ON HYERS-ULAM STABILITY OF WILSON'S FUNCTIONAL EQUATION ON P_3 -GROUPS

MINGXING LUO

ABSTRACT. The purposes of paper is to obtain the Hyers-Ulam stability of Wilson's equation $\varphi(xy) + \varphi(xy^{-1}) = 2\varphi(x)\phi(y)$ for $\varphi, \phi : G \to K$, where G is a P₃- group and K a field with char $K \neq 2$.

1. INTRODUCTION

In 1989, Aczél, Chung and Ng have solved Wilson's equation,

$$\varphi(xy) + \varphi(xy^{-1}) = 2\varphi(x)\phi(y) \tag{1.1}$$

assuming that the function ϕ satisfies Kannappan's condition $\phi(xyz) = \phi(xzy)$ and $\varphi(xy) = \varphi(yx)$ for all $x, y, z \in G$.

Let (G; +) be a topological abelian group and let K be a compact subgroup of automorphisms of G with the normalized Haar measure μ . Assume that the topologies on K and G are related in such a way that the map $k \mapsto ky \in G, k \in K$ is continuous for each fixed $y \in G$, where ky denotes the action of $k \in K$ on $y \in G$. We say that a continuous function $\varphi: G \to C$ is K-spherical if and only if there exists a non-zero continuous function $\phi: G \to C$ such that

$$\int_{K} \phi(x+ky)d\mu(k) = \phi(x)\varphi(y) \tag{1.2}$$

for all $x, y \in G$. Equivalently, a non-zero continuous function $\varphi : G \to C$ is *K*-spherical if it satisfies the integral equation $\int_K \varphi(x+ky) d\mu(k) = \varphi(x)\varphi(y)$ for all $x, y \to G$. R. Badora[4] has studied the Hyers-Ulam stability of Wilson's functional equation for spherical functions.

Classical examples of (1.1) are d'Alembert's functional equation $\varphi(x + y) + \varphi(x - y) = 2\varphi(x)\varphi(y)$, where $K = \{Id, -Id\}$ and Cauchy's equation $\varphi(x+y) = \varphi(x)\varphi(y)$ with $K = \{Id\}$. The generalization for (1.2) of Wilson's functional equation (1.1) was considered discussed by W. Chojnacki [6], R.

²⁰⁰⁰ Mathematics Subject Classification. Primary 39B52; Secondary 20B99.

Key words and phrases. Hyers-Ulam stability, Wilson's equation, P₃- group.

Badora [3, 4] and H. Stetkaer [17, 18]. For (1.2) with K finite this problem was solved by W. Förg-Rob and J. Schwaiger in [12], R. Badora in [3], and for d'Alembert's functional equation by J. Baker in [5].

Several papers deal with Wilson's functional equation, see e.g. the monograph [1] by Aczél and Dhombres for references and results. Aczél, Chung and Ng [2], where K is a quadratically closed field of $\operatorname{char} K \neq 2$, assuming that the function g satisfies Kannappan's condition, $\phi(xyz) = \phi(xzy)$ for all $x, y, z \in G$ and $\varphi(xy) = \varphi(yx)$. Penney and Rukhin [15] found square integrable solutions of a version of the equation (1.1). Sinopoulos [16] has determined the general solution of (1.1) where G is a 2-divisible abelian group, φ is a vector-valued function and ϕ is a matrix-valued function. Also, Wilson's equation was investigated in the contex of spherical functions on groups by Stetkaer [18]. In this paper we study the problem of the Hyers-Ulam stability of equation (1.1) for K a P_3 -Group, if the commutator subgroup K_0 of K, which is generated by all commutators $[x, y] := x^{-1}y^{-1}xy$, has order one or two.

2. Main results on stability

The main results on stability are contained in the following

Theorem 1. Let $\varphi, \phi; G \to K$ be continuous functions, where G is a P_3 group and K is a quadratically closed field with charK $\neq 2$; also K is Abelian under multiplication. Assume that there exists a $c \geq 0$ such that

$$\|\varphi(xy) + \varphi(xy^{-1}) - 2\varphi(x)\phi(y)\| \le c, \quad x, y \in K$$
(2.1)

Then either

(i) φ, ϕ are bounded or (ii) φ is unbounded and

(ii)
$$\varphi$$
 is unbounded and

$$\phi(x) = \frac{1}{2} \lim_{n \to \infty} \varphi(u_n)^{-1} (\varphi(u_n x) + \varphi(u_n x^{-1})), \qquad (2.2)$$

satisfies

$$\phi(y) = \phi(y^{-1}), \quad \varphi(xy) + \varphi(xy^{-1}) = 2\varphi(x)\varphi(y), \tag{2.3}$$

or

(iii) ϕ is unbounded,

$$\varphi(x) = \frac{1}{2} \lim_{n \to \infty} (\varphi(xu_n) + \varphi(xu_n^{-1}))\phi(u_n)^{-1}, \qquad (2.4)$$

and φ, ϕ satisfies (1.1).

Corollary 1. Let $\varphi : G \to K$ is continuous, if there exists a $c \ge 0$, then φ is bounded or satisfied (1.1).

Consider the signed Wilson's functional equation

$$\varphi(xy\Lambda(xy)) + \varphi(xy^{-1}\Lambda(xy^{-1})) = 2\varphi(x)\phi(y), \qquad (2.5)$$

where $\Lambda : G_0 \to T = \{a : |a| = e\}$ and G_0 is the commutator subgroup of group G, which is generated by all commutators $[x, y] := x^{-1}y^{-1}xy$, has order one or two.

If we set $\Lambda \equiv e$ with e is unit of K, we can obtain (1.1).

Theorem 2. Let $\varphi, \phi, G \to K$ be continuous functions and Λ be *G*-even, where *G* is a P₃-group and *K* is a quadratically closed field with char $K \neq 2$, also *K* is Abelian under multiplication. Assume that there exists a $c \geq 0$ such that

$$\|\varphi(xy\Lambda(xy)) + \varphi(xy^{-1}\Lambda(xy^{-1})) - 2\varphi(x)g(y)\| \le c, \qquad x, y \in K$$
 (2.6)

Then either

- (i) φ, ϕ are bounded or
- (ii) φ is unbounded and

$$\phi(x) = \frac{1}{2} \lim_{n \to \infty} \varphi(u_n)^{-1} (\varphi(u_n x \Lambda(u_n x)) + \varphi(u_n x^{-1} \Lambda(u_n x^{-1}))).$$
(2.7)
satisfies

$$\phi(x) = \phi(x^{-1}), \quad \phi(xy\Lambda(xy)) + \phi(xy^{-1}\Lambda(xy^{-1})) = 2\phi(x)\phi(y), \quad (2.8)$$

or

(iii) ϕ is unbounded,

$$\varphi(x) = \frac{1}{2} \lim_{n \to \infty} (\varphi(xu_n \Lambda(xu_n)) + \varphi(xu_n^{-1} \Lambda(xu_n^{-1})))\phi(u_n)^{-1}, \qquad (2.9)$$

and φ, ϕ satisfies (2.6).

3. Proofs of theorems

Proof of Theorem 1. Let

$$f(x,y) = \varphi(xy) + \varphi(xy^{-1}) - 2\varphi(x)\phi(y), \quad x, y \in G,$$

then we obtain

$$|f(x,y)|| \le c, \quad x,y \in G.$$
 (3.10)

Furthermore, we get identities

$$f(x,y) - f(x,y^{-1}) = \varphi(xy) + \varphi(xy^{-1}) - 2\varphi(x)\phi(y) - [\varphi(xy^{-1}) + \varphi(xy) - 2\varphi(x)\phi(y)] = 2\varphi(x)(\phi(y^{-1}) - \phi(y)).$$
(3.11)

If $\varphi = 0$, φ is solution of (1.1).

MINGXING LUO

If φ is unbounded, from (3.11) we get $\phi(y) = \phi(y^{-1})$, i.e., ϕ is even. We now prove (ii) and (iii). Assuming (ii), there exists a sequence $\{u_n\}, m \in N$ in K such that

$$\varphi(u_n) \neq 0$$
, and $\lim_{n \to \infty} \|\varphi(u_n)\| = +\infty.$ (3.12)

Let $x = u_n, y = x$ in (2.1), we get

$$\|\varphi(u_n x) + \varphi(u_n x^{-1}) - 2\varphi(u_n)\phi(x)\| \le c, \quad x, y \in K.$$
(3.13)

Then we obtain

$$\|\varphi(u_n)^{-1}(\varphi(u_nx) + \varphi(u_nx^{-1})) - 2\phi(x)\| \le \frac{c}{\|\varphi(u_n)\|}, \quad x, y \in K.$$

Consequently

$$\lim_{n \to \infty} \varphi(u_n)^{-1} (\varphi(u_n x) + \varphi(u_n x^{-1})) = 2\phi(x).$$
 (3.14)

Now for each $x, y, z \in K$ and $n \in N$, by setting $x = u_n, y = xz$ in (2.1) we obtain

$$\|\varphi(u_n xz) + \varphi(u_n (xz)^{-1}) - 2\varphi(u_n)\phi(xz)\| \le c, \quad x, y \in K.$$
(3.15)

then

$$\lim_{n \to \infty} \varphi(u_n)^{-1} (\varphi(u_n xz) + \varphi(u_n (xz)^{-1})) = 2\phi(xz).$$
(3.16)

By the arbitrariness of z, (3.14) converges to a unique function ϕ which satisfies (2.3). In fact,

$$\begin{aligned} \|\varphi^{-1}(u_{n})(\varphi(u_{n}xy) + \varphi(u_{n}(xy)^{-1})) + \varphi^{-1}(u_{n})(\varphi(u_{n}xy^{-1}) \\ &+ \varphi(u_{n}(xy^{-1})^{-1})) - 2\varphi^{-1}(u_{n})(\varphi(u_{n}x) + \varphi(u_{n}x^{-1}))\phi(y)\| \\ &\leq \|\varphi^{-1}(u_{n})(\varphi(u_{n}xy) + \varphi(u_{n}xy^{-1}) - 2\varphi(u_{n}x)\phi(y))\| \\ &+ \|(\varphi(u_{n}(xy)^{-1}) + \varphi(u_{n}(xy^{-1})^{-1}) - 2\varphi(u_{n}x^{-1})\phi(y)))\| \\ &\leq 2c\|\varphi^{-1}(u_{n})\|, \end{aligned}$$
(3.17)

here we have used Kannappan's condition on φ to get (3.17). Then taking limits in (3.17) we get that ϕ satisfies (2.3). Hence (ii) is proved.

If ϕ is unbounded, there exists a sequence $\{u_n\}, m \in N$ in K such that

$$\phi(u_n) \neq 0, \quad u_n \neq 0, \quad \text{and} \quad \lim_{n \to \infty} \|\phi(u_n)\| = +\infty.$$
 (3.18)

By setting $y = u_n$ in (2.1) we obtain

$$\|\varphi(xu_n) + \varphi(xu_n^{-1}) - 2\varphi(x)\phi(u_n)\| \le c, \quad x, y \in K.$$
(3.19)

Then we obtain

$$\|(\varphi(xu_n) + \varphi(xu_n^{-1}))\phi(u_n)^{-1} - 2\varphi(x)\| \le \frac{c}{\|\phi(u_n)\|}, \quad x, y \in K.$$

Consequently

$$\lim_{n \to \infty} (\varphi(xu_n) + \varphi(xu_n^{-1}))\phi(u_n)^{-1} = 2\varphi(x).$$
(3.20)

Now for each $x, y, z \in K$ and $n \in N$, by setting $x = xz, y = u_n$, in (2.1) we obtain

$$\|\varphi(xzu_n) + \varphi((xz)u_n^{-1}) - 2\varphi(xz)\phi(u_n)\| \le c, \quad x, y \in K.$$
(3.21)

Hence

$$\lim_{n \to \infty} (\varphi(xzu_n) + \varphi((xz)u_n^{-1}))\phi(u_n)^{-1} = 2\varphi(xz).$$
 (3.22)

By the arbitrariness of z, (3.20) converges to a unique function φ which satisfies (1.1). In fact,

$$\begin{aligned} \|(f(u_nxy) + f(u_n(xy)^{-1}))\phi^{-1}(u_n) + (f(u_nxy^{-1}) + f(u_n(xy^{-1})^{-1}))\phi^{-1}(u_n) \\ &- 2\phi(y)(\varphi(u_nx) + \varphi(u_nx^{-1}))\phi^{-1}(u_n)\| \\ &\leq \|(\varphi(u_nxy) + \varphi(u_nxy^{-1}))\phi^{-1}(u_n) - 2\phi(y)\varphi(u_nx)\phi^{-1}(u_n)\| \\ &+ \|(\varphi(u_n(xy)^{-1}) + \varphi(u_n(xy^{-1})^{-1})\phi^{-1}(u_n) - 2\phi(y)\varphi(u_nx^{-1})\phi^{-1}(u_n)\| \\ &\leq 2c\|\varphi^{-1}(u_n)\|, \end{aligned}$$
(3.23)

here we have used Kannappan's condition on φ to get (3.23). Then taking limits in (3.23) we get that ϕ satisfies (2.4), and φ, ϕ satisfy (1.1). Then (iii) is proved. \Box

Remark 3.1. If φ is bounded, then in (iii) $\varphi = 0$, moreover, φ, ϕ satisfy (2.1).

Proof of Theorem 2. Let

$$f(x,y) = \varphi(xy\Lambda(xy)) + \varphi(xy^{-1}\Lambda(xy^{-1})) - 2\varphi(x)\phi(y), \quad x,y \in G,$$

then we obtain

$$||f(x,y)|| \le c, \quad x,y \in G.$$
 (3.24)

Furthermore, we get identities

$$f(x,y) - f(x,y^{-1}) = \varphi(xy\Lambda(xy)) + \varphi(xy^{-1}\Lambda(xy^{-1})) - 2\varphi(x)g(y) - [\varphi(xy^{-1}\Lambda(xy^{-1})) + \varphi(xy\Lambda(xy)) - 2\varphi(x)\phi(y)] = 2\varphi(x)(\phi(y^{-1}) - \phi(y)).$$
(3.25)

If $\varphi = 0$, φ is solution of (2.5). If φ is unbounded, from (3.25) we get $\phi(y) = \phi(y^{-1})$, i.e., ϕ is even.

Also there exists a sequence $\{u_n\}, m \in N$ in K such that

$$\varphi(u_n) \neq 0$$
, and $\lim_{n \to \infty} \|\varphi(u_n)\| = +\infty.$ (3.26)

Let $x = u_n, y = x$ in (2.6), we get

$$\|\varphi(u_n x \Lambda(u_n x)) + \varphi(u_n x^{-1} \Lambda(u_n x^{-1})) - 2\varphi(u_n)g(x)\| \le c, \quad x, y \in K.$$
(3.27)

Then we obtain

$$\|\varphi(u_n)^{-1}(\varphi(u_n x \Lambda(u_n x)) + \varphi(u_n x^{-1} \Lambda(u_n x^{-1}))) - 2g(x)\| \le \frac{c}{\|\varphi(u_n)\|}, \, x, y \in K.$$

Consequently

$$\lim_{n \to \infty} \varphi(u_n)^{-1}(\varphi(u_n x \Lambda(u_n x)) + \varphi(u_n x^{-1} \Lambda(u_n x^{-1}))) = 2\phi(x).$$
(3.28)

Now for each $x, y, z \in K$ and $n \in N$, by setting $x = u_n, y = xz$ in (2.6) we obtain

$$\|\varphi(u_n x z \Lambda(u_n x z)) + \varphi(u_n (x z)^{-1} \Lambda(u_n x z^{-1})) - 2\varphi(u_n)\phi(x z)\| \le c, \quad x, y \in K,$$
(3.29)

then

$$\lim_{n \to \infty} \varphi(u_n)^{-1} (\varphi(u_n x z \Lambda(u_n x z)) + \varphi(u_n (x z)^{-1} \Lambda(u_n (x z)^{-1}))) = 2\phi(x z).$$
(3.30)

By the arbitrariness of z, (3.28) converges to a unique function ϕ which satisfies (2.6). In fact,

$$\begin{aligned} \|\varphi^{-1}(u_{n})(\varphi(u_{n}xy\Lambda(u_{n}xy)) + \varphi(u_{n}(xy)^{-1}\Lambda(u_{n}(xy)^{-1}))) \\ &+ \varphi^{-1}(u_{n})(\varphi(u_{n}xy^{-1}\Lambda(u_{n}xy^{-1})) + \varphi(u_{n}(xy^{-1})^{-1}\Lambda(u_{n}y^{-1}x)))) \\ &- 2\varphi^{-1}(u_{n})(\varphi(u_{n}x) + \varphi(u_{n}x^{-1}))\phi(y)\| \\ &\leq \|\varphi^{-1}(u_{n})(\varphi(u_{n}xy\Lambda(u_{n}xy)) + \varphi(u_{n}(xy)^{-1}\Lambda(u_{n}(xy)^{-1})) - 2\varphi(u_{n}x)\phi(y))\| \\ &+ \|\varphi^{-1}(u_{n})(\varphi(u_{n}xy^{-1}\Lambda(u_{n}xy^{-1})) + \varphi(u_{n}y^{-1}x\Lambda(u_{n}y^{-1}x))) \\ &- 2\varphi(u_{n}x^{-1})\phi(y))\| \leq 2c\|\varphi^{-1}(u_{n})\|, \end{aligned}$$
(3.31)

where we have used Kannappan's condition on φ and (2.6) to get (3.31). Then by taking limits in (3.31), we get that ϕ satisfies (2.8). Then (ii) is proved.

If ϕ is unbounded, there exists a sequence $\{u_n\}, m \in N$ in K such that

$$\phi(u_n) \neq 0, \quad u_n \neq 0, \quad \text{and} \quad \lim_{n \to \infty} \|\phi(u_n)\| = +\infty.$$
 (3.32)

By setting $y = u_n$ in (2.1) we obtain

$$\|\varphi(xu_n\Lambda(xu_n)) + \varphi(xu_n^{-1}\Lambda(xu_n^{-1})) - 2\varphi(x)\phi(u_n)\| \le c, \quad x, y \in K.$$
(3.33)

Then we obtain

$$\|(\varphi(xu_n\Lambda(xu_n))+\varphi(xu_n^{-1}\Lambda(xu_n^{-1})))\phi(u_n)^{-1}-2\varphi(x)\| \le \frac{c}{\|\phi(u_n)\|}, \ x,y \in K.$$

Consequently

$$\lim_{n \to \infty} (\varphi(xu_n \Lambda(xu_n)) + \varphi(xu_n^{-1} \Lambda(xu_n^{-1})))\phi(u_n)^{-1} = 2\varphi(x).$$
(3.34)

Now for each $x, y, z \in K$ and $n \in N$, by setting $x = xy, y = u_n$, in (2.6) we obtain

$$\|\varphi(xyu_n\Lambda(xyu_n)) + \varphi(xyu_n^{-1}\Lambda(xyu_n^{-1})) - 2\varphi(xy)\phi(u_n)\| \le c, \quad x, y \in K.$$
(3.35)

then

$$\lim_{n \to \infty} (\varphi(xyu_n \Lambda(xyu_n)) + \varphi(xyu_n^{-1}\Lambda(xyu_n^{-1})))\phi(u_n)^{-1} = 2\varphi(xy).$$
(3.36)

By the arbitrariness of y, (3.34) converges to a unique function φ which satisfies (2.6). In fact,

$$\begin{aligned} \|(\varphi(u_{n}xy\Lambda(u_{n}xy)) + \varphi(u_{n}(xy)^{-1}\Lambda(u_{n}(xy)^{-1})))\phi(u_{n})^{-1} \\ &+ (\varphi(u_{n}xy^{-1}\Lambda(u_{n}xy^{-1})) + \varphi(u_{n}yx^{-1})\Lambda(\varphi(u_{n}yx^{-1})))\phi(u_{n})^{-1} \\ &- 2\phi(y)(\varphi(u_{n}x) + \varphi(u_{n}x^{-1}))\phi(u_{n})^{-1}\| \\ &\leq \|(\varphi(u_{n}xy\Lambda(u_{n}xy)) + \varphi(u_{n}xy^{-1}\Lambda(u_{n}xy^{-1}) - 2\phi(y)\varphi(u_{n}x))\phi(u_{n})^{-1}\| \\ &+ \|(\varphi(u_{n}x^{-1}y^{-1}\Lambda(u_{n}x^{-1}y^{-1})) + \varphi(u_{n}x^{-1}y\Lambda(u_{n}x^{-1}y) \\ &- 2\phi(y)\varphi(u_{n}x^{-1}))\phi(u_{n})^{-1}\| \leq 2c\|\varphi^{-1}(u_{n})\|, \end{aligned}$$
(3.37)

where we have used Kannappan's condition on φ , Λ and (2.6) to get (3.37). Then taking limits in (3.37), we get that φ satisfies (2.5). Therefore (iii) is proved. Then the case (i) is also proved.

4. Example

Example. Let *C* the field of complex numbers with the complex unit $i = \sqrt{-1}$, and *G* be the quaternion group $G = \{\pm 1, \pm i, \pm j, \pm k\}$. The center of *G* is $G_0 = \{\pm 1\}$ and *G* is a *P*₃-group. Take $\Lambda = Id$ or -Id, $\varphi, \phi: G \to C$, $\varphi \neq 0$. If ϕ is unbounded and φ, ϕ satisfy (2.3) or (2.6), then φ as defined by (2.4) or (2.9) and ϕ are solutions of (1.1) or (2.5) respectively.

References

- J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
- [2] J. Aczél, J. K. Chung and C. T. Ng, Symmetric second differences in product form on groups, in: Th. M. Rassias (Ed.), Topics in mathematical analysis, 1–22, Ser. Pure Math. 11, World Scientifc, Singapore-Teaneck, N. Y., 1989.
- [3] R. Badora, On a joint generalization of Cauchy's and d'Alembert's functional equations, Aequationes Math., 43 (1992), 72–89.

MINGXING LUO

- [4] R. Badora, On Hyers-Ulam stability of Wilson's functional equation, Aequationes Math., 60 (2000) 211–218.
- [5] J. A. Baker, The stability of the cosine functional equation, Proc. Amer. Math. Soc., 80 (1980), 411–416.
- [6] W. Chojnacki, On some functional equation generalizing Cauchy's and d'Alembert's functional equation, Colloq. Math., 55 (1988), 169–178.
- [7] J. K. Chung, Pl. Kannappan and C. T. Ng, A generalization of the cosine-sine functional equation on groups, Linear Algebra and its Application, 66 (1985), 259–277.
- [8] I. Corovei, The functional equation f(xy) + f(yx) + f(xy⁻¹) + f(y⁻¹x) = 4f(x)f(y) for nilpotent groups, Bul. Stiint. Inst. Politechn. Cluj-Napoca Ser. Mat. Apl. Mec., 20 (1977), 25–28.
- [9] I. Corovei, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for nilpotent groups, Mathematica (Cluj), 22 (45) (1980), 33–41.
- [10] I. Corovei, The d'Alembert functional equation on metabelian groups, Aequationes Math., 57 (1999), 201–205.
- [11] I. Corovei, Wilson's functional equation on P_3 -groups, Aequationes Math., 61 (2001) 212–220.
- [12] W. Förg-Rob and J. Schwaiger, The stability of some functional equations for generalized hyperbolic functions and for the generalized cosine equation, Results in Math., 26 (1994), 274–280.
- [13] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, Basel, Berlin, 1998.
- [14] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.
- [15] R. C. Penney and A. L. Rukhin, D'Alembert's functional equation on groups, Proc. Amer. Math. Soc., 77 (1979), 73–80.
- [16] P. Sinopoulos, Wilson's functional equation for vector and matrix functions, Proc. Amer. Math. Soc., 127 (1997), 1089–1094.
- [17] H. Stetkaer, D'Alembert's equation and spherical functions, Aequationes Math., 48 (1994), 220–227.
- [18] H. Stetkaer, Wilson's functional equations on groups, Aequationes Math., 49 (1995), 252–275.

(Received: September 20, 2006) (Revised: March 23, 2007) College of Mathematics Sichuan University Chengdu, Sichuan 610064 China E-mail: luom858@yahoo.com.cn