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SMOOTH SOLUTIONS OF A CLASS OF QUASIELLIPTIC
EQUATIONS

ALIK M. NAJAFOV

Abstract. In this paper the smoothness of solutions of one class of
quasielliptic equations in the bounded domain G ⊂ Rn satisfying the
flexible λ-horn condition are studied.

Proceeding from the fact that some mixed derivatives Dνf may not be
estimated by derivative functions contained in the norm of the space W l

p(G)
and on the other hand from the undesirability of using higher order deriva-
tives of a function f, one finds it necessary to consider other types of Sobolev
spaces W l

p(Q,G), that are introduced and studied in [21] with the finite norm

‖f‖W l
p(Q,G) =

∑

e⊂Q

∑

i∈e0
n\Q

∥∥∥Dle∨i
f
∥∥∥

p,G

where

‖f‖p,G =

{∫

R

[
· · ·

{ ∫

R

(∫

R

χG(x) |f(x)|p1dx1

) p2
p1

dx2

} p3
p2

· · ·
] pn

pn−1

dxn

} 1
pn

,

χG− the characteristic function of the set G ⊂ Rn, en = {1, 2, . . . , n}; e0
n =

en∪{0}; Q− be a fixed subset of set en; Ø 6= e ⊂ Q; p ∈ [1,∞); a ∈ [0, 1]n; τ ∈
∈ [1,∞]; l ∈ Nn; Dle∨i

f = D
le∨i
1

1 D
le∨i
2

2 · · ·Dle∨i
n

n f, D
le∨i
j

j = D
lj
j for j ∈ e ∨ i;

D
le∨i
j

j = 0 for j ∈ en\(e ∨ i); j ∈ e ∨ i-denote that, or j ∈ e ⊂ Q, or
j = i ∈ en\Q. Note that these spaces were also defined by A.D. Djabrailov
[6] but with the norm of the space W l

p(Q,G) replacing Dle∨i
f by Dle∪i

f
(note, that in case [6] dominate mixed derivatives). Unlike in the paper [6]
here the dominant term is either unmixed derivatives, or mixed derivatives,
or mixed derivatives and the unmixed derivatives are equal.

At |Q| = 1 ( |Q| - the number of the set Q ) the space W l
p(Q,G) coincides

with the space of Sobolev W l
p(G), at Q ≡ en the space W l

p(Q,G) coincides
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with the space of Sobolev with dominant mixed derivatives Sl
pW (G), intro-

duced and studied by S.M.Nikolskii [27] with finite norm

‖f‖Sl
p(Q,G) =

∑

e⊆en

∥∥∥Dlef
∥∥∥

p,G
,

where l = (l1, l2, . . . , ln), lj ∈ N for j ∈ en; le = (le1, l
e
2, . . . , l

e
n) , lej = l for

j ∈ e, lej = 0 for j ∈ en \ e.
For example, in equation

u + u′x + u′y + u′′xy + u′z = 0

the norm of function u′′xy can not be estimated by the norm of space W (1,1,1),
but may be estimated by the norm of the Sobolev space with dominating
mixed derivatives S(1,1,1)W. Therefore we require additional derivatives of
the function u(x, y, z).

Let us consider the problems on smoothness of solutions of equations type
(i, i′ ∈ en\Q ):

∑

αj≤lj ,
δj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1,

|δ, 1l |en\Q
≤1

Dαe∨i
(
aαe,iδe,i(x)Dδe∨i′

u(x)
)

=
∑

αj≤lj ,j∈e⊂Q

∑

|α, 1
l |en\Q

≤1

Dαe∨i
fαe∨i(x), (1)

where
∣∣α, 1

l

∣∣
en\Q =

∑
j∈en\Q

αj

lj
. Suppose, that the coefficients aαe,iδe,i(x) are

bounded, measurable functions are in the domain G, aαe,iδe,i(x) = aδe,iαe,i(x)
and

∑

αj=lj ,
δj=lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

=1,

|δ, 1l |en\Q
=1

aαe,iδe,i(x)ξαe,iξδe,i

≥ C0

∑

αj=lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

=1

∣∣ξαe,i

∣∣2, ξ ∈ Rn, C0 = const > 0. (2)

We assume that fαe∨i(x) ∈ L2(G) for αj < lj , j ∈ Q,
∣∣α, 1

l

∣∣
en\Q < 1;

fαe∨i(x) ∈ L2,a,æ(G) for αj = lj , j ∈ Q,
∣∣α, 1

l

∣∣
en\Q = 1.

A generalized solution to (1) in G is a function u(x) ∈ W l
2(Q,G) such

that



SMOOTH SOLUTIONS OF A CLASS OF QUASIELLIPTIC EQUATIONS 195

∑

αj≤lj ,
δj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1,

|δ, 1l |en\Q
≤1

(−1)|αe∨i|
∫

G

aαe,iδe,i(x)Dδe∨i′
u(x)Dαe∨i

υ(x) dx

=
∑

αj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1

(−1)|αe∨i|
∫

G

fαe∨i(x)Dαe∨i
υ(x) dx, (3)

for every function υ(x) ∈ ◦
W

l

2 (Q,G). We denote by
◦

W
l

2 (Q, G) the supple-
ment of C∞

0 (G) in the norm W l
2(Q,G).

Notice that at |Q| = 1 (|Q|–the number of the set Q) the equation (1)
converts into the following

∑

|α, 1
l |≤1,

|δ, 1l |≤1

Dα
(
aαδ(x)Dδu(x)

)
=

∑

|α, 1
l |≤1

Dαfα(x), (4)

where
∣∣α, 1

l

∣∣ =
∑

j∈en

αj

lj
, at Q ≡ en the equation (1) converts into the following

∑

αj≤lj ,
δj≤lj ,

j∈e⊂en

Dαe
(
aαeδe(x)Dδe

u(x)
)

=
∑

αj≤lj ,
j∈e⊂en

Dαe
fαe(x). (5)

The problem of the local smoothness of solutions of equations of type (4)
was considered by several authors. In [8] the Hölder continuity of solutions
of quasielliptic equations with continuous or Hölder continuous coefficients
of the leading derivatives is studied. In [1] Lp–estimates for solutions were
studied, under the condition that the coefficients of the leading derivatives
are infinitely differentiable. In [11] a theorem was proven claiming that
the solution belongs to the Hölder class inside the domain, and in [7] local
“interior” Hölder estimates were obtained for solutions to a quasielliptic-
type equation in the case when the right-hand side satisfies the anisotropic
Hölder condition. In this article and [18], [20], [22], [23] we proved theorems
stating that the solution belongs to the Hölder class inside the domain, and
has a zero boundary Dirichlet condition up to bounds. Notice that in this
article, as in [11], we study the Hölder continuity of a solution without any
smoothness condition on coefficients. However, observe that unlike [11] here

(1) ν 6= 0;
(2) the Hölder “exponent” is greater than that in [11];
(3) fα for αj = lj , j ∈ Q;

∣∣α, 1
l

∣∣
en\Q = 1 belongs to a broader class, i.e.

fαe∨i ∈ L2,a,æ(G).
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To study partial differential equations it is necessary to study the space of
functions of many variables with parameters. For some partial values indexes
initially are studied in papers of Morrey [13]-[15], and later on developed in
papers [9], [28], [4], [5], [2], [12], [26], [10], [16], [17], [19], [24] and others.

For all x ∈ G, æ, t ∈ (0,∞)n; ti = tj for i, j ∈ en\Q assuming

Itæ(x) =
{

y : |yj − xj | < 1
2
t
æj

j , j ∈ en

}
, Gtæ(x) = G ∩ Itæ(x).

Let us consider for x ∈ G the trajectory

ρ(tλ, x) = (ρ1(tλ1
1 , x), ρ2(tλ2

2 , x), . . . , ρn(tλn
n , x)), 0 ≤ tj ≤ Tj , j ∈ en,

where for all j ∈ en, ρj(0, x) = 0, the functions ρj(uj , x) are absolutely

continuous with respect to uj on [0, T λj

j ] and
∣∣∣ρ′j(uj , x)

∣∣∣ ≤ 1 for almost all

uj ∈ [0, T λj

j ], where ρ′j(uj , x) = ∂
∂uj

ρj(uj , x). At θ ∈ (0, 1]n, θi = θj for
i, j ∈ en\Q, then the set V (λ, x, θ) =

⋃
0≤tj≤Tj ,j∈en

[
ρ(tλ, x) + tλθλI

]
we

called the set of (A)-condition introduced by the author in [22]. We will
suppose that x+ V (λ, x, θ) ⊂ G. In the case of, t1 = t2 = · · · = tn = t,
θ1 = θ2 = · · · = θn = θ ∈ (0, 1], V (λ, x, θ)−is flexible −λ,-horn introduced
by O.V. Besov [3].

Definition. The Sobolev-Morrey - W l
p,a,æ,τ (Q,G) ( p ∈ [1,∞)n, a ∈ [0, 1]n,

τ ∈ [1,∞]) type space is the Banach space of locally summable on G functions
f with finite norm:

‖f‖W l
p,a,æ,τ (Q,G) =

∑

e⊂Q

∑

i∈e0
n\Q

∥∥∥Dle∨i
f
∥∥∥

p,a,æ,τ ;G
,

where

‖f‖p,a,æ,τ ;G = ‖f‖Lp,a,æ,τ (G)

= sup
x∈G

{ t0∫

0

[ ∏

j∈en

[tj ]
−æjaj

p

1 ‖f‖p,Gtæ(x)

]τ ∏

j∈Q∨i

dtj
tj

} 1
τ

,

where [tj ]1 = min{1, tj}, j ∈ en; t0 = (t01, t02, . . . , t0n)− be a fixed positive
vector, t0i = t0j for i, j ∈ en\Q, l0 = 0. In the case τ = ∞, a = (a, . . . , a),
p = (p, . . . , p), t = (t, . . . , t) Sobolev-Morrey space W l

p,a,æ,∞(G) ≡ W l
p,a,æ(G)

were introduced and studied by V.P. Il’yin [12].

Let λ = (λ1, λ2, . . . , λn), λj = 1 for j ∈ Q, 0 < λj < ∞ for j ∈ en\Q,

εj = λjlj −
∑

j=k∨j=i∈en\Q

[
λjνj + (λj − æjaj)

(
1
p
− 1

q

)]
,
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ε0
j = λjlj −

∑

j=k∨j=i∈en\Q

[
λjνj + (λj − æjaj)

1
p

]
, k ∈ Q.

For the prove of the main results, let us formulate Theorems 1 and 2,
which were proved in [24].

Theorem 1. Let an open set G ⊂ Rn satisfied of (A)-condition, 1 ≤ p ≤ q ≤
∞, 0 < æj ≤ λj , 0 < Tj ≤ 1, j ∈ en, 1 ≤ τ1 ≤ τ2 ≤ ∞, ν = (ν1, ν2, . . . , νn),
νj ≥ 0− be integer, j ∈ en, f ∈ W l

p,a,æ,τ1(Q,G) and let εj > 0, j ∈ en, then

Dν : W l
p,a,æ,τ1(Q,G) ↪→ Lq,b,æ,τ2(G),

preciously speaking, for the function f the generalized derivatives Dνf exists
and the inequalities are valid:

‖Dνf‖q,G ≤ C1

∑

e⊂Q

∑

i∈e0
n\Q

∏

j∈Q∨i

T
sj

j

∥∥∥Dle∨i
f
∥∥∥

p,a,æ,τ1;G
, (6)

‖Dνf‖q,b,æ,τ2;G ≤ C2 ‖f‖W l
p,a,æ,τ1

(Q,G) , (p ≤ q < ∞), (7)

where

sj =

{
εj , j ∈ e ∨ i,

−νj − (1− æjaj)
(

1
p − 1

q

)
, j ∈ Q\e.

In particular, if ε0
j > 0, j ∈ en, then Dνf is continuous on G and the

inequality is valid:

sup
x∈G

|Dνf | ≤ C1

∑

e⊂Q

∑

i∈e0
n\Q

∏

j∈Q∨i

T
s0
j

j

∥∥∥Dle∨i
f
∥∥∥

p,a,æ,τ1;G
, (8)

where

s0
j =

{
ε0
j , j ∈ e ∨ i,

−νj − (1− æjaj)1
p , j ∈ Q\e,

here Tj ∈ (0, min(1, t0j)], j ∈ en, C1 and C2 are constants which do not
depend on f and a constant C1 which does not depend on T also.

Theorem 2. Let the domain G, with parameters p, q, τ1, τ2 and vector’s æ, ν
satisfy the conditions of Theorem 1. If εj > 0, j ∈ en, then the derivatives
Dνf satisfy the Hölder’s condition in metric Lq with exponent β1, that is

‖∆(ξ, G)Dνf‖q,G ≤ C ‖f‖W l
p,a,æ,τ (Q,G)

∏

j∈Q

|ξj |β
1
j |ξ|β1

en\Q , (9)

where β1 = (β1
1 , β1

2 , . . . , β1
n), β1

i = β1
j for i, j ∈ en\Q and β1

j –forall number
satisfy the following inequalities:

0 ≤ β1
j ≤ 1, if εj > 1 for j ∈ e,
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0 ≤ β1
j < 1, if εj = 1 for j ∈ e; 0 ≤ β1

j ≤ 1 for j ∈ Q\e;
0 ≤ β1

j ≤ εj , if εj < 1 for j ∈ e,

0 ≤ β1 ≤ 1, if
ε0

λ0
> 1,

0 ≤ β1 < 1, if
ε0

λ0
= 1,

0 ≤ β1 ≤ ε0

λ0
, if

ε0

λ0
< 1,

where λ0 = max
j∈en\Q

λj , ε0 = min εQ,i, and

εQ,i = λili −
∑

j∈en\Q

[
λjνj + (λj − æjaj)

(
1
p
− 1

q

)]
, i ∈ en\Q.

If ε0
j > 0, j ∈ en, then

sup
x∈G

|∆(ξ, G)Dνf | ≤ C ‖f‖W l
p,a,æ,τ (Q,G)

∏

j∈Q

|ξj |β
1,0
j |ξ|β1,0

en\Q , (10)

where β1,0
j (j ∈ en) satisfies the same conditions, that β1

j with the substitute
εj by ε0

j .

Additionally, suppose that G is a bounded domain in Rn.

Theorem 3. If εj = λjlj−
∑

j=k∨j=i∈en\Q
(
λjνj + λj

2

)
> 0,j ∈ en (k ∈ Q),

λ−1
j = lj , j ∈ en\Q, then any generalized solution of equation (1) from

W l
2(Q,G) belongs to the space Cν+β1(Gd), Gd ⊂ G.

Proof of Theorem 3. Existence of the solution of equation is proved with
the help of the variational method in [25]. First let all aαe,iδe,i(x) except for
the ones for which αj = lj , j ∈ Q,

∣∣α, 1
l

∣∣
en\Q = 1 and fαe∨i = 0, e ⊂ Q, i =

j ∈ en\Q. Let d = (d1, d2, . . . , dn)–fixed vector, b = (b1, b2, . . . , bn), di = dj ,
bi = bj for i = j ∈ en\Q, x0 ∈ G and ub(x0) be the parallelepiped in Rn

ub(x0) =
{

x : |xj − x0j | < bλj , j ∈ en

}
,

and Gd be a subdomain of the domain G such that (0 < dj < 1, j ∈ en) :

Gd =
{

y : |yj − x| < dλj , j ∈ en, x ∈ ∂G
}
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we shall assume that bj ≤ dj , j ∈ en. From the variational principle it follows
that ∫

ub(x0)

∑

αj≤lj ,
δj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1,

|δ, 1l |en\Q
≤1

(−1)|αe∨i|aαe,iδe,i
(x)Dδe∨i′

(θ(x)(u(x)− p(x))

×Dαe∨i
(θ(x)(u(x)− p(x)) dx ≥

∫

ub(x0)

∑

αj≤lj ,
δj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1,

|δ, 1l |en\Q
≤1

(−1)|αe∨i|

×aαe,iδe,i(x)Dδe∨i′
(u(x)− p(x))Dαe∨i

(u(x)− p(x)) dx

= A (u(x)− p(x),ub(x0)) , (11)

for any θ(x) ∈ C∞ (ub(x0)) such that θ(x) ≡ 1 in the neighborhood of
∂ ub (x0), in any polynomial p(x) of the form

p(x) =
∑

αj=lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

=1

Cαxα

and for an arbitrary solution u(x) of equation (1). Assume in (11)

θ(x) = 1−
∏

j∈en

$j

(
xj − xj0

bλj

)
,

where $j(t) ∈ C∞(R), $j(t) = 1 at |t| < 2−λj , $j(t) = 0 at |t| ≥ 1,
0 ≤ $j(t) ≤ 1. It is clear that θ(x) ≡ 0 in u b

2
(x0), θ(x) ≡ 1 in a neighborhood

of ∂ ub (x0), where we have taken the coefficients p(x) as
∫

ub(x0)\u b
2
(x0)

(u(x)− p(x))xα dx = 0.

From inequality (11) with the help of (6) we obtain

A (u(x)− p(x),ub(x0)) ≤ A
(
u(x)− p(x),ub(x0)\ u b

2
(x0)

)

+c1A
(
u(x)− p(x),ub(x0)\ u b

2
(x0)

)
≤ ςA

(
u(x)− p(x),ub(x0)\ u b

2
(x0)

)
.

Since A (u(x)− p(x), G) = A (u(x), G) , then

A
(
u(x),u b

2
(x0)

)
≤

(
1− 1

ς

)
A (u(x),ub(x0))
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hence by induction we obtain that

A
(
u(x),u b

2k
(x0)

)
≤ (1− 1

ς
)kA (u(x),ub(x0)) .

Let 0 < ξj < b
2k , it follows that

∏
ξ(x0) ⊂ u b

2k
(x0). Further k ln 2 <

ln
∏

j∈en

bj

ξj
, we take k =

[ ln
∏

j∈en

bj
ξj

ln 2

]
, ω = 1− 1

ς then

A (u(x),ub(x0)) ≤ ωkA (u(x), G)

< ω

ln
∏

j∈en

bj
ξj

ln 2
−1A (u(x), G) = e

ln
∏

j∈en

bj
ξj

ln 2
ln ω−ln ω

A (u(x), G)

=

(
e
ln

∏
j∈en

bj
ξj

)
(

ln ω
ln 2

− ln ω

ln
∏

j∈en

bj
ξj

)

A (u(x), G)

=

( ∏

j∈en

bj

ξj

)
(

ln ω
ln 2

− ln ω

ln
∏

j∈en

bj
ξj

)

A (u(x), G)

=

( ∏

j∈en

ξj

bj

)
∣∣∣∣∣
ln ω
ln 2

− ln ω

ln
∏

j∈en

bj
ξj

∣∣∣∣∣
A (u(x), G)

≤
( ∏

j∈en

ξj

bj

)
∣∣∣∣∣
ln ω
ln 2

∣∣∣∣∣−
∣∣∣∣∣

ln ω

ln
∏

j∈en

bj
ξj

∣∣∣∣∣
A (u(x), G) ,

for any x0 ∈ Gd, bj ≤ dj , j ∈ en. Denote by
∣∣ ln ω
ln 2

∣∣ =
∑

j∈en
ηj and∣∣∣∣∣∣

ln ω

ln
∏

j∈en

bj
ξj

∣∣∣∣∣∣
=

∑
j∈en

σj . It is obvious that 0 < ηj = æjaj < 1, 0 < σj < 1,

ξj < bj , j ∈ en; ξi = ξj for i, j ∈ en\Q, j ∈ en, then

A (u(x),uξ(x0)) ≤ C
∏

j∈en

(
bj

ξj

)ηj−σj

A (u(x), G) , (12)
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and
1∫

0

· · ·
1∫

0

[ ∏

j∈en

ζ
−ηj

j

∫

uζ(x0)

u2(x)dx

] 1
2 ∏

j∈en

dζj

ζj
≤ C

1∫

0

· · ·
1∫

0

∏

j∈en

dbj

b
1− 1

2
σj

j

.

This means that u(x) ∈ L2,a,æ,1(Gd) ⊂ L2,a,æ,τ (Gd) and also Dle∨i
u(x) ∈

L2,a,æ,τ (Gd), for all e ⊂ Q, i ∈ e0
n\Q, then it follows that u(x) ∈ W l

2,a,æ,τ

(Q,G). If we check the conditions of Theorems 1 and 2, it turns out that
εj > 0, ε0

j > 0, for 0 < ζj < 1, j ∈ en and the conditions of Theorems 1
and 2 are satisfied. Thus by Theorem 1 Dνu(x) is continuous on Gd and,
by Theorem 2 Dνu(x) satisfies the Hölder condition, i.e. u(x) ∈ Cν+β1(Gd).

Now we consider the nonhomogeneous quasielliptic equation (i, i′∈e0
n\Q) :

∑

αj=lj ,
δj=lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

=1,

|δ, 1l |en\Q
=1

Dαe∨i
(
aαe,iδe,i(x)Dδe∨i′

u(x)
)

=
∑

αj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1

Dαe∨i
fαe∨i(x), (13)

where aαe,iδe,i(x) satisfies earlier imposed restrictions, inequality (2) is sa-
tisfied, fαe∨i(x) ∈ L2(G) for αj < lj , j ∈ Q,

∣∣α, 1
l

∣∣
en\Q < 1; fαe∨i(x) ∈

∈ L2,a,æ(G) for αj = lj , j ∈ Q,
∣∣α, 1

l

∣∣
en\Q = 1 . We again consider some

substitution Gd. Let x0 ∈ Gd, bj ≤ dj , j ∈ en and ub,x0 be a generalized

solution of equation (13) in ub(x0) from the space
◦

W
l

2 (Q,ub(x0)) i.e.

∑

αj=lj ,
δj=lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

=1,

|δ, 1l |en\Q
=1

(−1)|αe∨i|
∫

G

aαe,iδe,i
(x)Dδe∨i′

u(x)Dαe∨i
υ(x) dx

=
∑

αj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1

(−1)|αe∨i|
∫

G

fαe∨i(x)Dαe∨i
υ(x)dx, (14)

Assuming υ(x) ≡ ub,x0 in (14) by virtue of (2) we obtain
∫

ub(x0)

∑

αj≤lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

≤1

(
Dαe∨i

ub,x0

)
dx
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≤ C1

∑

αj<lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

<1

∏

j∈Q

b
2lj−2νj

j b2−2|ν,λ|en\Q

∫

ub(x0)

fαe∨i dx

+
∑

αj=lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

=1

∫

ub(x0)

fαe∨idx ≤ C2

∏

j∈en

b
ςj
j , (15)

here ςi = ςj = max
|α, 1

l |en\Q
≤1

{
(2− 2 |ν, λ|en\Q , |æ, a|en\Q

}
, i, j ∈ en\Q > 0 and

ςj = max {(2lj − 2νj), æjaj} > 0, j ∈ Q. C2 and ςj do not depend on u(x)
and x0. Since u(x) = u(x)−ub,x0 is a solution of equation (1) when the right
hand side is zero, therefore for it

A
(
u(x),uξ(x0)

)
≤ C3

∏

j∈en

(
bj

ξj

)ηj−σj

A (u(x), G) , (16)

is valid for any ξj < bj , j ∈ en, if x0 ∈ Gb. Then from (12) and (13) we
obtain

A (u(x),uξ(x0)) ≤ C4A
(
u(x),uξ(x0)

)
+ C5A (ub,x0 ,uξ(x0))

≤ C6

∏

j∈en

(
bj

ξj

)ηj−σj

A (u(x), G) .

Further, we again apply Theorems 1 and 2 and in this case we obtain the
required results.

Finally, we consider equation (1) all of whose coefficients are different
from zero and exist for small derivatives of the solution. Then we transfer
such members to the right hand side of the equation and obtain the required
result. The theorem is proved. ¤

The following theorem on smoothness of solution under the conditions
of Theorem 3 holds when the generalized solution satisfies the Dirichlet
boundary condition.

Theorem 4. Let the domain G ⊂ Rn such that there exists $ = const > 0
for any point x0 ∈ ∂G and the number ε < 1 there exists a parallelepiped
u$ε(x1) such that u$ε(x1) ⊂ uε(x0) ∩ (Rn\G) and u(x) is a solution of

equation (1) from the space
◦

W
l

2 (Q,G) . If

εj = λjlj −
∑

j=k∨j=i∈en\Q

(
λjνj +

λj

2

)
> 0, j ∈ en(k ∈ Q),

then u(x) belongs to the space Cν+β1(G).
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Proof of Theorem 4. It is sufficiently in this case, to let all aαe,iδe,i
(x) = 0,

except for ones for which αj = δj = lj , j ∈ Q,
∣∣α, 1

l

∣∣
en\Q =

∣∣δ, 1
l

∣∣
en\Q = 1.

Let x0 ∈ ∂G and all fαe∨i ≡ 0 in ub(x0) for e ⊂ Q, i ∈ en\Q, u(x) ≡ 0
outside of G.

From the variational principle it follows that

A (u(x),ub(x0)) ≤ A (θ(x)u(x),ub(x0)) .

As θ(x) ≡ 0 in u b
2
(x0), then

A (u(x),ub(x0)) ≤ A
(
u(x),ub(x0)\ u b

2
(x0)

)

+C1

∑

αj<lj ,
j∈e⊂Q

∑

|α, 1
l |en\Q

<1

∏

j∈Q

b
−2lj+2νj

j b−2+2|ν,λ|en\Q

∫

ub(x0)\u b
2
(x0)

(
Dαe∨i

u(x)
)2

dx.

As u(x)|u$b(x1) = 0, where u$b(x1) ⊂ ub(x0)\ u b
2

(x0), then we have

A (u(x),ub(x0)) ≤ r A
(
u(x),u b

2
(x0)

)
,

and hence it follows

A
(
u(x),u b

2
(x0)

)
≤

(
1− 1

r

)
A (u(x),ub(x0)) ,

consequently

A
(
u(x),u b

2k
(x0)

)
≤

(
1− 1

r

)k

A (u(x),ub(x0)) .

Therefore

A (u(x),uξ(x0)) ≤ C
∏

j∈en

(
bj

ξj

)ηj−σj

A (u(x), G) , (17)

if ξj < bj , j ∈ en for all x0 ∈ ∂G, fαe∨i ≡ 0 in ub(x0). Let’s estimate now
A (u(x),uξ(x0)) at given 0 < ξj < 1, j ∈ en, ξi = ξj for i, j ∈ en\Q, x0 ∈ G
and fαe∨i 6= 0, for e ⊂ Q, i ∈ en\Q. Let us consider two cases:

a) x0 ∈ G
√

ξ;
b) x0 /∈ G

√
ξ.

a) In this case for all ξj ≤ bj , j ∈ en assuming that bj =
√

ξj , j ∈ en we
have

A (u(x),uξ(x0)) ≤ C1

∏

j∈en

(
bj

ξj

)ηj−σj

A (u(x), G)
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+ C2

∏

j∈en

b
ςj
j ≤ C3

∏

j∈en

(
bj

ξj

)ηj−σj

(A (u(x), G) + 1) . (18)

b) In this case there exists a point x1 ∈ ∂G, such that u2
√

ξ(x
1) ⊃

u√ξ(x0). Let bj > 2
√

ξj , j ∈ en. For all bj , j ∈ en let us consider ub,x1−
solution of equation (1) in ub(x1) ∩G from the space

◦
W

l

2

(
Q,ub(x1) ∩G

)
,

for which inequality

A
(
ub,x1 ,ub(x0)

) ≤ C4

∏

j∈en

b
ςj
j (19)

is valid, if assuming that ub,x1 ≡ 0 outside of ub(x1) ∩G.

The function u(x) − ub,x1–solution of equation (1) ub(x1), where for all
aαe,iδe,i(x) = 0, except for the ones, for which αj = δj = lj , j ∈ Q,∣∣α, 1

l

∣∣
en\Q =

∣∣δ, 1
l

∣∣
en\Q = 1 and fαe∨i ≡ 0, for e ⊂ Q, i ∈ en\Q. From

inequalities (17) and (19) we have

A
(
u(x),u2

√
ξ(x

1)
)
≤ C5A

(
u− ub,x1 ,u2

√
ξ(x

1)
)

+C6A
(
ub,x1 ,u2

√
ξ(x

1)
)
≤ C7

∏

j∈en

(
bj

ξj

)ηj−σj

A (u(x), G) ,

A (u(x),uξ(x0)) ≤ A
(
u(x),u√ξ(x

1)
)

≤ A
(
u(x),u2

√
ξ(x

1)
)
≤ C8

∏

j∈en

(
bj

ξj

)ηj−σj

A (u(x), G) ,

consequently

1∫

0

· · ·
1∫

0

[ ∏

j∈en

ζ
−ηj

j

∫

uζ(x0)

u2(x) dx

] 1
2 ∏

j∈en

dζj

ζj
≤ C

1∫

0

· · ·
1∫

0

∏

j∈en

dbj

b
1− 1

2
σj

j

.

This implies that u(x) ∈ L2,a,æ,1(Gd) ⊂ L2,a,æ,τ (Gd) and also Dle∨i
u(x) ∈

L2,a,æ,τ (Gd), for all e ⊂ Q, i ∈ e0
n\Q, then it follows that u(x) ∈ W l

2,a,æ,τ

(Q,G). Then in this case the conditions in Theorems 1 and 2 are satisfied.
Thus by Theorems 1 and 2 it follows that u(x) ∈ Cν+β1(G). The theorem is
proved. ¤



SMOOTH SOLUTIONS OF A CLASS OF QUASIELLIPTIC EQUATIONS 205

References

[1] L. Arkeryd, On Lp estimates for quasi elliptic boundary problems, Math. Scand., 24
(1) (1969), 141–144.

[2] G. C. Barozzi, Su una generalizzazione degli spazi L(q, λ) di Morrey, Ann. Sc. Norm.
Super. Pisa, Sci. Fis. Mat., Ser. III, 19 (4) (1965), 609–626.

[3] O. V. Besov, V. P. Il’yin and S. M. Nikolsky, Integral Representations of Functions
and Imbedding Theorems, Nauka, 1996, 480p. (in Russian).

[4] S. Campanato, Caratterizzazione delle tracce di funzioni appatenenti ad una classe di
Morrey iniseme con le loro derivate prime, Ann. Sc. Norm. Super. Pisa, Ser. III., 15
(3) (1961), 263–281.

[5] S. Campanato, Proprieta di inclusione per spazi di Morrey, Ric. Mat., 12 (1) (1963),
67–86.

[6] A. D. Djabrailov, On ones integral representation of smooth functions and some failies
of function space DAN SSSR, 166 (6) (1966), 1280–1283 (in Russian).
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