

)
> 0 (z ∈ U). (1.2)
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Furthermore, f(z) is said to be in the subclass Kκ
p (q) of meromorphically

multivalent convex functions (or, meromorphically convex when q = 1) if
and only if

<e

{
−

(
1 +

zf ′′(z)
f ′(z)

)}
> 0 (z ∈ U). (1.3)

In addition, also let

Mκ
p := Mκ

p,1, Sκ
p := Sκ

p (1) and Kκ
p := Kκ

p(1).

The classes Sκ
p and Kκ

p consist of meromorphically starlike functions and
meromorphically convex functions in U , respectively.

It is easily seen that

f(z) ∈ Kκ
p(q) ⇐⇒ −zf ′(z)

q
∈ Sκ

p (q)

and

f(z) ∈ Kκ
p ⇐⇒ −zf ′(z) ∈ Sκ

p .

For more details of the above definitions, one may refer to [4], [7], and [14].
We define two differential operators of a function f(z) ∈Mκ

p,q as follows:

Dn
z {f(z)} =

(q + n− 1)!
(q − 1)!

· κ

zq+n
· (−1)n +

∞∑

k=p

k!
(k − n)!

akz
k−n, (1.4)

and

Dm
z {z2q+nDn

z {f(z)}} =
q(q + n− 1)!

(q −m)!
· κ

zm−q
· (−1)n

+
∞∑

k=p

k!(k + 2q)!
(k − n)!(k + 2q −m)!

akz
k+2q−m, (1.5)

(κ 6= 0; p ≥ n, q ≥ m; p, q ∈ N ;m,n ∈ N0 = N ∪ {0}).
It is clear when m = n = 0, then

D0
z{z2qD0

z{f(z)}} = D0
z{z2q{f(z)}} = z2qf(z), (1.6)

and when m = n = 1, then

D1
z{z2q+1D1

z{f(z)}} = D1
z{z2q+1{f ′(z)}} = [z2q+1f ′(z)]′. (1.7)

We note that the differential operator (1.4) has been used in several recent
works (see, [3], [5], [8] and [13]).

In the present paper, by making use of the differential operators defined in
(1.4) and (1.5), two new subclasses involving functions of the form (1.1) are
introduced, and then a theorem exhibiting an inclusion relation between the
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classes Mκ
m,n,δ (q; p) and SKκ

m,n,δ (q; p) is established. Several consequences
of the main result are treated in the concluding section.

Using the hypotheses of differential operators, by making use of operators
in (1.4) and (1.5), we define two new classes

Mκ
m,n,δ (q; p) and SKκ

m,n,δ (q; p)

consisting of functions f(z) in the class Mκ
p,q, which satisfy the following

inequalities, respectively:

1 + <e {Ω1+m(z)− Ωm(z)}
{

< 1
2δ when δ > 0

> 1
2δ when δ < 0

(1.8)

and
<e

{
[Ωm(z)]δ

}
> 0 (z ∈ D; δ 6= 0;m ∈ N0), (1.9)

where

F(z) = z2q+nDn
z {f(z)} (q ∈ N ; n ∈ N0; f(z) ∈Mκ

p,q) (1.10)

and

Ωm(z) =
zD1+m

z {F(z)}
Dm

z {F(z)} (z ∈ U ; m ∈ N0). (1.11)

We assume here and throughout this paper, that the values of the expo-
nential form occurring in (1.9) are taken to be their principal values, and R
will denote the set of real numbers.

2. The main result

In proving our result (contained in Theorem 1 below), we shall need the
following result due to Jack [12].

Lemma 1. Let w(z) be an analytic function in the unit disk U , such that
w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at
a point z0 ∈ U , then z0w

′(z0) = cw(z0), where c is real and c ≥ 1.

We begin by proving

Theorem 1. Let δ 6= 0; κ 6= 0; q ≥ m ≥ n; p, q ∈ N ; m,n ∈ N0, and also
let f(z) ∈Mκ

p,q. Then

f(z) ∈Mκ
m,n,δ (q; p) ⇒ f(z) ∈ SKκ

m,n,δ (q; p). (2.1)

Proof. To prove (2.1), we show that if a function f(z) is in the class Mκ
p,q,

then
f(z) ∈Mκ

m,n,δ (q; p), (2.2)
implies that

f(z) ∈ SKκ
m,n,δ (q; p). (2.3)
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Let us define a function w(z) by

[Ωm(z)]δ = (q −m)δ[1 + w(z)], (2.4)

where the function Ωm(z) is defined by (1.11). Obviously, the function
w(z) is either analytic or multivalently meromorphic in U , with w(0) = 0.
Differentiating (2.4), we obtain

1 + [Ω1+m(z)− Ωm(z)] =
1
δ
· zw′(z)
1 + w(z)

, (2.5)

If we now suppose that max|z|≤|z0| |w(z)| = |w(z0)| = 1 (z0, z ∈ U), and
apply Lemma 1, we also obtain that z0w

′(z0) = cw(z0) (c ≥ 1). On setting
z = z0, and then putting w(z0) = eiθ (eiθ 6= −1) in (2.5), we finally get

1 + <e {Ω1+m(z0)− Ωm(z0)}

= <e

(
c

δ
· eiθ

1 + eiθ

) {
≥ 1

2δ when δ > 0
≤ 1

2δ when δ < 0
. (2.6)

But the inequalities in (2.6) contradict our assumptions stated in (1.8).
Hence, we must have |w(z)| < 1 for all z ∈ U . Evidently, it follows from
(2.4) that ∣∣∣[Ωm(z)]δ − (q −m)δ

∣∣∣ = (q −m)δ|w(z)| < (q −m)δ,

which implies that

<e
{

[Ωm(z)}δ
}

> 0 (δ 6= 0),

and so f(z) ∈ SKκ
m,n,δ (q; p). This completes the proof. ¤

3. Some consequences of the main result

In view of the definitions of the classes Mκ
m,n,δ (q; p) and SKκ

m,n,δ (q; p),
we exhibit below several interesting (and useful) subclasses of meromorphi-
cally multivalent or meromorphically univalent functions. By specializing
the parameters, we obtain the following subclasses:
Vκ

δ1
(q; p) ≡ Mκ

0,0,δ(q; p) (δ1 = δ 6= 0), Vκ
δ2

(q; p) ≡ Mκ
0,1,δ(q; p) (δ2 = δ 6=

0), Vκ
δ3

(p) ≡ Mκ
0,0,δ(1; p) (δ3 = δ 6= 0), Vκ

δ4
(p) ≡ Mκ

0,1,δ(1; p) (δ4 = δ 6=
0), Vκ

1 (q; p) ≡ Mκ
0,0,1(q; p), Vκ

2 (q; p) ≡ Mκ
0,1,1(q; p), Vκ

1 (p) ≡ Mκ
0,0,1(1; p),

Vκ
2 (p) ≡ Mκ

0,1,1(1; p), Wκ
δ1

(q; p) ≡ SKκ
0,0,δ(q; p) (δ1 = δ 6= 0), Wκ

δ2
(q; p) ≡

SKκ
0,1,δ(q; p) (δ2 = δ 6= 0), Wκ

δ3
(p) ≡ SKκ

0,0,δ(1; p) (δ3 = δ 6= 0), Wκ
δ4

(p) ≡
SKκ

0,1,δ(1; p) (δ4 = δ 6= 0),Wκ
1 (q; p) ≡SKκ

0,0,1(q; p),Wκ
2 (q; p) ≡SKκ

0,1,1(q; p),
Wκ

1 (p) ≡ SKκ
0,0,1(1; p) Wκ

2 (p) ≡ SKκ
0,1,1 (1; p).

Also, we observe that
Sκ

p (q) ≡ Wκ
1 (q; p), Sκ

p ≡ Wκ
1 (p), Kκ

p(q) ≡ Wκ
2 (q; p), and Kκ

p ≡ Wκ
2 (p).
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In view of the above relationships, we conclude this paper by mentioning
some of the deducible cases which stem from our main result (Theorem 1).
These consequences are contained in the following:

Corollary 1. Let δ1 6= 0, κ 6= 0, p, q ∈ N , and also let f(z) ∈ Mκ
p,q. If

f(z) ∈ Vκ
δ1

(q; p), then f(z) ∈ Wκ
δ1

(q; p).

Corollary 2. Let δ2 6= 0, κ 6= 0, p, q ∈ N , and also let f(z) ∈ Mκ
p,q. If

f(z) ∈ Vκ
δ2

(q; p), then f(z) ∈ Wκ
δ2

(q; p).

Corollary 3. Let δ3 6= 0, κ 6= 0, p ∈ N , and also let f(z) ∈ Mκ
p . If

f(z) ∈ Vκ
δ3

(p), then f(z) ∈ Wκ
δ3

(p).

Corollary 4. Let δ4 6= 0, κ 6= 0, p ∈ N , and also let f(z) ∈ Mκ
q . If

f(z) ∈ Vκ
δ4

(p), then f(z) ∈ Wκ
δ4

(p).

Corollary 5. Let κ 6= 0, p, q ∈ N , and also let f(z) ∈ Mκ
p,q. If f(z) ∈

Vκ
1 (q; p), then f(z) ∈ Sκ

p (q), i.e., f(z) is meromorphically multivalent in
D.

Corollary 6. Let κ 6= 0, p, q ∈ N , and also let f(z) ∈ Mκ
p,q. If f(z) ∈

Vκ
2 (q; p), then f(z) ∈ Kκ

p(q), i.e., f(z) is meromorphically multivalent con-
vex in D.

Corollary 7. Let κ 6= 0, p ∈ N , and also let f(z) ∈ Mκ
p . If f(z) ∈

Vκ
1 (q; p), then f(z) ∈ Sκ

p , i.e., f(z) is meromorphically starlike in D.

Corollary 8. Let κ 6= 0, p ∈ N , and also let f(z) ∈Mκ
p . If f(z) ∈ Vκ

2 (p),
then f(z) ∈ Kκ

p , i.e., f(z) is meromorphically convex in D.
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