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ON HYERS-ULAM STABILITY OF WILSON’S
FUNCTIONAL EQUATION ON P 3-GROUPS

MINGXING LUO

Abstract. The purposes of paper is to obtain the Hyers-Ulam stability
of Wilson’s equation ϕ(xy) + ϕ(xy−1) = 2ϕ(x)φ(y) for ϕ, φ : G → K,
where G is a P3- group and K a field with charK 6= 2.

1. Introduction

In 1989, Aczél, Chung and Ng have solved Wilson’s equation,

ϕ(xy) + ϕ(xy−1) = 2ϕ(x)φ(y) (1.1)

assuming that the function φ satisfies Kannappan’s condition φ(xyz) =
φ(xzy) and ϕ(xy) = ϕ(yx) for all x, y, z ∈ G.

Let (G; +) be a topological abelian group and let K be a compact sub-
group of automorphisms of G with the normalized Haar measure µ. Assume
that the topologies on K and G are related in such a way that the map
k 7→ ky ∈ G, k ∈ K is continuous for each fixed y ∈ G, where ky de-
notes the action of k ∈ K on y ∈ G. We say that a continuous function
ϕ : G → C is K-spherical if and only if there exists a non-zero continuous
function φ : G → C such that∫

K
φ(x + ky)dµ(k) = φ(x)ϕ(y) (1.2)

for all x, y ∈ G. Equivalently, a non-zero continuous function ϕ : G → C is
K-spherical if it satisfies the integral equation

∫
K ϕ(x+ky)dµ(k) = ϕ(x)ϕ(y)

for all x, y → G. R. Badora[4] has studied the Hyers-Ulam stability of
Wilson’s functional equation for spherical functions.

Classical examples of (1.1) are d’Alembert’s functional equation ϕ(x +
y) + ϕ(x − y) = 2ϕ(x)ϕ(y), where K = {Id,−Id} and Cauchy’s equation
ϕ(x+y) = ϕ(x)ϕ(y) with K = {Id}. The generalization for (1.2) of Wilson’s
functional equation (1.1) was considered discussed by W. Chojnacki [6], R.
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Badora [3, 4] and H. Stetkaer [17, 18]. For (1.2) with K finite this problem
was solved by W. Förg-Rob and J. Schwaiger in [12], R. Badora in [3], and
for d’Alembert’s functional equation by J. Baker in [5].

Several papers deal with Wilson’s functional equation, see e.g. the mono-
graph [1] by Aczél and Dhombres for references and results. Aczél, Chung
and Ng [2], where K is a quadratically closed field of charK 6= 2, assuming
that the function g satisfies Kannappan’s condition, φ(xyz) = φ(xzy) for all
x, y, z ∈ G and ϕ(xy) = ϕ(yx). Penney and Rukhin [15] found square inte-
grable solutions of a version of the equation (1.1). Sinopoulos [16] has deter-
mined the general solution of (1.1) where G is a 2-divisible abelian group, ϕ
is a vector-valued function and φ is a matrix-valued function. Also, Wilson’s
equation was investigated in the contex of spherical functions on groups by
Stetkaer [18]. In this paper we study the problem of the Hyers-Ulam stabil-
ity of equation (1.1) for K a P3-Group, if the commutator subgroup K0 of
K, which is generated by all commutators [x, y] := x−1y−1xy, has order one
or two.

2. Main results on stability

The main results on stability are contained in the following

Theorem 1. Let ϕ, φ; G → K be continuous functions, where G is a P3-
group and K is a quadratically closed field with charK 6= 2; also K is Abelian
under multiplication. Assume that there exists a c ≥ 0 such that

‖ϕ(xy) + ϕ(xy−1)− 2ϕ(x)φ(y)‖ ≤ c, x, y ∈ K (2.1)

Then either
(i) ϕ, φ are bounded or
(ii) ϕ is unbounded and

φ(x) =
1
2

lim
n→∞ϕ(un)−1(ϕ(unx) + ϕ(unx−1)), (2.2)

satisfies

φ(y) = φ(y−1), ϕ(xy) + ϕ(xy−1) = 2ϕ(x)ϕ(y), (2.3)

or
(iii) φ is unbounded,

ϕ(x) =
1
2

lim
n→∞(ϕ(xun) + ϕ(xu−1

n ))φ(un)−1, (2.4)

and ϕ, φ satisfies (1.1).

Corollary 1. Let ϕ : G → K is continuous, if there exists a c ≥ 0, then ϕ
is bounded or satisfied (1.1).
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Consider the signed Wilson’s functional equation

ϕ(xyΛ(xy)) + ϕ(xy−1Λ(xy−1)) = 2ϕ(x)φ(y), (2.5)

where Λ : G0 → T = {a : |a| = e} and G0 is the commutator subgroup
of group G, which is generated by all commutators [x, y] := x−1y−1xy, has
order one or two.

If we set Λ ≡ e with e is unit of K, we can obtain (1.1).

Theorem 2. Let ϕ, φ,G → K be continuous functions and Λ be G-even,
where G is a P3-group and K is a quadratically closed field with charK 6= 2,
also K is Abelian under multiplication. Assume that there exists a c ≥ 0
such that

‖ϕ(xyΛ(xy)) + ϕ(xy−1Λ(xy−1))− 2ϕ(x)g(y)‖ ≤ c, x, y ∈ K (2.6)

Then either
(i) ϕ, φ are bounded or
(ii) ϕ is unbounded and

φ(x) =
1
2

lim
n→∞ϕ(un)−1(ϕ(unxΛ(unx)) + ϕ(unx−1Λ(unx−1))). (2.7)

satisfies

φ(x) = φ(x−1), φ(xyΛ(xy)) + φ(xy−1Λ(xy−1)) = 2φ(x)φ(y), (2.8)

or
(iii) φ is unbounded,

ϕ(x) =
1
2

lim
n→∞(ϕ(xunΛ(xun)) + ϕ(xu−1

n Λ(xu−1
n )))φ(un)−1, (2.9)

and ϕ, φ satisfies (2.6).

3. Proofs of theorems

Proof of Theorem 1. Let

f(x, y) = ϕ(xy) + ϕ(xy−1)− 2ϕ(x)φ(y), x, y ∈ G,

then we obtain
‖f(x, y)‖ ≤ c, x, y ∈ G. (3.10)

Furthermore, we get identities

f(x, y)− f(x, y−1) = ϕ(xy) + ϕ(xy−1)− 2ϕ(x)φ(y)

− [ϕ(xy−1) + ϕ(xy)− 2ϕ(x)φ(y)]

= 2ϕ(x)(φ(y−1)− φ(y)). (3.11)

If ϕ = 0, ϕ is solution of (1.1).
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If ϕ is unbounded, from (3.11) we get φ(y) = φ(y−1), i.e., φ is even. We
now prove (ii) and (iii). Assuming (ii), there exists a sequence {un},m ∈ N
in K such that

ϕ(un) 6= 0, and lim
n→∞ ‖ϕ(un)‖ = +∞. (3.12)

Let x = un, y = x in (2.1), we get

‖ϕ(unx) + ϕ(unx−1)− 2ϕ(un)φ(x)‖ ≤ c, x, y ∈ K. (3.13)

Then we obtain

‖ϕ(un)−1(ϕ(unx) + ϕ(unx−1))− 2φ(x)‖ ≤ c

‖ϕ(un)‖ , x, y ∈ K.

Consequently

lim
n→∞ϕ(un)−1(ϕ(unx) + ϕ(unx−1)) = 2φ(x). (3.14)

Now for each x, y, z ∈ K and n ∈ N , by setting x = un, y = xz in (2.1) we
obtain

‖ϕ(unxz) + ϕ(un(xz)−1)− 2ϕ(un)φ(xz)‖ ≤ c, x, y ∈ K. (3.15)

then
lim

n→∞ϕ(un)−1(ϕ(unxz) + ϕ(un(xz)−1)) = 2φ(xz). (3.16)

By the arbitrariness of z, (3.14) converges to a unique function φ which
satisfies (2.3). In fact,

‖ϕ−1(un)(ϕ(unxy) + ϕ(un(xy)−1)) + ϕ−1(un)(ϕ(unxy−1)

+ ϕ(un(xy−1)−1))− 2ϕ−1(un)(ϕ(unx) + ϕ(unx−1))φ(y)‖
≤ ‖ϕ−1(un)(ϕ(unxy) + ϕ(unxy−1)− 2ϕ(unx)φ(y))‖

+ ‖(ϕ(un(xy)−1) + ϕ(un(xy−1)−1)− 2ϕ(unx−1)φ(y)))‖
≤ 2c‖ϕ−1(un)‖, (3.17)

here we have used Kannappan’s condition on ϕ to get (3.17). Then taking
limits in (3.17) we get that φ satisfies (2.3). Hence (ii) is proved.

If φ is unbounded, there exists a sequence {un},m ∈ N in K such that

φ(un) 6= 0, un 6= 0, and lim
n→∞ ‖φ(un)‖ = +∞. (3.18)

By setting y = un in (2.1) we obtain

‖ϕ(xun) + ϕ(xu−1
n )− 2ϕ(x)φ(un)‖ ≤ c, x, y ∈ K. (3.19)

Then we obtain

‖(ϕ(xun) + ϕ(xu−1
n ))φ(un)−1 − 2ϕ(x)‖ ≤ c

‖φ(un)‖ , x, y ∈ K.
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Consequently

lim
n→∞(ϕ(xun) + ϕ(xu−1

n ))φ(un)−1 = 2ϕ(x). (3.20)

Now for each x, y, z ∈ K and n ∈ N , by setting x = xz, y = un, in (2.1)
we obtain

‖ϕ(xzun) + ϕ((xz)u−1
n )− 2ϕ(xz)φ(un)‖ ≤ c, x, y ∈ K. (3.21)

Hence
lim

n→∞(ϕ(xzun) + ϕ((xz)u−1
n ))φ(un)−1 = 2ϕ(xz). (3.22)

By the arbitrariness of z, (3.20) converges to a unique function ϕ which
satisfies (1.1). In fact,

‖(f(unxy) + f(un(xy)−1))φ−1(un) + (f(unxy−1) + f(un(xy−1)−1))φ−1(un)

− 2φ(y)(ϕ(unx) + ϕ(unx−1))φ−1(un)‖
≤ ‖(ϕ(unxy) + ϕ(unxy−1))φ−1(un)− 2φ(y)ϕ(unx)φ−1(un)‖

+ ‖(ϕ(un(xy)−1) + ϕ(un(xy−1)−1)φ−1(un)− 2φ(y)ϕ(unx−1)φ−1(un)‖
≤ 2c‖ϕ−1(un)‖, (3.23)

here we have used Kannappan’s condition on ϕ to get (3.23). Then taking
limits in (3.23) we get that φ satisfies (2.4), and ϕ, φ satisfy (1.1). Then (iii)
is proved. Then case (i) is also proved. ¤

Remark 3.1. If ϕ is bounded, then in (iii) ϕ = 0, moreover, ϕ, φ satisfy
(2.1).

Proof of Theorem 2. Let

f(x, y) = ϕ(xyΛ(xy)) + ϕ(xy−1Λ(xy−1))− 2ϕ(x)φ(y), x, y ∈ G,

then we obtain
‖f(x, y)‖ ≤ c, x, y ∈ G. (3.24)

Furthermore, we get identities

f(x, y)− f(x, y−1) = ϕ(xyΛ(xy)) + ϕ(xy−1Λ(xy−1))− 2ϕ(x)g(y)

− [ϕ(xy−1Λ(xy−1)) + ϕ(xyΛ(xy))− 2ϕ(x)φ(y)]

= 2ϕ(x)(φ(y−1)− φ(y)). (3.25)

If ϕ = 0, ϕ is solution of (2.5). If ϕ is unbounded, from (3.25) we get
φ(y) = φ(y−1), i.e., φ is even.

Also there exists a sequence {un},m ∈ N in K such that

ϕ(un) 6= 0, and lim
n→∞ ‖ϕ(un)‖ = +∞. (3.26)
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Let x = un, y = x in (2.6), we get

‖ϕ(unxΛ(unx))+ϕ(unx−1Λ(unx−1))−2ϕ(un)g(x)‖ ≤ c, x, y ∈ K. (3.27)

Then we obtain

‖ϕ(un)−1(ϕ(unxΛ(unx))+ϕ(unx−1Λ(unx−1)))−2g(x)‖ ≤ c

‖ϕ(un)‖ , x, y ∈ K.

Consequently

lim
n→∞ϕ(un)−1(ϕ(unxΛ(unx)) + ϕ(unx−1Λ(unx−1))) = 2φ(x). (3.28)

Now for each x, y, z ∈ K and n ∈ N , by setting x = un, y = xz in (2.6) we
obtain

‖ϕ(unxzΛ(unxz))+ϕ(un(xz)−1Λ(unxz−1))−2ϕ(un)φ(xz)‖ ≤ c, x, y ∈ K,
(3.29)

then

lim
n→∞ϕ(un)−1(ϕ(unxzΛ(unxz)) + ϕ(un(xz)−1Λ(un(xz)−1))) = 2φ(xz).

(3.30)
By the arbitrariness of z, (3.28) converges to a unique function φ which
satisfies (2.6). In fact,

‖ϕ−1(un)(ϕ(unxyΛ(unxy)) + ϕ(un(xy)−1Λ(un(xy)−1)))

+ ϕ−1(un)(ϕ(unxy−1Λ(unxy−1)) + ϕ(un(xy−1)−1Λ(uny−1x)))

− 2ϕ−1(un)(ϕ(unx) + ϕ(unx−1))φ(y)‖
≤ ‖ϕ−1(un)(ϕ(unxyΛ(unxy)) + ϕ(un(xy)−1Λ(un(xy)−1))− 2ϕ(unx)φ(y))‖

+ ‖ϕ−1(un)(ϕ(unxy−1Λ(unxy−1)) + ϕ(uny−1xΛ(uny−1x))

− 2ϕ(unx−1)φ(y))‖ ≤ 2c‖ϕ−1(un)‖, (3.31)

where we have used Kannappan’s condition on ϕ and (2.6) to get (3.31).
Then by taking limits in (3.31), we get that φ satisfies (2.8). Then (ii) is
proved.

If φ is unbounded, there exists a sequence {un},m ∈ N in K such that

φ(un) 6= 0, un 6= 0, and lim
n→∞ ‖φ(un)‖ = +∞. (3.32)

By setting y = un in (2.1) we obtain

‖ϕ(xunΛ(xun)) + ϕ(xu−1
n Λ(xu−1

n ))− 2ϕ(x)φ(un)‖ ≤ c, x, y ∈ K. (3.33)

Then we obtain

‖(ϕ(xunΛ(xun))+ϕ(xu−1
n Λ(xu−1

n )))φ(un)−1−2ϕ(x)‖ ≤ c

‖φ(un)‖ , x, y ∈ K.
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Consequently

lim
n→∞(ϕ(xunΛ(xun)) + ϕ(xu−1

n Λ(xu−1
n )))φ(un)−1 = 2ϕ(x). (3.34)

Now for each x, y, z ∈ K and n ∈ N , by setting x = xy, y = un, in (2.6)
we obtain

‖ϕ(xyunΛ(xyun)) + ϕ(xyu−1
n Λ(xyu−1

n ))− 2ϕ(xy)φ(un)‖ ≤ c, x, y ∈ K.
(3.35)

then

lim
n→∞(ϕ(xyunΛ(xyun)) + ϕ(xyu−1

n Λ(xyu−1
n )))φ(un)−1 = 2ϕ(xy). (3.36)

By the arbitrariness of y, (3.34) converges to a unique function ϕ which
satisfies (2.6). In fact,

‖(ϕ(unxyΛ(unxy)) + ϕ(un(xy)−1Λ(un(xy)−1)))φ(un)−1

+ (ϕ(unxy−1Λ(unxy−1)) + ϕ(unyx−1)Λ(ϕ(unyx−1)))φ(un)−1

− 2φ(y)(ϕ(unx) + ϕ(unx−1))φ(un)−1‖
≤ ‖(ϕ(unxyΛ(unxy)) + ϕ(unxy−1Λ(unxy−1)− 2φ(y)ϕ(unx))φ(un)−1‖

+ ‖(ϕ(unx−1y−1Λ(unx−1y−1)) + ϕ(unx−1yΛ(unx−1y)

− 2φ(y)ϕ(unx−1))φ(un)−1‖ ≤ 2c‖ϕ−1(un)‖, (3.37)

where we have used Kannappan’s condition on ϕ,Λ and (2.6) to get (3.37).
Then taking limits in (3.37), we get that ϕ satisfies (2.5). Therefore (iii) is
proved. Then the case (i) is also proved. ¤

4. Example

Example. Let C the field of complex numbers with the complex unit i =√−1, and G be the quaternion group G = {±1,±i,±j,±k}. The center of
G is G0 = {±1} and G is a P3-group. Take Λ = Id or −Id, ϕ, φ : G → C,
ϕ 6= 0. If φ is unbounded and ϕ, φ satisfy (2.3) or (2.6), then ϕ as defined
by (2.4) or (2.9) and φ are solutions of (1.1) or (2.5) respectively.
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