ON A CONJECTURE OF ZHENG JIANHUA

ZHAOJUN WU

ABSTRACT. In this paper, a new proof of the existence of the T direction is given. Furthermore, we prove that for a meromorphic function f with finite lower order, satisfying $\limsup_{r\to\infty} \frac{T(r,f)}{\log^2 r} = \infty$, there exists a T direction concerning small functions.

1. Introduction and results

Let f(z) be a transcendental meromorphic function defined on the whole complex plane. The singular direction for f is one of main objects studied in the theory of value distributions of meromorphic functions. Here, we shall give a brief history of this research (see [6]). In 1919, Julia [1] introduced the concept of Julia direction for meromorphic function f, and showed that every transcendental meromorphic function has at least one Julia direction under the condition $\limsup_{r\to\infty} \frac{T(r,f)}{\log^2 r} = \infty$. Ostrowskii [2] and Sun [13] gave a simple example of transcendental meromorphic function f(z) such that $T(r,f) = O(\log^2 r)$ and f(z) has no Julia direction, respectively. This shows that the growth condition (1) is sharp for f(z) to have a Julia direction. Valiron [3] introduced a more refined notion of Borel directions as a ray $z = \theta$, called a Borel direction of order ρ for f if for every $0 < \varepsilon < \pi$,

$$\limsup_{r\to\infty}\frac{\log n(r,\theta,\varepsilon,a)}{\log r}\geq \rho,$$

for all a in $\mathbb{C}_{\infty} := \mathbb{C} \cup \{\infty\}$ with at most two exceptions. Note that the definition is only meaningful in the case of $0 < \rho < \infty$. In this case it is well known that f must have at least one Borel direction in [4]. When the order $\rho = 0$ or ∞ , it is not better to use the order to characterize the growth of

¹⁹⁹¹ Mathematics Subject Classification. Primary 30D30, Secondary 30D35.

 $Key\ words\ and\ phrases.\ T$ direction, Nevanlinna direction, small meromorphic function, Ahlfors characteristic function.

The work was supported by the NSF of Xianning University (Grant No: KT0623, KZ0629, KY0718).

f. In this case, the Nevanlinna characteristic function T(r, f) is certainly a more appropriate object to consider. Actually, in general, T(r, f) is the most basic function that can be used to describe the growth of meromorphic functions. Zheng [5] noted this fact, that is, it is more natural to use the Nevanlinna characteristic function T(r, f) instead of $\log r$ as a comparison function and introduced a new singular direction, namely, the T direction for f. Here, we recall Zheng's definition as follows.

Definition 1.1. A ray $\arg z = \theta$ is called a T direction for a meromorphic function f(z), if for every $0 < \varepsilon < \pi$,

$$\limsup_{r\to\infty}\frac{N(r,\theta,\varepsilon,a)}{T(r,f)}>0$$

holds for all a in \mathbb{C}_{∞} with at most two exceptions.

The existence of a T direction was proved by Guo, Zheng and Ng [6]. They showed the following Theorem 1.1.

Theorem 1.1. If f(z) is a meromorphic function defined on the whole complex plane, then f(z) has at least one T direction, suppose that

$$\limsup_{r \to \infty} \frac{T(r, f)}{(\log r)^2} = +\infty. \tag{1}$$

Theorem 1.1 was conjectured by Zheng [5]. Most recently, Wu and Sun [14] proved the existence of T direction of a meromorphic function of order zero. The main purpose of this paper is to give a new proof of Theorem 1.1 and prove the following theorems.

Theorem 1.2. If f(z) is a meromorphic function defined on the whole complex plane which satisfies (1), a ray J: $\arg z = \theta_0$ satisfies for any $0 < \delta < \pi/2$

$$\limsup_{r\to\infty}\frac{T(r,\Delta(\theta_0,\delta),f)}{T(r,f)}>0,$$
 then J is a T direction of $f(z)$.

Theorem 1.3. If f(z) is a meromorphic function defined on the whole complex plane and satisfies (1), Then there exists a direction $J: \arg z = \theta_0$ which is not only a Nevanlinna direction but also a T direction.

Theorem 1.2 and Theorem 1.3 have been announced by Zheng Jianhua in [12]. We denote by S(r, f) any quantity that satisfies S(r, f) = o(T(r, f))as $r \to \infty$ outside of a possible exceptional set of finite linear measure. A meromorphic function a(z) is called a small function of f, if and only if T(r, a(z)) = S(r, f). Concerning small meromorphic functions, Biernacki established the following extending theorem of Valiron [3] for Borel direction of meromorphic function. He proved the following theorem.

Theorem 1.4. (see [7]) Let f(z) be a meromorphic function on the complex plane \mathbb{C} with finite positive order λ , there exists a direction $\arg z = \theta$, such that for every $0 < \varepsilon < \pi$,

$$\limsup_{r \to \infty} \frac{\log \sum_{j=1}^{3} n(r, \theta, \varepsilon, f = \varphi_{j}(z))}{\log r} = \lambda,$$

holds for any three distinct small meromorphic functions of f.

The existence of a T direction dealing with small functions was suggested by Zheng Jianhua. In this regard, we will consider this problem and show that

Theorem 1.5. Let f(z) be a transcendental meromorphic function on \mathbb{C} of finite lower order and satisfy (1), then there exists a ray $\operatorname{arg} z = \theta$ such that for every $0 < \varepsilon < \pi$,

$$\limsup_{r \to \infty} \frac{\sum_{j=1}^{3} N(r, \theta, \varepsilon, f = \varphi_{j}(z))}{T(r, f)} > 0,$$

holds for any three distinct meromorphic functions $\varphi_j(z)(j=1,2,3) \in \mathcal{A}$, where \mathcal{A} be the set of meromorphic functions $\varphi(z)$ on the complex plane which satisfies $T(r,\varphi(z)) = o(\frac{T(r,f)}{(\log r)^2})$.

2. Proof of theorems

We shall prove these theorems by using a fundamental inequality of Ahlfors-Shimizu's for characteristic functions in the angular domain. For the sake of convenience, we give the following notation (see Tsuji [11]). Denote the angular domain by $\Delta(\theta, \alpha) = \{z : |\arg z - \theta| \le \alpha\}$ and $\Delta(r)$ be the part of $\Delta(\theta, \alpha)$, which is contained in $|z| \le r$ and put

$$S(r,\triangle(\theta,\alpha),f) = \frac{A(r)}{\pi} = \frac{1}{\pi} \iint\limits_{\triangle(r)} (\frac{|f'(z)|}{(1+|f(z)|^2)})^2 r d\theta dr, \quad z = re^{i\theta},$$

$$T(r, \triangle(\theta, \alpha), f) = \int_{0}^{r} \frac{S(r, \triangle(\theta, \alpha), f)}{r} dr,$$

are respectively the Ahlfors characteristic function and Ahlfors-Shimizu's characteristic function for f(z) in domain $\triangle(\theta,\alpha)$. In particular, when $\theta=0,\alpha=2\pi$, then $T(r,\triangle(\theta,\alpha),f=T(r,f))$, i.e., the Nevanlinna characteristic function for the meromorphic function.

Let $n(r, \theta, \alpha, a)$ be the number of zero points of f(z) - a, contained in $\Delta(r)$, multiple zeros being counted, and put

$$N(r, \theta, \alpha, a) = \int_{0}^{r} \frac{n(r, \theta, \alpha, a)}{r} dr.$$

Given a direction J: arg $z = \theta$, the for any $a \in \mathbb{C}_{\infty}$

$$\delta(f, J; a) = 1 - \limsup_{\varepsilon \to 0} \limsup_{r \to \infty} \frac{N(r, \theta, \varepsilon, a)}{T(r, \triangle(\theta, \varepsilon), f)}$$

is called the *deficiency* of the value a with respect to direction J, and the value a is called deficiency with respect to J if $\delta(f, J; a) > 0$. If the sum of deficiency of all values of a with respect to J satisfies $\sum_a \delta(f, J; a) \leq 2$, we call the direction J is a *Nevanlinna direction* for f (see [9]).

In order to prove our theorems, we first introduce the following main lemmas.

Lemma 2.1. (see [8]) Let f(z) be meromorphic on complex plane, for an angular domain $\triangle(\theta_0, \delta)$, give different points $a_1, a_2, \ldots, a_q \in \mathbb{C}_{\infty}(q > 2)$, if $0 < \sigma < \delta$, then

$$(q-2)T(r, \triangle(\theta, \sigma), f) \le \sum_{i=1}^{q} N(r, \theta, \delta, a_i) + O(\log^2 r) + h[2^{\delta} \pi T(r, \triangle(\theta, \delta), f)]^{1/2} \log T(r, \triangle(\theta, \delta), f).$$

with at most one exceptional set of r denote it E_{δ} , where h is a constant depending only on a_1, a_2, \dots, a_q .

Lemma 2.2. (see [9]) If f(z) is a meromorphic function defined on the whole complex plane and satisfies (1), then there exists at least one Nevanlinna direction J satisfyies yet for any $0 < \delta < \pi/2$,

$$\limsup_{r\to\infty}\frac{T(r,\Delta(\theta_0,\delta),f)}{T(r,f)}>0, \quad and \quad \limsup_{r\to\infty}\frac{T(r,\Delta(\theta_0,\delta),f)}{(\log r)^2}=+\infty.$$

Lemma 2.3. (see [10]) Let S(r) be a positive continuous non-decreasing function of r in $[0, +\infty)$. Suppose that

$$\lim_{r \to \infty} \inf \frac{\log S(r)}{\log r} = \mu < +\infty,$$

$$\lim_{r \to \infty} \sup \frac{S(r)}{\log^2 r} = +\infty.$$

Then for any h > 0, there exists the sequence $\{r_n\}$ and $\{R_n\}$, $R_n^{1-o(1)} \le r_n \le R_n(n \to \infty)$, satisfying

$$\lim_{n \to \infty} \frac{S(r_n)}{\log^2 r_n} = +\infty, \quad S(e^h R_n) \le e^{h\mu} S(R_n) (1 + o(1)) (n \to \infty).$$

Now we are in a position to prove the theorems.

Proof of the Theorem 1.1. Since

$$\limsup_{r \to \infty} \frac{T(r, f)}{(\log r)^2} = +\infty,$$

then there exists an increasing sequence $\{r_n\}, r_n \to \infty (n \to \infty)$ such that

$$\lim_{r_n \to \infty} \frac{T(r_n, f)}{(\log r_n)^2} = +\infty.$$
 (2)

Using the finite covering theorem in $[0, 2\pi]$, there surely exists some $\theta_0 \in [0, 2\pi]$ such that

$$\limsup_{r_n \to \infty} \frac{T(r_n, \Delta(\theta_0, \delta), f)}{T(r_n, f)} > 0.$$
 (3)

Now, we prove that J: $\arg z = \theta_0$ is a T direction. If the above statement is false, then there exists three distinct point $a_1, a_2, a_3 \in \mathbb{C}_{\infty}$ and a σ such that

$$\limsup_{r \to \infty} \frac{\sum_{i=1}^{3} N(r, \theta, \sigma, a_i)}{T(r, f)} = 0.$$

Therefore, we have

$$\lim_{r_n \to \infty} \frac{\sum_{i=1}^{3} N(r_n, \theta, \sigma, a_i)}{T(r_n, f)} = 0.$$
(4)

For any $0 < \delta < \sigma$, by using Lemma 2.1, we have the following

$$T(r, \triangle(\theta, \delta), f) \le \sum_{i=1}^{3} N(r, \theta, \sigma, a_i) + O(\log^2 r) + h[2^{\delta} \pi T(r, \triangle(\theta, \sigma), f)]^{1/2} \log T(r, \triangle(\theta, \sigma), f),$$

which holds with except the set E_{σ} .

We can suppose that r_n does not belong to E_{σ} , thus

$$T(r_n, \triangle(\theta, \delta), f) \le \sum_{i=1}^{3} N(r_n, \theta, \sigma, a_i) + O(\log^2 r) + h[2^{\delta} \pi T(r_n, \triangle(\theta, \sigma), f)]^{1/2} \log T(r_n, \triangle(\theta, \sigma), f).$$

Dividing by $T(r_n, f)$ the both sides of the inequality and taking superior limits, using (2) and (4) we get

$$\limsup_{r_n \to \infty} \frac{T(r_n, \Delta(\theta_0, \delta), f)}{T(r_n, f)} \le \limsup_{r_n \to \infty} \frac{\sum_{i=1}^{3} N(r_n, \theta, \sigma, a_i)}{T(r_n, f)} = 0.$$

This contradicts with (3). Hence J is a T direction.

Proof of the Theorem 1.2. From the proof of Theorem 1.1 we can find Theorem 1.2 is valid. \Box

Proof of the Theorem 1.3. By the Lemma 2.2 and the Theorem 1.2 it is easy to derive there exists a ray J: $\arg z = \theta_0$ which is not only a Nevanlinna direction but also a T direction.

Proof of the Theorem 1.5. By the hypothesis, we have

$$\liminf_{r\to\infty}\frac{\log T(r,f)}{\log r}=\mu<+\infty,$$

and

$$\limsup_{r \to \infty} \frac{T(r, f)}{\log^2 r} = +\infty.$$

Applying the Lemma 2.3, there exists the sequence $\{r_n\}$ and $\{R_n\}$, such that

$$\lim_{n \to \infty} \frac{T(r_n, f)}{\log^2 r_n} = +\infty,$$

 $T(128R_n, f) = T(e^{\log 128}R_n, f) \le e^{\mu \log 128}T(R_n, f)(1 + o(1))(n \to \infty).$

where $R_n^{1-o(1)} \leq r_n \leq R_n (n \to \infty)$. Hence, we have

$$\lim_{n \to \infty} \frac{T(R_n, f)}{\log^2 R_n} = +\infty,\tag{5}$$

and

$$\lim_{n \to \infty} \frac{T(R_n, f)}{T(128R_n, f)} > 0. \tag{6}$$

The above expression (6) implies that there is a ray arg $z = \theta_0$ (0 < $\theta_0 \le 2\pi$), such that

$$\lim_{n \to \infty} \frac{T(R_n, \Omega(\theta_0, \varepsilon), f)}{T(128R_n, f)} > 0, \tag{7}$$

which holds for any $\varepsilon(0 < \varepsilon < \pi)$.

Now we are in a position to prove that the ray $z = \theta_0$ satisfies Theorem 1.5.

For arbitrary $\delta \in (0, \pi)$, and $a_1(z), a_2(z), a_3(z) \in \mathcal{A}$ be any three distinct functions, put

$$F(z) = \frac{(f(z) - a_1(z))(a_3(z) - a_2(z))}{(f(z) - a_2(z))(a_3(z) - a_1(z))}.$$

Then the function f can be written as

$$f(z) = \frac{g_1(z)F(z) + g_2(z)}{g_3(z)F(z) + g_4(z)}$$

where $g_1(z), g_2(z), g_3(z), g_4(z) \in \mathcal{A}$. Using a Lemma of Tsuji [11], we have

$$T(R_n, \Omega(\theta_0, \frac{\delta}{4}), f) \leq 27T(64R_n, \Omega(\theta_0, \frac{\delta}{2}), F) + o(T(128R_n, f))$$

$$\leq 81N(128R_n, \Omega(\theta_0, \delta), F = 0) + 81N(128R_n, \Omega(\theta_0, \delta), F = 1)$$

$$+81N(128R_n, \Omega(\theta_0, \delta), F = \infty) + o(T(128R_n, f)) + O(\log^2 64R_n)$$

$$= 81\sum_{i=1}^{3} N(128R_n, \Omega(\theta_0, \delta), f = a_i(z)) + o(T(128R_n, f)) + O(\log^2 R_n).$$

Dividing the both sides of the above expression by $T(128R_n, f)$ and applying (5) and (7), we can obtain that

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{3} N(128R_n, \Omega(\theta_0, \delta), f = a_i(z))}{T(128R_n, f)} > 0.$$

Hence for any three distinct functions $a_1(z), a_2(z), a_3(z) \in \mathcal{A}$ and any $0 < \varepsilon < \pi$, we have

$$\limsup_{r \to \infty} \frac{\sum_{j=1}^{3} N(r, \theta_0, \varepsilon, f = a_j(z))}{T(r, f)} > 0.$$

The proof of Theorem 1.5 is complete.

Acknowledgment. The author is very grateful for the kind help of Prof. J. H. Zheng and D. C. Sun.

References

- [1] G. Julia, Sur quelques proprietes nouvelles des fonctions entieres on meromorphes, Ann. Ecole Norm. Sup., 36 (1919), 93–125.
- [2] A. Ostrowski, Ueber Folgen analytischer Functionen und einige Verscharfungen des Picardschen Statzes, Math. Zeit., 24 (1924), 215–258
- [3] G. Valiron, Recherches sur le theoreme de M. Borel dans la theorie des fonctions meromorphes, Acta Math., 52 (1928), 67–92.

- [4] G. Valiron, Directions de Borel des fonctions meromorphes, Mem. Sci. Math. Fasc., 89, 1938.
- [5] J. H. Zheng, On transcendental meromorphic functions with radially distributed values, Sci. China, Ser. A., 33 (2003), 539–550.
- [6] H. Guo, J. H. Zheng, and T. W. Ng, On a new singular direction of meromorphic functions, Bull. Aust. Math. Soc., 69 (2004), 277–287.
- [7] L. Yang, Value Distribution Theory, Science Press, Beijing, 1982, in Chinese; Springer-Verlag, 1993, in English.
- [8] X. L. Zhang, A fundamental inequality for meromorphic functions in an angular domain and its application, Acta Math. Sin, New Series, 10 (1994), 308–314.
- [9] X. L. Zhang, The deficiency and Nevanlinna direction of the meromorphic functions,
 J. Beijing Inst. Technol., 8 (1999), 14–18.
- [10] Y. N. Lu and G. H. Zhang, On Nevanlinna direction of meromorphic function, Sci. China, Ser. A., 13 (1983), 215–224.
- [11] M. Tsuji, Potential theory in modern function theory, Maruzen Co. LTD, Tokyo, 1959.
- [12] J. H. Zheng, On value distribution of meromorphic functions with respect to arguments, Preprint, August 12, 2005.
- [13] D. C. Sun, Meromorphic function without singular direction, Chin. J. Math., 2 (1982), 195–200.
- [14] Z. J. Wu and D. C. Sun, On the singular direction of zero order meromorphic functions, Chin. J. Math., 26 (2006), 399–403.

(Received: October 24, 2006) (Revised: May 4, 2007) Department of Mathematics Xianning University Xianning, Hubei 437199, P. R. China Current address: School of Mathematics, South China Normal University Guangzhou 510631, P. R. China E-mail: wwzzjj52@yahoo.com.cn