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A CONVOLUTION RELATED TO THE INVERSE
KONTOROVICH-LEBEDEV TRANSFORM

S. B. YAKUBOVICH AND L. E. BRITVINA

. . S o a
ABSTRACT. We establlsh the mapping propertiesin th_e SR ¢+ ; =177 ),
0 < v < = for a convolution related to the transformation

) = /f(t)Kit(w) dt, ze€Ry

involving the modified Bessel functioA;:(x) as a kernel. It is shown that the
convolution operator of twd.»-functions exists as a Lebesgue integral and repre-
sents a continuous function @, . As a consequence, we get the multiplication
theorem for two modified Bessel functions of different subscripts. Further appli-
cations to the corresponding class of convolution integral equations are obtained.

1. INTRODUCTION

In this paper we consider the following Kontorovich-Lebedev transformation [1,
2]

—llm/f Ky (x)dt, x€ R4, (1)
N—o0

where the integration is realized in the mean convergence with respect to an index
of the modified Bessel function of the second kiig (x) [3], which is real-valued

and even with respect tb A function f(¢) is supposed to be from the space
LY =Ly(Ry; 5%—),0<v <, ie.

Vo.__ . i 2 dt _ 2
Ly = {f : /|f(75) bt fllzy < OO}~
0
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For0 < v; < 1n < 7 itis easily seen the embeddings

dt
LB C L2 C LY =Ly | Ry .
2 =72 =72 2( Jr’tsinhmf)

As it is known [1], the operator (1) maps the spdceonto the spacé.s (R ;
dg) and its inverse is described by

N
ft)= ﬁ%\fl—{go tsinh 7t / F(w)Kzt(x); (2)
1/N

in the mean convergence sense with respect to the norhf.inMoreover, the
Parseval equality

oo oodt 2 [ da
J1r0r = 5 [P ©
0 0

is valid.
Using the Macdonald formula [1, 4] for the product of the modified Bessel func-
tions of different arguments

® _1 UM-F& du
Ki(z)Kiy(y) = /6 2< w U)Kit(u)ua 4)
0

N

one can introduce a convolution for the transform (2) defined by the following
double integral

(F % G)(z) =

N =

<X 1( u2+y2+Uy> d d
1 pultay? | uy ”
| [Pwcwe A )
yu
0 0
whereF'(z) andG(z) are two functions from a suitable function space of originals.
Herey(t) = ﬁfmt is the weight function in a sense of the factorization equality

22 (1) (D)g(t) = / (F % G) (@) Kin(a) 2,
0

T

andf, g are transforms (2) of’, G respectively, written in the corresponding space
of images. Operator (5) was first introduced formally in Kakichev [5] as an ex-
ample of integral nonstandard convolution. Later this operator was considered in
detailin[1, 2,6, 7, 8, 9].
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The main goal of this paper is to establish mapping properties of the following
convolution

(f ¥ g) (t) = ;tsinhwt//f(r)g(e)ﬁa(t, 7,0) drdb, (6)
0 0
where

Qa(taTa 9) = /xa_lKiT(:E)Kie(x)Kit(x) de, a, ta T, NS R+' (7)
0

Formula (6) was first introduced in Yakubovich [1, p. 142] and announced later

in [10]. The kernel (7) can be calculated employing relation 2.16.46.6 from [4] and
we have

— t

Qu(t, 7,0) = 23 Re | D(it)(a — it)B (& 47T 0=t @ 70+t

2 2 2 2
a T1T—-04+t a T-—0-—1t a T+0—t a T+0+1t
<2 s R >4F3<2+Z 2 2 T2
— —0— —it 1+a—it 1
a_.T 0+t a T 0 t;l—zt,azn, +a2 zt;4>] ®)

2 2 "2 2
It contains the generalized hypergeometric funciib§(a. , az, as, as; b1, ba, bs; z)
atthe point: = 1/4 and as usudl(z), B(z,y) stand for Euler's gamma- and beta-
functions [3].

In the sequel we will give some conditions that guarantee the convolution (6) of
two Lo-functions exists as a Lebesgue integral and represents a continuous func-
tion. Various applications of the convolution (6) will be considered. In particular,
we will prove an analog of the multiplication theorem for two modified Bessel
functions with different subscripts. Finally, we will exhibit certain convolution
integral equations related to (6).

2. MAPPING PROPERTIES OF THE cowownor{f * g) (t)

We first present a lemma which gives a boundedness and the norm estimation
for the Kontorovich-Lebedev transform (1) as an operator figmo0 < v < «
into the spac€'(R_.) of bounded continuous functions @&y, .

Lemma 1. Let f(t) € L§ with0 < v < 7. Then transformationl) exists as
a Lebesgue integral for al: > 0 and represents a continuous function Bn.
Moreover, it is a bounded operatdf : Ly — C(R, ), namely

sup [F(z)| < C| |y, (9)
>0
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with
Nis

~ 2c0s/? (%) ’

Proof. In fact, appealing to Schwarz’s inequality we obtain

00 S 1/2
F(z)] < / If(t)llKu(w)\dt<< / FopR—2 )
0 0

tsinh vt
1/2 00 1/2
X (/tsinhytKiQt(x) dt) = ]|f||L5</tsinhl/tKi2t(x) dt) .
0 0
(10)

The latter integral in (10) is calculated in terms of the modified Bessel funéfion
(see [4], relation 2.16.52.8), namely

/tsinh(yt)Ki(a:) dt = “ysin KKl <2x Ccos K) , O<v<m. (11)
2 2 2
0
Moreover, sincec K1 (z) < 1, whenz > 0, it yields (9)

o0
T . v AN 1/2
sup |F(x)| <sup [ |f(t)||Ku(x)|dt < sup <fxsme1 (Qxcos 7)) HfHLg
x>0 20 >0 \2 2 2

VT
= 2 cosl/2 (%)

In order to prove thaf'(z) is continuous oriR;, we will establish the uniform
convergence of the integral (1) with respectrte> zyp > 0. To do this we use the
following inequality for the modified Bessel function (cf. [1], formula (1.100))

| K ()] < e % Ko(x cosd),

where we choose/2 < § < 7/2. Then for sufficiently bigd > 0 we have

[fllzy < oo.

e}

o0 1/2
/|f(t)||Klt(x)| dt <||fl|zy </tsinh ytKi(x)dt) < KZ(xgcosd)
A

A

() 1/2
X (/tsinh Vt6_26tdt> — 0, A — .

A

Applying the Parseval equality (3) we get



INVERSE KONTOROVICH-LEBEDEV TRANSFORM 219

Lemma 2. The equality
2 [e.e] o
ﬁ/tsinhﬂt|ﬂa(t,7,9)|2dt = /xQO‘_lKZ-QT(:U)KZ%(x) dz. (12)
0 0

holds for anya, 7, 0 € R,.

Proof. Indeed by the asymptotic properties of the modified Bessel functions [3]
we observe that the right-hand side of (12) is finite. Theref6t&,, (z) K (z) €

Lo (R+, %’3) Moreover, transformation (1) of this function exists as a Lebesgue
integral and is equal tg%t sinh 7t Q,(t, 7, 6) (see (7)). Thus via Parseval equal-
ity (3) we arrive at (12). O

As a corollary we immediately obtain an analogue of the multiplication theorem
for the modified Bessel functions (cf. (4)) of different subscripts.

Corollary 1. Let0 < a < 2 andr, § € R, be fixed. Then for any > 0 the
following equality is true

a—3 % s _
°K; (ﬂﬁ)KiG($):2 /F(a Zt)B<a—H'T+9 ! a—i7+9+t>

p T(—it) 2 2 2 2
< B a T—0+t g+.7'—0—t I g_i_.T—i-H—tg TH+O0+t
2 Ty 9TV sl Ty Ty T
a T—0+1t « T—0—1 a—1it 1+a—1t 1
N L I AL R 2 Ko () dt.
g i gt il i [ Kale)
(13)

Proof. Using the definition of the generalized hypergeometric function [3] we can
write the right-hand side of (13) as

o0
Io(z) = / walt 7, 0) K(x) dt, (14)
—00
where
ga—3¢ 2 a T+0—t « THO+t
t.7.0) = Bl = = o rrre
wa(t,7,0) — HZ:O (2+n+z 5 ,2—|—n 7 5 >
e T—0+1t « T—0—t\ I'(a—it+2n)
B(= S e . (15
. <2+” Ty o T >n!F(1—it—|—n) (15)

Then by an elementary inequality for the beta-function
|B(s,t)| < B(Res,Ret), Res>0,Ret>0, (16)
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and the duplication formula for the gamma-function [3] we derive the following
estimations

s a T+0—-t a T+O+
203 |lwa (t, 7,0)| < ’B <2+2272—22>‘
B g_iT—G—i-t?g Z_7'—0—t \F(a—‘it)]

2 2 2 2 ID(—it)|
o0 .
I — it + 2n)|

0> B (S 4n S 4n)

+||nz::1 2 Py ) N — it +n)|

X

<|B gjLiLg_t?g,iLM
2 2 2 2
a 7170+t a T1—0-t\||(a—7it)] 20— 1|
X|Bl\g iy g T ' atit
2 2 2 2 IT(=it)] /@ |T(1 — 24)|

oo4”B204 o 5% 1ozFoz—|-1
g (G ) B(gemt-g)r (S e

a T17+60—-t a T+0+t
—'F<z“z )r(5-5)

< Ip a T—0+1 I a+,7'— —t 1
- —— — 473
2 2 2 IT(cv — i) (—it)|
rl-9t < +”)
2a—1 }F _O<+zt }2411 n' 2F a+1 ) 0<a<2

Consequently via Stirling’s asymptotic formulas for gamma-functions and factori-
als [3] the general term of the latter serieign®~>/24=") | n — oco. Therefore
it converges and accordingly

[walt,7,0)] = O (Jt1 5 e™/4) 1] — oc. (17)

Further appealing to the asymptotic formula for the modified Bessel function
with respect to an index (see [1], formula (1.148)) we find

| Kit(x )l—\/I Qo)1) = o (18)

Thereforel,,(x) exists as an absolutely convergent integral forzalk R, and
0<a<?2.
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On the other hand, by virtue of Lemma 2 and formulas (2), (7), (8), (14) we
derive

N
2
2 K (2) Ko (% = 1 /ts1nh7rtQ (t,7,0)Ky(x)dt
0

= }Vlm / wa(t, T,0) Ky (x) dt. (29)
-N
This means that the latter limit in mean coincides witliz). Thus we prove (13)
and end the proof of Corollary 1. O

The mapping properties for convolution (6) are given by

Theorem 1. Let f, g € LY with0 < v < 7. Then convolutior(f * g> (t) exists
as a Lebesgue integral and is continuouskon. Besides it belongs tb7.

Proof. Using Schwarz’s inequality for double integrals we deduce

((fig) (t)\ < 2tsinh7rt//|f 7)[19(0)]1Qa(t, 7, 0) drdd

1/2
drdf 1/2
t51nhﬂ't<//|f )Flg () THSinhVTSinhV@) T

:ﬁ\lfHLgHglngtSiHhWUW(t% (20)
where by
= / / 76 sinh v7 sinh v6|Qy (t, T, 0)|*drdf. (21)
0 0

Meanwhile (see (7))
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Hence plainly

J(t) < / K2 (y) dy//Tesmhl/TsthQ/ K2 (2) K2 (x)dzdrdd

00 2
= /ya_lKizt(y) dy/a:a_l [/TSthVTKizT(JJ)dT] dx. (22)

0 0 0
Calculating the inner integral with respecttdy (11) and integrals with respect
to y andzx via [4], relation 2.16.33.2

e}

/y“‘lKQ( )dy =2°7°B ( + 4, 5 - u) I (%) , a>2[Rep| (23)
0
we arrive at the estimate

7)< gt P (5 + )|

whereC,, > 0 is a constant depending only en Therefore, for alt > 0

. 05 + i)
(7% 9) 0] < constifllzgllglles P

and clearly(f * g) (t) =0 (taTHe”/z) ,t — +00. Thus we obtain that under

O<v<m,

conditions of the theorem the convolutiém’ * g) (t) exists as a Lebesgue integral

for all ¢ > 0. To establish its continuity ok, we proceed in a way similar
to the approach in Lemma 1. Indeed, choosing abig 0,¢ € [0,7] andd €
(v/2,7/2) we invoke the inequality [1]K;; (x)| < Ko(x) and we derive (see (22))

> [T 2
Stsinht [ [ £0)l9(0)]9a(t, 7 0) drds < esinart] gl

A A
1/2

oo o0 2
X (//TﬁsinhuTsinhqua(t,T,H)\Zdnw) < < Tsinh 7T f||ryllgllLy
T
A A

[e'e] [e'e] 1/2 [e%¢]
X (/yo‘_lKg(y) dy/xo‘_lKé‘(xcosd) dm) /TsinhuTe_%TdT

0 0 A
[o¢]
= const./ rsinhvre 27dr — 0, A — .
A

Therefore integral (6) converges uniformly by [0, 7] for anyT > 0.
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Now we are ready to prove théyf * g) (t) € L7. In fact, in view of (20)

oY 2 4 .
(7% 9) 0] < =t sin? vt 113 191 3, T (0).

whereJ(t) is defined by (21). Then

o0

1/2
a 2 .
I1f * gllg < 7T2HfHLgHg||Lg</tslnh7ftj(t)dt>

0

2
:prHLgHQHLg

oo oo ) 1/2
( / / 76 sinh v7 sinh 16 / tsinh wt|Qq (¢, 7, 0)|2dtd7d0> .
0 0

0

X

Using (12) we have

a V2
1f *glley < —Iflleyllglley
T

00 00 00 1/2
/ / 70 sinh v7 sinh 10 / 22K (1) K2 (x) dxd7d9>
0

0 0

X
VY

§

= )1 fllul gl

o o o0

1/2
/x2a_1/TSinhI/7Ki27—(x)dT/HSinhyeKz?@(x) deaz)

0 0

o0 o0 9 1/2
Hmmwwwﬁﬁmmmwﬂ@.
0 0

The latter iterated integral can be easily calculated explicitly invoking again (11)
and (23). So the final inequality for the5-norm of the convolution (6) can be
written as

X

7
o

&

8%
I1f * gllg < CapllfllLgllgllLy,
whereC,, > 0 is a constant. O

Remark 1. It is clear via Fubini’s theorem that convolution (6) is a commutative
operation, i.ef ¥ g = g ¥ f.
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Theorem 2. Under the conditions of Theorefrthe following factorization equal-
ity for convolution 6) is valid

N
2 F(2)G(z) = Lim. ( 7 g) () Kie()dt, (24)

N—oo
0

where F', G are transforms 1) of f and g, respectively. Besides, the Parseval
equality of type

/‘ f*g ‘ tsmhwt / 7 F (0)G() P (25)

is valid.
Proof. By appealing to Lemma 1 and Fubini’'s theorem we derive the chain of
equalities

frg)@) = —t inh 7t i Oof o(t, 7,0)dTdl
(75 6) )= s [ [ s

2 oo o0
= —tsinh 7t f(T)g(H) 2 K (1) Kig(2) Ky () dedrdh

3tsmhmt / ( / f(r )(79(9)K¢9(x)d9> Kii(x) da
0

0

2 . o
= 7T2tsmh7rt/$ 'F(2)G(2) Kt (2) da

and all inner integrals are absolutely convergent. But si@ﬁeof g) (t) € L}

we havez®F(z)G(z) € Ly (R, %). Therefore, equalities (24), (25) are di-
rect consequences of the reciprocities (1), (2) and the Parseval identity (3) for the
Kontorovich-Lebedev transformation. O

Theorems 1-2 can be extended if one of the functions under convolution (6)
belongs taLj. Precisely, we prove

Theorem 3. Let f € L3 andg € L}, 0 < v < m. Then convolutior(f % g) (t)
exists as a Lebesgue integral and is continuou@n Moreover, it belongs t@.7.
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Proof. Similar estimations as in Theorem 1 lead us at the chain of inequalities

o0

‘(f * g) (t)‘ < 71?Ztsinhmf/ | ()]19(0)||1Q0(t, T,0)| drdo
0

0

00 00 1/2
< —
_FQtsmhwt(/ F(T)Flg(0)] 760 sinh 77 sinh v0 )
0 0

2 .
= 5l fllzgllglley tsinh wt /2 (t), (26)
with .
U(t) = / / 70 sinh 77 sinh v0|Qy (t, 7, 0)|2d7df. (27)
0 0

However, the inner integral with respecttoin (27) can be expressed by using
the Parseval equality (12). Hence employing (11), (23) and again the inequality
x Kq(x) <1, z > 0 we find

9 oo o0
U(t) = 7;//x2°‘16 sinh v K2 (x)K2(z) dzdd
00

3 00
™

=T sing/xQO‘Kft(:c)Kl <2x cos %) dzx < const./ 2?7 K2 (2) da

0 0
= const|[(a + it)|* .

Thus combining with (26) and taking into account the asymptotic behavior of the
gamma function at infinity we get that the convolution (6) exists as a Lebesgue
integral and satisfies the following estimate

‘(f g g) (t)) = O(e™/240+1/2) ¢ 4o,

In the same manner as in Theorem 1 we get its continuity. In fact,

9 7T 9
Qtsmhwt//]f(T)Hg(Q)|Qa(t,7,0)deQ < 2 PsinhaT |[1]]5lgll s
T T

A A

00 00 1/2
X (//TGSinhm- sinh 0 |Q,(t, T, 9)|2d7‘d«9>
A A

[e%¢] 1/2 (e%¢]
< COﬂSt.(/mQa_lKg(x)Kg(xcosé) d:c) (/Gsinhuﬁ 6_269d9>
A

0

1/2
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o0
= const./esmhye e 2949 — 0, g <6< g A — .
A

Therefore under the conditions of the theorem integral (6) converges uniformly on
[0, T] foranyT > 0.

Further, let us estimate the norm of the convolution (6) in the spd@nd show
that it is finite. First we observe that since integral (6) is in the sense of Lebesgue
one, we can write it for alf > 0 as a usual limit

N 2 n oo

(f * g) (t) = —tsinh7t lim //f(T)g(@)Qa(t, 7,0) dodr.

s n—o0
0 0

Hence denoting by, (7) = f(7), 7 € [0, n], which vanishes outside of the inter-

val [0, n] we easily find thatf,, € LY for all n € N. Therefore appealing to the

Parseval equality (25) via the Fatou lemma we obtain

i « 2 dt r « 2 dt

ot @
/ ‘ (f * g) (t)‘ tsinh7wt — I%rlllfgf/ ’ <fn ’ g) (t)‘ tsinh 7t
0 0

o0

2
== liminf/xQQ_lan(x)G(x)\de, (28)
T n—oo

0
where F,,(z) is the Kontorovich-Lebedev transformation (1) of the functifn
and the corresponding integral converges absolutely. Moreover, gireeLs
then making similar estimates as in the proof of Lemma 1 (see (10)) and invoking
equality (11) we derive for alk > 0

v
z%|G(x)| < const.sup [:EO‘+1/2K11/2 (23: cos 5)} < const.
>0

The latter estimate yields that'G(x) is bounded. Consequently, recalling again
equality (3) we return to (28) and it becomes

o oo
[e 2 dt . . 2d13
< : —
/’(f * g) (t)’ tsinh 7t — const hnniloréf ()] x
0 0
oo
= const liminf/ |f (T)\QL = const||f||3- < oo
N " n—oo " rsinhmr L3 ’

0
|

Corollary 2. Formulas(24), (25) also hold under the conditions of Theor@m
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Proof. Similar to the proof of Theorem 2 we derive by straightforward calculations
forallt >0

<f§fg) (t) = %tsmhmﬁ lim //f olt,7,0)drdo

n—oo

71'2 n—oo

2 n [e.e]
= —tsinhmt h_)m xo‘_l < f(T)KZ-T(x)ch')( g(@)Kig(:E)cw) Ki(z) dx

2
= —;tsinhnt lim xo‘_an(m)G(x)Kit(x) dx
T2 n— oo

0

2 n oo
= —tsinh7t lim f()g0) | 29 K (2) Kip(x) Ky () dzdrdf
/0/ 0/

o0
2. _
= Ztsinhrt / 29 P (2)C(2) Kan(2) da
0
The latter equality is true since for &lt> 0 we have

[e.9]

/ 1Y F(x) — Fo(2)]|G(2) Kin() | de

’ 12 o 1/2
( Jie Qd‘””) ( / a:?a—er@)Ko(x)Fda:)

0

IN

00 1/2
dx
< suple® Ko(@)1G e, v ( / \F(m)—w)\?x) 0, 1 .
0

Hence the statement in the corollary follows as in Theorem 2. O

Remark 2. It is not difficult now to establish the associativity of the convolu-
tion (6), which is guaranteed by Theorems 1-3 and Corollary 2. Precisely, it has

the property
<f§g)§h:f§<g§h> :g‘i(fih),
forany f,g,h € Ly, 0 <v <.

3. CONVOLUTION INTEGRAL EQUATIONS

As applications we consider in this last section flfe-solvability of integral
equations related to convolution (6). Precisely, we exhibit the following integral
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equations of the first and second kind, respectively.
g(x) = (k% f)(z), @ €Ry, (29)

fx) =h(x)+ Ak * f)(x), xRy, A€C, (30)

whereg,h € L3, k € LY, 0 < v < 7 are given functions andl(z) € L] is to be
determined. We will prove two theorems, which will guarantee the existence and
uniqueness oLj-solutions and give them in the closed form. Certain examples of
the functionk will be considered. Similar questions for the convolution integral
equations related to (5) were investigated in [1, Ch. 4].

Denoting by

Kalay) = [ 1(0)0(z.5,6)d0 (3D)
0
the integral equation (29) can be written in the form
2 . yi
g(z) = = xsinhmx [ Ko(x,y)f(y)dy. (32)
0
Theorem 4. Leta > 0, g € L7 andk € L5, 0 < v < 7. Then for the existence
of a Lj-solution of the equatio32) it is necessary and sufficient thg% €
L (Ry; %), whereG, k are the Kontorovich-Lebedev transformatiai3 of the

functionsg, k, respectively. Moreover the solution is unique and is given by the
formula

N
2 , Gu) o du
f(x)_ﬂ}\.};n;éxsmhﬂm/ l;:(u) sz(U)W7 (33)
1/N

where the convergence is with respect to the nortbjin

Proof. Necessitylf we assume tha4, &, f belong to the correspondingclasses
and the equation (32) is satisfied, then via Corollary 2 we have the equality

~

G(u) = u“k(u)F(u),

whereF is the transformation (1) of the functigh Hence sincé” € Lo (R ; %)

we get thatuf%) € Lo (R+; %“) and theL3-solution is given reciprocally by
formula (33).

Sufficiencylf conversely,ufg(‘i) € Ly (Ry; ), then f being defined by (33)
belongs tal; and by virtue of Theorem 3 the right-hand side of (32) belondsjto
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Therefore by Corollary 2 the Kontorovich-Lebedev transform (1) of the right-hand
side of (32) is equal to

u®k(u)F(u) = ual%(u)ﬂ = G(u).
uk(u)
By the reciprocity (2) we see that equation (32) is satisfied and (33) is a unique
L3 -solution. O

Let us consider the convolution integral equation (30), which can be written as

f(z) =h(z)+ 72?)2\ x sinh wx/lCa(x, y) f(y) dy. (34)
0

We have

Theorem 5. Leta > 0,\ € C\{0}, h € L}, k€ LY, 0 < v < 7 and
H(u) is the Kontorovich-Lebedev transformati@h) of the functionh. Let also

SUp,,~o |u®k(u)| < \Tl| Then

N
2 H
f(z) = — Lim. zsinh 7z / %sz(u)d—u, (35)

m* N—oo 1 — Auk(u) u

1/N

is a solution of(34) belonging toL and any another solution frorh] coincides
with (35) for almost allz € R,..
Proof. Since [l — Au®k(u)]~! is bounded we havq% € Ly (Ry; %),
Consequently, (35) exists in the mean sense and defines a furfctrom L7.
At the same time the convolution in the right-hand side of (34) belonds teia
Theorem 3. The transformation (1) of the right-hand side of (34) gives

Hw __ HW ey,
1—Auk(u) 1= uk(u)
Thereforef by formula (35) satisfies equation (34) for almostalt R, .

Conversely, iff,h € L5, k € L5 and equality (34) holds then by Corollary 2
we have

H(u) 4+ Muk(u)

F(u) = H(u) + Muk(u)F (u),
which implies (35). O

Remark 3. Solution (35) can be written in terms of the resolvent. Indeed, denoting
by
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and bym(6) € L3 the transform (2) o/ € L, (Ry; %) we can write the solu-
tion (35) in the form

f(z) = h(zx) —l— — xsmh WQZ/Ma y) dy, (36)
0

where

(z,y) /m (z,y,0)do (37)

Finally we give certain concrete examples of the kernel (31), the corresponding
convolution integral equations (32), (34) and th&jr-solutions (33), (35).

Example 1. Let k() = ftanh Z. It evidently belongs td’} for anyv > 0.
Recalling relation 2.16.48.14 from [4] in order to calculate the kernel (31) we write
it in terms of the notation in (7). Precisely, we haig(z,y) = Qat1(x,y,0).
Thus we arrive at the following integral equations

g(z) = % xsinhTr:U/QaH(x,y,O)f(y) dy, (38)
0
f(z) =h(z)+ 72?2\ xsinh 7w / Qot1(z,9,0) f(y) dy. (39)

0
Hence a uniquéj-solution of the equation (38) can be obtained via Theorem 4 by
the formula

G(u) du

}V:rgo xsinh Tz / Ko(u) Km(U)W
1/N

fa) = 2

. G(u .
under the condltlonua%K)() € Ly (Ry; ). Even, if [\ < [sup,qut?

Ko(u)]™1, then (see Theorem 5) we have a unidesolution of the equation (39)
written in the form (36), wheré\,,(z, y) is defined by (37) with

Ko(u)
1 — Mt Ky(u)

2 . T
m(0) = = 9s1nh7r9/
0
Example 2. Let k(t) = tsinhxt [T (L +%)|" € Ly By relation 2.16.49.2
from [4] we arrive at the following convolution integral equations

o0

g(x) = 4v/27 zsinh ﬂx/QaH/Q(x,y,O)f(y) dy, (40)

0

Kip(u) du.
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[ee]

f(@) = he) + DVER asivh o [ Qoo 0)f@)dy. (4D
0
Hence a uniquéj-solution of the equation (40) is represented by the formula

N
1 ) ) G(u) du
= lLim. h Ki.(u)——=
f(zx) i Lim. zsin 7rx/ Ko(u) (u)ua+3/2
1/N
under condition—&)___ € Ly (R ;d—“ . Moreover, if |\ < [272V27
w12 Ky (u) +3

Sup,~ou®T1/2Ko(u)]~* then we have a uniquej-solution of the equation (41)
written in the form (36), wheré\,,(z, y) is defined by (37) with

u 12K (u)

Kip(u) du.
1 — 2722w ut/2 Ko (u) o(w)

m(6) = 4v27 0 sinh 70/
0

Example 3. Let k(t) = tsinat, a # 0. It is easily seen that(¢) € LY, when
IIm a| < &. Appealing in [4] to relation 2.16.48.19 we get the following equations

g(z) = sir;ha z sinh 7z / Kalz,y)f(y)dy, (42)
0
f@) = (o) + 2 wsinhns [ Kalop)f)dy, (43
0

where

[e.e]

Kalz,y) = /u"‘e—“COShQKm(u)Kiy(u) du.
0
A unique L] -solution of the equation (42) is given by the formula

N
4 d
F6) = g K rsnhae [ oGl s
1/N

under the conditions~(@*DetcoshaG(y) e Ly (Ry;9%). Moreover, if [\ <
[Tsiha gup, oo udTleucoshe] =1 then we have a uniquij-solution of the equa-
tion (43) written in the form (36), wher#1,,(z, y) is defined by (37) with

2 sinh a

m(0) = 6 sinh 7T9/

™
0

2 eucosha _ raginh gyt
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