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GENERALIZED QUASILINEARIZATION FOR NONLINEAR
THREE-POINT BOUNDARY VALUE PROBLEMS WITH

NONLOCAL CONDITIONS

BASHIR AHMAD

Abstract. We apply the generalized quasilinearization technique to
obtain a monotone sequence of iterates converging quadratically to the
unique solution of a general second order nonlinear differential equation
with nonlinear nonlocal mixed three-point boundary conditions. The
convergence of order n (n ≥ 2) of the sequence of iterates has also been
established.

1. Introduction

The subject of multi-point nonlocal boundary value problems, initiated by
Ilin and Moiseev [1,2], has been addressed by many authors, for instance, [3-
9]. In particular, Eloe and Gao [10] discussed the quasilinearization method
for a three-point nonlinear boundary value problem. The quasilinearization
technique [11] is quite fruitful as it not only proves the existence of the solu-
tions of the problem but also provides an iterative scheme for approximat-
ing the solutions. The nineties brought new dimensions to this technique.
The most interesting new idea was introduced by Lakshmikantham [12-13]
who generalized the method of quasilinearizaion by relaxing the convexity
assumption. This development was so significant that it attracted the at-
tention of many researchers and the method was extensively developed and
applied to a wide range of initial and boundary value problems for different
types of differential equations, see [14-22] and references therein.

In this paper, we develop the method of generalized quasilinearization for
the following second order three-point boundary value problem with mixed
nonlinear nonlocal boundary conditions

x′′(t) = f(t, x(t), x′(t)), t ∈ [0, 1], (1.1)
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px(0)− qx′(0) = a, px(1) + qx′(1) = g(x(γ)), 0 < γ < 1, (1.2)
where f ∈ C([0, 1]×R2), p and q are positive constants, a ∈ R and g : R → R
is continuous. The importance of the work lies in the fact that the boundary
conditions of the type (1.2) appear in certain problems of thermodynamics
and wave propagation where the controller at the end t = 1 dissipates or
adds energy according to a censor located at a position t = γ where as the
other end t = 0 is maintained at a constant level of energy. A sequence
of approximate solutions converging monotonically and quadratically to a
unique solution of (1.1) and (1.2) will be obtained in Theorem 3.1 and the
convergence of order n(n ≥ 2) has been established in Theorem 3.2.

2. Preliminaries

It is well known that the solution, x(t) of (1.1) and (1.2) can be written
as

x(t) = a

( −t

p + 2q
+

p + q

p2 + 2pq

)
+ g(x(γ))

[
t

p + 2q
+

q

p2 + 2pq

]

+
∫ 1

0
G(t, s)f(s, x(s), x′(s))ds, (2.1)

where G(t, s) is the Green’s function for the mixed three-point boundary
value problem and is given by

G(t, s) =
1

(p2 + 2pq)

{
(pt + q)(p(s− 1)− q), if 0 ≤ t ≤ s ≤ 1,

(p(t− 1)− q)(ps + q), if 0 ≤ s ≤ t ≤ 1.
(2.2)

Note that G(t, s) < 0 on [0, 1]× [0, 1].
We say that α ∈ C2[0, 1] is a lower solution of the boundary value problem

(1.1) and (1.2) if

α′′(t) ≥ f(t, α(t), α′(t)), t ∈ [0, 1],

pα(0)− qα′(0) ≤ a, pα(1) + qα′(1) ≤ g(α(γ)),
and β ∈ C2[0, 1] is an upper solution of the boundary value problem (1.1)
and (1.2) if

β′′(t) ≤ f(t, β(t), β′(t)), t ∈ [0, 1],
pβ(0)− qβ′(0) ≥ a, pβ(1) + qβ′(1) ≥ g(β(γ)).

We need the following version of Kamke’s convergence theorem (Page 14
[23]) to prove the existence theorem.

Theorem 2.1. Assume that each solution of (1.1) extends to the interval
(0, 1) or becomes unbounded on its maximal interval of convergence. Let
{xm(t)} be a sequence of solutions of (1.1) such that there exists a sequence
{tm} ⊂ (0, 1) with limm→∞ tm = t0 ∈ (0, 1) and limm→∞ x

(i)
m (tm) = xi, i =
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0, 1. Then there is a solution x(t) of (1.1) such that x(i)(t0) = xi, i =
0, 1 and a subsequence {xmj (t)} of {xm(t)} such that limj→∞ x

(i)
mj (t) =

x(i)(t), i = 0, 1, uniformly on each compact subinterval of (0, 1).

Remark 2.2. In the study of boundary value problems involving an n′th
order differential equation of the form

xn = f(t, x, x′, . . . , xn−1), (2.3)

the following proposition concerning the convergence of the sequence of so-
lutions of the problem has attracted several mathematicians. For the study
of different criteria equivalent to this proposition, we refer the reader to a
detailed survey article by Agarwal [24].

Proposition 2.3. If [c, d] is a compact subinterval of (a, b) and {xm(t)} is a
sequence of solutions of (2.2) which is uniformly bounded, that is, |xm(t)| ≤
M on [c, d] for some M > 0 and for all m = 1, 2, . . . , then there is a
subsequence {xmj (t)} such that {x(i)

mj} converges uniformly on [c, d] for each
i = 0, 1, . . . , n− 1.

Theorem 2.4. (Existence Theorem) Assume that f is continuous on [0, 1]×
R2, g is continuous on R satisfying a one-sided Lipschitz condition ( g(x)−
g(y) ≤ L(x − y), 0 ≤ L < p) and each solution of x′′(t) = f(t, x(t), x′(t))
extends to [0, 1] or becomes unbounded on its maximal interval of conver-
gence. Let α, β be lower and upper solutions of (1.1) and (1.2) respectively
such that α(t) ≤ β(t). Then there exists a solution, x(t) of (1.1) and (1.2)
such that α(t) ≤ x(t) ≤ β(t).

Proof. We define f and g by

f(t, x, y) =





f(t, β(t), y) + x−β(t)
1+x−β(t) , if x(t) > β(t),

f(t, x, y), if α(t) ≤ x(t) ≤ β(t),
f(t, α(t), y) + x−α(t)

1+|x−α(t)| , if x(t) < α(t),

g(x) =





g(β(γ)), if x > β(γ),
g(x), if α(γ) ≤ x ≤ β(γ),
g(α(γ)), if x < α(γ).

Let N = max{|α′(t)|, |β′(t)|, |g(α(γ))|, |g(β(γ))|}. For each positive inte-
ger l, we set

fl(t, x, y) =





f(t, x,N + l), if y > N + l,
f(t, x, y), if |y| ≤ N + l,
f(t, x,−(N + l)), if y < −(N + l).
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Observe that fl is bounded and continuous on [0, 1] × R2, g is bounded
and continuous on R. By a standard application of Schauder’s fixed point
theorem to the operator defined by (2.1), it follows that (1.1) and (1.2) has
a solution xl with f = fl and g = g.

Now, we show that each solution xl satisfies α(t) ≤ xl(t) ≤ β(t) t ∈ [0, 1].
For the sake of contradiction, let us suppose that α(t) ≤ xl(t) does not
hold and set r(t) = α(t) − xl(t), t ∈ [0, 1]. By the standard arguments
[25], let r(t) have a positive maximum at τ ∈ (0, 1). Then r′′(τ) ≤ 0 and
|α′(τ)| = |x′l(τ)| ≤ N < N + l. On the other hand, r′′(τ) = α′′(τ)− x′′l (τ) ≥
r(τ)/(1 + r(τ)) > 0, which is a contradiction. For τ = 1, we have

pr(1) + qr′(1) ≤ g(α(γ))− g(xl(γ)) ≤ Lr(γ).

Thus, pr(1) ≤ Lr(γ) or r(1) < r(γ), which is a contradiction. Similarly,
we get a contradiction for τ = 0. Hence we conclude that α ≤ xl on [0, 1].
Similarly, one can prove that xl ≤ β on [0, 1]. Thus, it follows that α(t) ≤
xl(t) ≤ β(t), t ∈ [0, 1]. Moreover, for each l, there exists tl ∈ [0, t1] such that

t1|x′kl(tl)| = |xkl(t1)− xkl(0)| ≤ max{β(0)− α(t1), β(t1)− α(0)}.
Thus, each of the subsequences {xkl(tl)} and {x′kl(tl)} is bounded. Hence,
by Kamke convergence theorem, there exists a subsequence of {xkl} which
converges to a solution of x′′(t) = f(t, x(t), x′(t)) on a maximal subinterval of
[0, t1]. Clearly, α(t) ≤ x(t) ≤ β(t) and all solutions of x′′(t) = f(t, x(t), x′(t))
extend to all of [0, 1] or become unbounded. Hence α(t) ≤ x(t) ≤ β(t) and
f(t, x(t), x′(t)) = f(t, x(t), x′(t)). This completes the proof. ¤

Corollary 2.5. Assume that f is continuous with fx > 0 on [0, 1]×R and
g is continuous with 0 ≤ g′ ≤ 1 on R. Then the solution of (1.1) and (1.2)
is unique.

Remark 2.6. The simplified version of the condition that each solution
of x′′(t) = f(t, x(t), x′(t)) extends to [0, 1] or becomes unbounded on its
maximal interval of convergence is that f satisfies a Nagumo condition [16,
22], that is, for each M > 0, there exists a positive continuous function hM on
[0,∞] such that |f(t, x, x′)| ≤ hM (|x′|) for all (t, x, x′) ∈ [0, 1]× [−M, M ]×R
and ∫ ∞

0
s[hM (s)]−1ds = ∞.

3. Main Results

Theorem 3.1. Assume that

(A1) α, β are lower and upper solutions of (1.1) and (1.2) respectively.
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(A2) f(t, x, y) ∈ C([0, 1] × R2) such that ∂f
∂x (t, x, y) > 0, ∂2

∂x2 (f(t, x, y) +
φ(t, x, y)) ≤ 0, where φ ∈ C2[J × R2, R] with ∂2

∂x2 φ(t, x, y) ≤ 0.
Moreover, f satisfies a Nagumo condition in y.

(A3) g, g′ are continuous on R and g′′ exists with 0 ≤ g′ ≤ 1, g′′ ≥ 0.

Then there exists a monotone sequence of solutions converging quadratically
to the unique solution, x(t) of (1.1) and (1.2).

Proof. Define

f(t, x, y) = F (t, x)− φ(t, x, y), t ∈ [0, 1], (3.1)

where F (t, x) : [0, 1] × R → R is such that F, Fx, Fxx are continuous on
[0, 1]× R and in view of (A2), it follows that Fxx(t, x) ≤ 0. Thus, applying
the generalized mean value theorem on F (t, x) yields

F (t, x) ≤ F (t, x1) + Fx(t, x1)(x− x1), (3.2)

which together with (3.1) takes the form

f(t, x, y) ≤ f(t, x1, y) + Fx(t, x1)(x− x1)− (φ(t, x, y)− φ(t, x1, y)).

Let us define

G(t, x, x1, y) = f(t, x1, y)+Fx(t, x1)(x−x1)−(φ(t, x, y)−φ(t, x1, y)). (3.3)

Observe that

G(t, x, x1, y) ≥ f(t, x, y), G(t, x, x, y) = f(t, x, y). (3.4)

Moreover, using (3.3) together with (A2) yields

Gx(t, x, x1, y)= Fx(t, x1)−φx(t, x, y)≥ Fx(t, x)−φx(t, x, y) = fx(t, x, y) > 0,
(3.5)

which implies that G(t, x, x1, y) is increasing in x for each fixed (t, x1, y) ∈
J ×R2. In view of (A3), we get

g(x) ≥ g(y) + g′(y)(x− y).

Letting
g∗(x, y) = g(y) + g′(y)(x− y),

we notice that

g(x) = max
y

g∗(x, y), g(x) = g∗(x, x), (3.6)

and 0 ≤ g∗x(x, y) = g′(y) ≤ 1. Now, we set x1 = α0(t) = α(t), y = x′(t) in
(3.3) and consider the BVP

x′′(t) = G(t, x(t), α0(t), x′(t)), t ∈ [0, 1], (3.7)

px(0)− qx′(0) = a, px(1) + qx′(1) = g∗(x(γ), α0(γ)). (3.8)
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In view of (A1), (3.4) and (3.6), we have

α′′0(t) ≥ f(t, α0(t), α′0(t)) = G(t, α0(t), α0(t), α′0(t)), t ∈ [0, 1],

pα0(0)− qα′0(0) ≤ a, pα0(1) + qα′0(1) ≤ g∗(α0(γ), α0(γ)),

and

β′′(t) ≤ f(t, β(t), β′(t)) ≤ G(t, β(t), α0(t), β′(t)), t ∈ [0, 1],

pβ(0)− qβ′(0) ≥ a, pβ(1) + qβ′(1) ≥ g∗(β(γ), α0(γ)),

which imply that α0 and β are lower and upper solutions of (3.7) and (3.8)
respectively. Thus, by Theorem 2.4 and Corollary 2.5, there exists a unique
solution α1 of (3.7) and (3.8) such that

α0 ≤ α1 ≤ β.

Next, we consider

x′′(t) = G(t, x(t), α1(t), x′(t)), t ∈ [0, 1], (3.9)

px(0)− qx′(0) = a, px(1) + qx′(1) = g∗(x(γ), α1(γ)). (3.10)
Employing the earlier arguments, we find that α1 is a lower solution of (3.9)
and (3.10), that is,

α′′1(t) = G(t, α1(t), α0(t), α′1(t)) ≥ G(t, α1(t), α1(t), α′1(t)), t ∈ [0, 1],

pα1(0)− qα′1(0) ≤, pα1(1) + qα′1(1) = g∗(α1(γ), α0(γ)) ≤ g∗(α1(γ), α1(γ)).

Similarly, β is an upper solution of (3.9) and (3.10) as we have

β′′(t) ≤ f(t, β(t), β′(t)) ≤ G(t, β(t), α1(t), β′(t)), t ∈ [0, 1],

pβ(0)− qβ′(0) ≥ a, pβ(1) + qβ′(1) ≥ g∗(β(γ), α1(γ)).

Again by Theorem 2.4 and Corollary 2.5, it follows that there exists a unique
solution α2 of (3.9) and (3.10) such that

α1 ≤ α2 ≤ β.

Continuing this process successively, we obtain a monotone sequence {αj}
satisfying

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αj ≤ β,

where the element αj of the sequence {αj} is a solution of the problem

x′′(t) = G(t, x(t), αj−1(t), x′(t)), t ∈ [0, 1],

px(0)− qx′(0) = a, px(1) + qx′(1) = g∗(x(γ), αj−1(γ)).
Applying Theorem 2.1 (Kamke’s convergence theorem) on the sequence {αj}
of solutions of the above problem, there exists a function x(t) ∈ C2[0, 1] and
a subsequence {αjk

} of {αj} such that limj→∞ α
(i)
jk

(t) = xi(t), i = 0, 1,
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uniformly on the compact interval [0, 1]. Thus, the sequence {αj} converges
uniformly in C1[0, 1] to x(t), the unique solution of (1.1) and (1.2).

Now, we prove the quadratic convergence. For that we set ej(t) = x(t)−
αj(t), aj = αj(t)− αj−1(t) and note that ej(t) ≥ 0, aj(t) ≥ 0. Further

pej(0)− qe′j(0) = 0, pej(1) + qe′j(1) = g(x(γ))− g∗(αj(γ), αj−1(γ)).

Using the generalized mean value theorem, (A2), (3.1) and (3.3), we have

e′′j (t) = x′′(t)− α′′j (t)

= F (t, x)− φ(t, x, x′)−G(t, αj(t), αj−1(t), α′j(t))

= F (t, x)− φ(t, x, x′)− {
F (t, αj−1)

+ Fx(t, αj−1)(αj − αj−1)− φ(t, αj , α
′
j)

}

= Fx(t, c1)(x− αj−1)− Fx(t, αj−1)(αj − αj−1)

− (φ(t, x, x′)− φ(t, αj , α
′
j))

= [Fx(t, c1)− Fx(t, αj−1)]ej−1(t) + Fx(t, αj−1)ej(t)

− φx(t, c2, c3)ej(t)− (φx′(t, c2, c3)e′j(t)
= Fxx(t, c4)(c1 − αj−1)ej−1(t) + [Fx(t, αj−1)− φx(t, c2, c3)]ej(t)

− φx′(t, c2, c3)e′j(t).

≥ −Fxx(t, c4)e2
j−1(t) + fx′(t, c2, c3)e′j(t), t ∈ [0, 1],

where αj−1 ≤ c1 ≤ x, αj ≤ c2 ≤ x, α′j ≤ c3 ≤ x′, αj−1 ≤ c4 ≤ c1. In
particular, we can write

e′′j (t)− fx′(t, c2, c3)e′j(t) ≥ −M1e
2
j−1(t), (3.11)

where M1 > max(t,x)∈D Fxx(t, x) for

D = {(t, x) : 0 < t < 1, α(t) ≤ x(t) ≤ β(t)}.
Let µ(t) = exp{− ∫ t

0 fx′(s, c2(s), c3(s))ds} be the integrating factor associ-
ated with (3.11). Then

e′j(t)µ(t)− e′j(0) ≥ −M1e
2
j−1

∫ t

0
µ(s) ds, (3.12)

and in view of e′j(0) ≥ 0, it follows that

e′j(t) ≥ −M1e
2
j−1

∫ t

0
µ(s)ds/µ(t).

Thus, there exists N1 > 0 for sufficiently large j such that

e′j(t) ≥ −N1‖ej−1‖2, 0 ≤ t ≤ 1.
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Consequently, we have

e′′j (t) ≥ −M‖ej−1‖2, M > 0.

From (2.1), we have

ej(t)=[g(x(γ))−g∗(αj(γ), αj−1(γ))]
(

t

p + 2q
+

q

p2 + 2pq

)
+
∫ 1

0
G(t, s)e′′j (s) ds.

(3.13)
Observe that

g(x(γ))− g∗(αj(γ), αj−1(γ))

= g(x(γ))− g(αj−1(γ))− g′(αj−1(γ))(αj(γ)− αj−1(γ))

= g′(co)ej−1(γ)− g′(αj−1(γ))(ej−1(γ)− ej(γ))

= g′′(c1)e2
j−1(γ) + g′(αj−1)ej(γ). (3.14)

Substituting (3.14) in (3.13) and taking the maximum over the interval [0, 1],
we obtain

‖ej‖ ≤ M3‖ej−1‖2 + λ1‖ej‖+ M1‖ej−1‖2, (3.15)

where M3 = M2ζ, ζ = ( 1
p+2q + q

p2+2pq
), M2 provides a bound for ‖g′′‖ on

[αj−1(γ), x(γ)], λ1 = λζ, ‖g′‖ ≤ λ < 1 and M1 = max
∫ 1
0 M |G(t, s)|ds.

Solving (3.15) algebraically, we get

‖ej‖ ≤ δ‖ej−1‖2,

where δ = (M3 + M1)/(1 − λ1) and ‖ej‖ = max{|ej(t)| : t ∈ [0, 1]} is the
usual uniform norm. This establishes the quadratic convergence. ¤

Theorem 3.2. Assume that
(B1) α, β are lower and upper solutions of (1.1) and (1.2) respectively.
(B2) ∂i

∂xi f(t, x, y) ∈ C([0, 1] × R2) for i = 0, 1, 2, . . . , n such that ∂i

∂xi

f(t, x, y) > 0 for i = 1, 2, . . . , n − 1, ∂
∂y ( ∂i

∂xi f(t, x, y)) ≥ 0, ∂n

∂xn

(f(t, x, y) + φ(t, x, y)) ≤ 0, where φ ∈ C0,n[J × R2, R] with ∂n

∂xn

φ(t, x, y) ≤ 0. Moreover, f satisfies a Nagumo condition in y.

(B3) di

dxi g(x) ∈ C(R) for i = 0, 1, 2, . . . , n satisfying 0 ≤ di

dxi g(x) <
M

(β−α)i−1 for i = 1, 2, . . . , n− 1 with 0 < M < 1
3 and dn

dxn g(x) ≥ 0.

Then there exists a monotone sequence of solutions converging monotonica-
lly to the unique solution of (1.1) and (1.2) with the order of convergence
n (n ≥ 2).

Proof. Let us define

f(t, x, y) = F (t, x)− φ(t, x, y), t ∈ [0, 1]. (3.16)
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In view of (B2), we note that F ∈ C0,n([0, 1] × R) and ∂n

∂xn F (t, x) ≤ 0.
Applying the generalized mean value theorem on F (t, x), we get

F (t, x) ≤
n−1∑

i=0

∂i

∂xi
F (t, x1)

(x− x1)i

i!
,

which together with (3.16) takes the form

f(t, x, y) ≤
n−1∑

i=0

∂i

∂xi
f(t, x1, y)

(x− x1)i

i!
− ∂n

∂xn
φ(t, ξ, y)

(x− x1)n

n!
, (3.17)

where x1 ≤ ξ ≤ x. Define

G∗(t, x, x1, y) =
n−1∑

i=0

∂i

∂xi
f(t, x1, y)

(x− x1)i

i!
− ∂n

∂xn
φ(t, ξ, y)

(x− x1)n

n!
,

(3.18)
where ξ depends on x1. Observe that

G∗(t, x, x1, y) ≥ f(t, x, y), G∗(t, x, x, y) = f(t, x, y). (3.19)

Moreover, using (B2), we find that

G∗
x(t, x, x1, y) ≥

n−1∑

i=1

∂i

∂xi
f(t, x1, y)

(x− x1)i−1

(i− 1)!
> 0,

which implies that G∗(t, x, x1, y) is increasing in x for each fixed (t, x1, y) ∈
J × R2. Further, the generalized mean value theorem together with (B3)
gives

g(x) ≥
n−1∑

i=0

di

dxi
g(y)

(x− y)i

i!
.

Setting

g∗∗(x, y) =
n−1∑

i=0

di

dxi
g(y)

(x− y)i

i!
,

we notice that

g(x) = max
y

g∗∗(x, y), g(x) = g∗∗(x, x). (3.20)

Clearly g∗∗x (x, y) ≥ 0 and

g∗∗x (x, y) =
n−1∑

i=1

di

dxi
g(y)

(x− y)i−1

(i− 1)!
≤

n−1∑

i=1

di

dxi
g(y)

(β − α)i−1

(i− 1)!

≤
n−1∑

i=1

M

(i− 1)!
< M(3− 1

2n−3
) < 3M < 1.
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Now, we consider the BVP

x′′(t) = G∗(t, x(t), α0(t), x′(t)), t ∈ [0, 1], (3.21)

px(0)− qx′(0) = a, px(1) + qx′(1) = g∗∗(x(γ), α0(γ)). (3.22)
In view of (B1), (3.19) and (3.20) yield

α′′0(t) ≥ f(t, α0(t), α′0(t)) = G∗(t, α0(t), α0(t), α′0(t)), t ∈ [0, 1],

pα0(0)− qα′0(0) ≤ a, pα0(1) + qα′0(1) ≤ g∗∗(α0(γ), α0(γ)),

and

β′′(t) ≤ f(t, β(t), β′(t)) ≤ G∗(t, β(t), α0(t), β′(t)), t ∈ [0, 1],

pβ(0)− qβ′(0) ≥ a, pβ(1) + qβ′(1) ≥ g∗∗(β(γ), α0(γ)),

which imply that α0 and β are lower and upper solutions of (3.21) and (3.22).
Thus, by Theorem 2.4 and Corollary 2.5, there exists a unique solution α1

of (3.21) and (3.22) such that

α0 ≤ α1 ≤ β.

Continuing this process successively, we obtain a monotone sequence {αj}
satisfying

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αj ≤ β,

where the element αj of the sequence {αj} is a solution of the problem

x′′(t) = G∗(t, x(t), αj−1(t), x′(t)), t ∈ [0, 1],

px(0)− qx′(0) = a, px(1) + qx′(1) = g∗∗(x(γ), αj−1(γ)),
where ξ in G∗ (given by (3.18)) depends on αj−1. Employing the arguments
used in the preceding theorem, it follows that the sequence {αj} converges
in C1[0, 1] to x, the unique solution of (1.1) and (1.2).

Now, we prove the convergence of order n ≥ 2. For that we set ej(t) =
x(t)− αj(t), aj−1 = αj(t)− αj−1(t) and note that

pej(0)− qe′j(0) = 0, pej(1) + qe′j(1) = g(x(γ))− g∗∗(αj(γ), αj−1(γ)).

Using the generalized mean value theorem, (B2), (3.16) and (3.18), we can
find αj−1 ≤ ξ1 ≤ x (ξ1 depends on αj−1) such that

e′′j (t) = x′′(t)− α′′j (t)

=
n−1∑

i=0

∂i

∂xi
f(t, αj−1, x

′)
(x− αj−1)i

i!
+

∂n

∂xn
f(t, ξ1, x

′)
(x− αj−1)n

n!

−
n−1∑

i=0

∂i

∂xi
f(t, αj−1, α

′
j)

(αj − αj−1)i

i!
+

∂n

∂xn
φ(t, ξ, α′j)

(αj − αj−1)n

n!
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≥
n−1∑

i=0

∂i

∂xi
f(t, αj−1, α

′
j)

ei
j−1

i!
−

n−1∑

i=0

∂i

∂xi
f(t, αj−1, α

′
j)

ai
j−1

i!

+
[

∂n

∂xn
f(t, ξ1, x

′) +
∂n

∂xn
φ(t, ξ, α′j)

]
en
j−1

n!

≥
n−1∑

i=1

∂i

∂xi
f(t, αj−1, α

′
j)

1
i!

[ei
j−1 − ai

j−1] +
[

∂n

∂xn
f(t, ξ, α′j)

+
∂n

∂xn
φ(t, ξ, α′j)

]
en
j−1

n!

=
n−1∑

i=1

∂i

∂xi
f(t, αj−1, α

′
j)

1
i!

i−1∑

r=0

ei−r−1
j−1 ar

j−1(ej−1 − aj−1)

+
∂n

∂xn
F (t, ξ, α′j)

en
j−1

n!

=
[ n−1∑

i=1

∂i

∂xi
f(t, αj−1, α

′
j)

1
i!

i−1∑

r=0

ei−r−1
j−1 ar

j−1

]
ej +

∂n

∂xn
F (t, ξ, α′j)

en
j−1

n!

= ω(t)ej +
∂n

∂xn
F (t, ξ, α′j)

en
j−1

n!
≥ ω(t)ej − ε1e

n
j−1, t ∈ [0, 1],

where ω(t) =
∑n−1

i=1
∂i

∂xi f(t, αj−1, α
′
j)

1
i!

∑i−1
r=0 ei−r−1

j−1 ar
j−1 > 0 and 1

n!
∂n

∂xn F

(t, ξ, α′j) ≥ −ε1, for some ε1 > 0. Here, we have chosen ξ1 = ξ (in general ξ1

and ξ, depending on αj−1, are independent) as αj−1 ≤ ξ, ξ1 ≤ x. Thus, for
each j, we have

e′′j (t) ≥ −ε1e
n
j−1, t ∈ [0, 1]. (3.23)

As before, from (2.1), we have

ej(t)=[g(x(γ))−g∗∗(αj(γ), αj−1(γ))]
(

t

p+2q
+

q

p2+ 2pq

)
+

∫ 1

0
G(t, s)e′′j (s)ds.

(3.24)
Clearly

g(x(γ))− g∗∗(αj(γ), αj−1(γ)) =
n−1∑

i=0

di

dxi
g(αj−1(γ))

(x(γ)− αj−1(γ))i

i!

+
dn

dxn
g(ξ(γ))

(x(γ)− αj−1(γ))n

n!
−

n−1∑

i=0

di

dxi
g(αj−1(γ))

(αj(γ)− αj−1(γ))i

i!

=
n−1∑

i=1

di

dxi
g(αj−1(γ))

(ei
j−1(γ)− ai

j−1(γ))
i!

+
dn

dxn
g(ξ(γ))

(ej−1(γ))n

n!
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=
n−1∑

i=1

di

dxi
g(αj−1(γ))

1
i!

i−1∑

r=0

er
j−1(γ)ai−1−r

j−1 (γ)ej(γ)

+
dn

dxn
g(ξ(γ))

(ej−1(γ))n

n!

≤
[ n−1∑

i=0

M

(β − α)i−1

1
i!

i−1∑

r=0

ei−1−r
j−1 (γ)ar

j−1(γ)
]
ej(γ) + ε3e

n
j−1, (3.25)

where ε3 provides a bound for 1
n!

dn

dxn g(ξ(γ)). Letting

Pj(t) =
n−1∑

i=0

M

(β − α)i−1

1
i!

i−1∑

r=0

ei−1−r
j−1 (γ)ar

j−1(γ),

we observe that

lim
j→∞

Pj(t) = lim
j→∞

n−1∑

i=0

M

(β − α)i−1

1
i!

i−1∑

r=0

ei−1−r
j−1 (γ)ar

j−1(γ) = M <
1
3
.

Therefore, we can choose λ1 < 1
3 and j0 ∈ N such that for n ≥ j0, we have

Pj(t) < λ2. Thus, using (3.23) and (3.25) in (3.24) and taking the maximum
over the interval [0, 1], we obtain

‖ej‖ ≤ ε4‖ej−1‖n + λ3‖ej‖+ ε5‖ej−1‖n, (3.26)

where ε4 = ε3ζ, λ3 = λ2ζ, ζ = ( 1
p+2q + q

p2+2pq
) and ε5 = max

∫ 1
0 ε1|G(t, s)|ds.

Solving (3.26) algebraically, we get

‖ej‖ ≤ ε‖ej−1‖n,

where δ = (ε4 + ε5)/(1 − λ3). This establishes the convergence of order
n (n ≥ 2). ¤

Remark 3.3. It is clear that Theorem 3.2 remains valid if we replace
the condition ∂i

∂xi f(t, x, x′) > 0 for i = 1, 2, . . . , n − 1 in (B2) by that of

Γf(t, x, x′) > 0 with ∂
∂xf(t, x, x′) > 0, where Γ =

∑n−1
i=1

∂i(.)
∂xi

(x−y)i−1

(i−1) .
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