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ON HYERS-ULAM STABILITY OF WILSON’S
FUNCTIONAL EQUATION ON P3-GROUPS

MINGXING LUO

ABSTRACT. The purposes of paper is to obtain the Hyers-Ulam stability
of Wilson’s equation ¢(zy) + o(zy™ ') = 2¢(x)¢(y) for v,¢ : G — K,
where G is a Ps- group and K a field with charK # 2.

1. INTRODUCTION

In 1989, Aczél, Chung and Ng have solved Wilson’s equation,

ply) +pley™) = 20(2)(y) (1.1)
assuming that the function ¢ satisfies Kannappan’s condition ¢(zxyz) =
d(zzy) and p(zy) = p(yz) for all z,y,z € G.

Let (G;+) be a topological abelian group and let K be a compact sub-
group of automorphisms of G with the normalized Haar measure u. Assume
that the topologies on K and G are related in such a way that the map
k — ky € G, k € K is continuous for each fixed y € G, where ky de-
notes the action of £k € K on y € G. We say that a continuous function

¢ : G — C is K-spherical if and only if there exists a non-zero continuous
function ¢ : G — C such that

/K o(x + ky)du(k) = d(x)e(y) (12)

for all z,y € G. Equivalently, a non-zero continuous function ¢ : G — C'is
K-spherical if it satisfies the integral equation [} p(z+ky)du(k) = p(z)(y)
for all z,y — G. R. Badora[4] has studied the Hyers-Ulam stability of
Wilson’s functional equation for spherical functions.

Classical examples of (1.1) are d’Alembert’s functional equation p(z +
y) + o(x —y) = 2p(x)p(y), where K = {Id,—1d} and Cauchy’s equation
o(x+y) = e(x)p(y) with K = {Id}. The generalization for (1.2) of Wilson’s
functional equation (1.1) was considered discussed by W. Chojnacki [6], R.
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Badora [3, 4] and H. Stetkaer [17, 18]. For (1.2) with K finite this problem
was solved by W. Forg-Rob and J. Schwaiger in [12], R. Badora in [3], and
for d’Alembert’s functional equation by J. Baker in [5].

Several papers deal with Wilson’s functional equation, see e.g. the mono-
graph [1] by Aczél and Dhombres for references and results. Aczél, Chung
and Ng [2], where K is a quadratically closed field of charK # 2, assuming
that the function g satisfies Kannappan’s condition, ¢(zyz) = ¢(zzy) for all
z,y,z € G and p(xy) = ¢(yx). Penney and Rukhin [15] found square inte-
grable solutions of a version of the equation (1.1). Sinopoulos [16] has deter-
mined the general solution of (1.1) where G is a 2-divisible abelian group, ¢
is a vector-valued function and ¢ is a matrix-valued function. Also, Wilson’s
equation was investigated in the contex of spherical functions on groups by
Stetkaer [18]. In this paper we study the problem of the Hyers-Ulam stabil-
ity of equation (1.1) for K a P3-Group, if the commutator subgroup Ky of
K, which is generated by all commutators [x,%] := 27!y~ 12y, has order one
or two.

2. MAIN RESULTS ON STABILITY
The main results on stability are contained in the following

Theorem 1. Let ¢, ¢; G — K be continuous functions, where G is a Ps-
group and K is a quadratically closed field with charK #+ 2; also K is Abelian
under multiplication. Assume that there exists a ¢ > 0 such that

lo(zy) + o(ay™) = 20(x)d(y)l < e, zy e K (2.1)
Then either

(i) ¢, ¢ are bounded or
(i) ¢ is unbounded and

6(x) = 5 1m p(un) " (p(une) + plunz ™)), (22)
satisfies
d(y) = o(y™),  elzy) +elzy™) = 20(x)p(y), (2:3)
(iii) qﬁoz?;‘ unbounded,
o) = 3 lim (p(us) + plouy)o(u) ™, (2.4)

and p, ¢ satisfies (1.1).

Corollary 1. Let ¢ : G — K is continuous, if there exists a ¢ > 0, then ¢
is bounded or satisfied (1.1).
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Consider the signed Wilson’s functional equation

pzyA(zy)) + pley ™ Azy ™)) = 20(x)d(y), (2.5)
where A : Go — T = {a : |a| = e} and Gy is the commutator subgroup
of group G, which is generated by all commutators [z,y] := 2~y 12y, has

order one or two.
If we set A = e with e is unit of K, we can obtain (1.1).

Theorem 2. Let p,¢,G — K be continuous functions and A be G-even,
where G is a Ps-group and K is a quadratically closed field with charK # 2,
also K is Abelian under multiplication. Assume that there exists a ¢ > 0
such that

lo(zyA(zy)) + @@y 'Alzy™)) — 20(2)g(y)| < c, r,y€ K (2.6)
Then either

(i) ¢, ¢ are bounded or
(ii) ¢ is unbounded and

B@) = 3 lim_p(un) " (PluneA(wne) + pluma~ Az ™). (27)

satisfies
¢(x) = p(z7"),  dlayM(zy)) + dlzy ' May ™)) = 20(2)(y),  (28)
(iii) qﬁoz?:s unbounded,
plw) = 5 Tim (plrunA(wun) + plau Awu o(w) ™, (29)

and ¢, ¢ satisfies (2.6).

3. PROOFS OF THEOREMS

Proof of Theorem 1. Let
fla,y) = elay) +o(zy™") = 20(2)o(y), w,y€GC,

then we obtain

If@yll<e zyed. (3.10)
Furthermore, we get identities

Fla,y) = fla,y™h) = plaey) + olay™) — 20(2)¢(y)
= lp(ay™) + p(zy) — 20()d(y)]

= 20(x)(8(y ") — o (y))- (3.11)

If ¢ =0, ¢ is solution of (1.1).
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If  is unbounded, from (3.11) we get ¢(y) = ¢(y~ 1), i.e., ¢ is even. We
now prove (ii) and (iii). Assuming (ii), there exists a sequence {u,},m € N
in K such that

o(up) #0, and nlLH;O lp(un)|| = +o0. (3.12)
Let © = up,y = x in (2.1), we get
lp(unz) + @(unz™) = 20(un)g(@)ll < ¢, @,y € K. (3.13)

Then we obtain

l(un) ™ (e (un) + p(unz™")) = 2¢(2)|| <

Consequently
lim @(un) " (@(unz) + @(upz™1)) = 26(z). (3.14)

n—oo

Now for each z,y,z € K and n € N, by setting = u,,y = zz in (2.1) we
obtain

l(une2) + o(un(x2) ™) = 20(un)p(z2)[| < ¢, z,y € K. (3.15)
then
Jim o(un) T ((unw2) + (un(22) 7)) = 26(2). (3.16)

By the arbitrariness of z, (3.14) converges to a unique function ¢ which
satisfies (2.3). In fact,

™" (un) (@ (unzy) + o(un(zy) ™)) + @ (un) (@(unzy ™)
+ o(un(zy™)™) = 207 (un) ((unz) + @(unz™"))d(y)||
< oo™ (un) (@ (unzy) + p(unzy ™) = 20(unz)d(y))||
+ [ (o un(zy) ™) + e(un(zy™) ™) = 2p(unz™")b(y)))||
< 2¢fle™ (ua), (3.17)

here we have used Kannappan’s condition on ¢ to get (3.17). Then taking
limits in (3.17) we get that ¢ satisfies (2.3). Hence (ii) is proved.
If ¢ is unbounded, there exists a sequence {u,},m € N in K such that

d(un) #0, up#0, and lim |¢(uy,)| = +oo. (3.18)
By setting y = u, in (2.1) we obtain
lo(zun) + @(zu, ') = 20(2)p(un)|| < e, @,y € K. (3.19)

Then we obtain

(@) + @(auy))d(un) ! = 20(z)]| < ——

1o (um) ||

xz,y € K.
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Consequently
lim (@(zun) + @(zu, 1)) o(un) ™t = 20(z). (3.20)

n—oo

Now for each z,y,z € K and n € N, by setting x = xz,y = u,, in (2.1)
we obtain

lp(zzun) + o((z2)u, ) = 20(x2)p(un)[| < ¢, z,y € K. (3.21)
Hence
Jim (p(zzun) + @((w2)uy)d(un) ™" = 20(2). (3.22)

By the arbitrariness of z, (3.20) converges to a unique function ¢ which
satisfies (1.1). In fact,

I1(f (unzy) + fun(zy) ™))™ (un) + (f(unzy™) + funlzy™)™1))o™" (un)
—26(y) ((un) + @(unz ™)) o™ ()|
< (o (unzy) + o(unay™))¢ ™ (un) — 20(y)p(unz)d™" (un) |
(o (un(zy) ™) + oun(zy™) ™o (un) — 20(y)e(unz™)d™ (un)|
< 2¢ll™ (un)|, (3.23)

here we have used Kannappan’s condition on ¢ to get (3.23). Then taking
limits in (3.23) we get that ¢ satisfies (2.4), and ¢, ¢ satisfy (1.1). Then (iii)
is proved. Then case (i) is also proved. O

Remark 3.1. If ¢ is bounded, then in (iii) ¢ = 0, moreover, ¢, ¢ satisfy
(2.1).

Proof of Theorem 2. Let
f@,y) = o(zyA(ey)) + ey Alzy™)) = 20(2)o(y), =,y €G,
then we obtain
If(z,y)l <e, z,y€G. (3.24)
Furthermore, we get identities
fla,y) = flz,y7h) = playA(zy) + pley ™ Alzy ™)) — 20(2)9(y)
— [p(zy™ Aley ™) + p(zyA(zy)) — 20(2)d(y)]
= 2p(x)(o(y™") — ¢(v))- (3.25)

If ¢ = 0, ¢ is solution of (2.5). If ¢ is unbounded, from (3.25) we get
o(y) = ¢y~ 1), ie., ¢ is even.

Also there exists a sequence {u,},m € N in K such that

plun) #0, and  Tim [Jp(uy)]| = +oo. (3.26)
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Let z = uy,y = x in (2.6), we get
H(p(una:A(unaj))—|—cp(unm71A(unx71))—2g0(un)g(x)|] <e¢, z,y€ K. (3.27)

Then we obtain

()™ ((un@ A (un@) Mo (una™ Alunz ™)) =29 (2)|| < Wzn)ﬂ’ z,y €K
Consequently
Tim o (un) 7 (p(unzA(un)) + @(uns™ Auna ™)) = 20(z).  (3.28)

Now for each x,y,z € K and n € N, by setting x = u,,y = xz in (2.6) we
obtain

lo(unazA(unz2)) +@(un(22) " Aunzz™)) = 20(un)p(z2)| < ¢, 2,y € K,

(3.29)
then
Tim_ () (P (A (0n2)) + p(t(w2) " A (w2) 1)) = 26(z2).
(3.30)

By the arbitrariness of z, (3.28) converges to a unique function ¢ which
satisfies (2.6). In fact,

™" (un) (@ (unzyA(unzy)) + @(un(zy) " Alun(zy) "))
+ o (un) (@(unzy ™ Alunzy ™)) + @(un(zy™") " Aluny~'2)))
— 207 () (P (un) + @(unz™))d(y) |
< [lo™ " (un) (p(unzyA(unzy)) + @(un(zy) " Alun (zy) ™)) — 20(unz)d(y))||
+ lo™ (un) (e(unmy ™ " Alunzy ™)) + @(uny ™ A (uny ')
— 2p(unz™ o)) < 2¢llo™ (un) I, (3.31)

where we have used Kannappan’s condition on ¢ and (2.6) to get (3.31).
Then by taking limits in (3.31), we get that ¢ satisfies (2.8). Then (ii) is
proved.

If ¢ is unbounded, there exists a sequence {u,},m € N in K such that

d(un) #0, up #0, and lim |¢(uy,)| = +oo. (3.32)
By setting y = u,, in (2.1) we obtain
lp(zund(zun)) + leu, Alzu, ) = 20(2)(un)|| < e, z,y € K. (3.33)

Then we obtain

(e (wun Azun)) Folzuy Aruy 1)) dlun) ~ —20(2)]| < m vy €K
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Consequently
lim (p(@unA(zuy)) + oo, 'Awug ) p(un) ' = 20(2).  (3.34)

Now for each z,y,z € K and n € N, by setting = = zy,y = uy, in (2.6)
we obtain

le(zyunA(zyun)) + o(zyu,  Aayu, ') = 20(zy)p(un)l| < ¢, x,y € K.

(3.35)
then
lim (p(zyunA(zyun)) + @(ryuy Azyuy)))d(un) ™ = 2p(xy).  (3.36)

By the arbitrariness of y, (3.34) converges to a unique function ¢ which
satisfies (2.6). In fact,

1(p(unzyA(unay)) + @ (un(zy) " Alun(zy) ™)) (un) "
+ (p(unzy™  Mupzy ™)) + @(unyz ™ )A(p(unyz ™)) (un) !
— 26(y)(P(unm) + P(unz ™)) P(un) ||
< N(p(unzyM(unzy)) + (unzy ™~ Alunzy ™) = 26(y)o(un))d(un) |
+ [[(e(unz ™y Alunz ™ y ™) + @(unz ™ yA(unz™'y)
—20(y)p(unz ")) p(un) | < 2¢llo™ (un)l, (3.37)

where we have used Kannappan’s condition on ¢, A and (2.6) to get (3.37).
Then taking limits in (3.37), we get that ¢ satisfies (2.5). Therefore (iii) is
proved. Then the case (i) is also proved. O

4. EXAMPLE

Example. Let C the field of complex numbers with the complex unit ¢ =
v/—1, and G be the quaternion group G' = {£1, +i, &5, +k}. The center of
G is Gy = {1} and G is a Ps-group. Take A = Id or —Id, ¢, ¢ : G — C,
¢ # 0. If ¢ is unbounded and ¢, ¢ satisfy (2.3) or (2.6), then ¢ as defined
by (2.4) or (2.9) and ¢ are solutions of (1.1) or (2.5) respectively.
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