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A CONVOLUTION RELATED TO THE INVERSE
KONTOROVICH-LEBEDEV TRANSFORM

S. B. YAKUBOVICH AND L. E. BRITVINA

ABSTRACT. We establish the mapping properties in the spaceL2(R+; dt
t sinh νt

),
0 < ν ≤ π for a convolution related to the transformation

F (x) =

∞∫

0

f(t)Kit(x) dt, x ∈ R+

involving the modified Bessel functionKit(x) as a kernel. It is shown that the
convolution operator of twoL2-functions exists as a Lebesgue integral and repre-
sents a continuous function onR+. As a consequence, we get the multiplication
theorem for two modified Bessel functions of different subscripts. Further appli-
cations to the corresponding class of convolution integral equations are obtained.

1. INTRODUCTION

In this paper we consider the following Kontorovich-Lebedev transformation [1,
2]

F (x) = l.i.m.
N→∞

N∫

0

f(t)Kit(x) dt, x ∈ R+, (1)

where the integration is realized in the mean convergence with respect to an index
of the modified Bessel function of the second kindKit(x) [3], which is real-valued
and even with respect tot. A function f(t) is supposed to be from the space
Lν

2 ≡ L2(R+; dt
t sinh νt), 0 < ν ≤ π, i.e.

Lν
2 :=

{
f :

∞∫

0

|f(t)|2 dt

t sinh νt
= ||f ||2Lν

2
< ∞

}
.
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For0 < ν1 ≤ ν2 ≤ π it is easily seen the embeddings

Lν1
2 ⊆ Lν2

2 ⊆ Lπ
2 = L2

(
R+;

dt

t sinhπt

)
.

As it is known [1], the operator (1) maps the spaceLπ
2 onto the spaceL2(R+;

dx
x ) and its inverse is described by

f(t) =
2
π2

l.i.m.
N→∞

t sinhπt

N∫

1/N

F (x)Kit(x)
dx

x
(2)

in the mean convergence sense with respect to the norm inLπ
2 . Moreover, the

Parseval equality

∞∫

0

|f(t)|2 dt

t sinhπt
=

2
π2

∞∫

0

|F (x)|2 dx

x
(3)

is valid.
Using the Macdonald formula [1, 4] for the product of the modified Bessel func-

tions of different arguments

Kit(x)Kit(y) =
1
2

∞∫

0

e
− 1

2

(
u x2+y2

xy
+xy

u

)

Kit(u)
du

u
, (4)

one can introduce a convolution for the transform (2) defined by the following
double integral

(F
γ∗ G)(x) =

1
2

∞∫

0

∞∫

0

F (y)G(u)e
− 1

2

(
x u2+y2

uy
+uy

x

)
dydu

yu
, (5)

whereF (x) andG(x) are two functions from a suitable function space of originals.
Hereγ(t) = π2

2t sinh t is the weight function in a sense of the factorization equality

γ2(t)f(t)g(t) =

∞∫

0

(F
γ∗ G)(x)Kit(x)

dx

x
,

andf, g are transforms (2) ofF,G respectively, written in the corresponding space
of images. Operator (5) was first introduced formally in Kakichev [5] as an ex-
ample of integral nonstandard convolution. Later this operator was considered in
detail in [1, 2, 6, 7, 8, 9].
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The main goal of this paper is to establish mapping properties of the following
convolution

(
f

α∗ g
)

(t) =
2
π2

t sinhπt

∞∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ) dτdθ, (6)

where

Ωα(t, τ, θ) =

∞∫

0

xα−1Kiτ (x)Kiθ(x)Kit(x) dx, α, t, τ, θ ∈ R+. (7)

Formula (6) was first introduced in Yakubovich [1, p. 142] and announced later
in [10]. The kernel (7) can be calculated employing relation 2.16.46.6 from [4] and
we have

Ωα(t, τ, θ) = 2α−3 Re
[
Γ(it)Γ(α− it)B

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)

×B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)
4F3

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2
,

α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2
; 1− it,

α− it

2
,
1 + α− it

2
;
1
4

)]
. (8)

It contains the generalized hypergeometric function4F3(a1, a2, a3, a4; b1, b2, b3; z)
at the pointz = 1/4 and as usualΓ(z), B(x, y) stand for Euler’s gamma- and beta-
functions [3].

In the sequel we will give some conditions that guarantee the convolution (6) of
two L2-functions exists as a Lebesgue integral and represents a continuous func-
tion. Various applications of the convolution (6) will be considered. In particular,
we will prove an analog of the multiplication theorem for two modified Bessel
functions with different subscripts. Finally, we will exhibit certain convolution
integral equations related to (6).

2. MAPPING PROPERTIES OF THE CONVOLUTION
(
f

α∗ g
)

(t)

We first present a lemma which gives a boundedness and the norm estimation
for the Kontorovich-Lebedev transform (1) as an operator fromLν

2 , 0 < ν < π
into the spaceC(R+) of bounded continuous functions onR+.

Lemma 1. Let f(t) ∈ Lν
2 with 0 < ν < π. Then transformation (1) exists as

a Lebesgue integral for allx > 0 and represents a continuous function onR+.
Moreover, it is a bounded operatorF : Lν

2 → C(R+), namely

sup
x>0

|F (x)| ≤ C||f ||Lν
2
, (9)
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with

C =
√

π

2 cos1/2
(

ν
2

) .

Proof. In fact, appealing to Schwarz’s inequality we obtain

|F (x)| ≤
∞∫

0

|f(t)||Kit(x)| dt ≤
( ∞∫

0

|f(t)|2 dt

t sinh νt

)1/2

×
( ∞∫

0

t sinh νtK2
it(x) dt

)1/2

= ||f ||Lν
2

( ∞∫

0

t sinh νtK2
it(x) dt

)1/2

.

(10)

The latter integral in (10) is calculated in terms of the modified Bessel functionK1

(see [4], relation 2.16.52.8), namely
∞∫

0

t sinh(νt)K2
it(x) dt =

π

2
x sin

ν

2
K1

(
2x cos

ν

2

)
, 0 < ν < π. (11)

Moreover, sincexK1(x) ≤ 1, whenx > 0, it yields (9)

sup
x>0

|F (x)| ≤ sup
x>0

∞∫

0

|f(t)||Kit(x)|dt≤ sup
x>0

(π

2
x sin

ν

2
K1

(
2x cos

ν

2

))1/2
||f ||Lν

2

≤
√

π

2 cos1/2
(

ν
2

) ||f ||Lν
2

< ∞.

In order to prove thatF (x) is continuous onR+ we will establish the uniform
convergence of the integral (1) with respect tox ≥ x0 > 0. To do this we use the
following inequality for the modified Bessel function (cf. [1], formula (1.100))

|Kit(x)| ≤ e−δtK0(x cos δ),

where we chooseν/2 < δ < π/2. Then for sufficiently bigA > 0 we have
∞∫

A

|f(t)||Kit(x)| dt ≤ ||f ||Lν
2

( ∞∫

A

t sinh νtK2
it(x)dt

)1/2

≤ K2
0 (x0 cos δ)

×
( ∞∫

A

t sinh νte−2δtdt

)1/2

→ 0, A →∞.

¤

Applying the Parseval equality (3) we get
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Lemma 2. The equality

2
π2

∞∫

0

t sinhπt |Ωα(t, τ, θ)|2 dt =

∞∫

0

x2α−1K2
iτ (x)K2

iθ(x) dx. (12)

holds for anyα, τ, θ ∈ R+.

Proof. Indeed by the asymptotic properties of the modified Bessel functions [3]
we observe that the right-hand side of (12) is finite. ThereforexαKiτ (x)Kiθ(x) ∈
L2

(
R+, dx

x

)
. Moreover, transformation (1) of this function exists as a Lebesgue

integral and is equal to2
π2 t sinhπt Ωα(t, τ, θ) (see (7)). Thus via Parseval equal-

ity (3) we arrive at (12). ¤

As a corollary we immediately obtain an analogue of the multiplication theorem
for the modified Bessel functions (cf. (4)) of different subscripts.

Corollary 1. Let 0 < α < 2 and τ, θ ∈ R+ be fixed. Then for anyx > 0 the
following equality is true

xαKiτ (x)Kiθ(x) =
2α−3

π

∞∫

−∞

Γ(α− it)
Γ(−it)

B

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)

×B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)
4F3

(
α

2
+i

τ + θ − t

2
,
α

2
−i

τ + θ + t

2
,

α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2
; 1− it,

α− it

2
,
1 + α− it

2
;
1
4

)
Kit(x) dt.

(13)

Proof. Using the definition of the generalized hypergeometric function [3] we can
write the right-hand side of (13) as

Iα(x) =

∞∫

−∞
ωα(t, τ, θ)Kit(x) dt, (14)

where

ωα(t, τ, θ) =
2α−3t

πi

∞∑

n=0

B

(
α

2
+ n + i

τ + θ − t

2
,
α

2
+ n− i

τ + θ + t

2

)

×B

(
α

2
+ n− i

τ − θ + t

2
,
α

2
+ n + i

τ − θ − t

2

)
Γ(α− it + 2n)
n!Γ(1− it + n)

. (15)

Then by an elementary inequality for the beta-function

|B(s, t)| ≤ B(Re s,Re t), Re s > 0, Re t > 0, (16)
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and the duplication formula for the gamma-function [3] we derive the following
estimations

π

2α−3
|ωα(t, τ, θ)| ≤

∣∣∣∣B
(

α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)∣∣∣∣

×
∣∣∣∣B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)∣∣∣∣
|Γ(α− it)|
|Γ(−it)|

+ |t|
∞∑

n=1

B2
(α

2
+ n,

α

2
+ n

) |Γ(α− it + 2n)|
n!|Γ(1− it + n)|

≤
∣∣∣∣B

(
α

2
+ i

τ + θ − t

2
,
α

2
− i

τ + θ + t

2

)∣∣∣∣

×
∣∣∣∣B

(
α

2
− i

τ − θ + t

2
,
α

2
+ i

τ − θ − t

2

)∣∣∣∣
|Γ(α− it)|
|Γ(−it)| +

2α−1|t|√
π

∣∣Γ(1− α+it
2 )

∣∣

×
∞∑

n=1

4n

n!
B2

(α

2
+ n,

α

2
+ n

)
B

(α

2
+ n, 1− α

2

)
Γ

(
α + 1

2
+ n

)

=
∣∣∣∣Γ

(
α

2
+ i

τ + θ − t

2

)
Γ

(
α

2
− i

τ + θ + t

2

)∣∣∣∣

×
∣∣∣∣Γ

(
α

2
− i

τ − θ + t

2

)
Γ

(
α

2
+ i

τ − θ − t

2

)∣∣∣∣
1

|Γ(α− it)Γ(−it)|

+
Γ(1− α

2 )|t|
2α−1

∣∣Γ(1− α+it
2 )

∣∣
∞∑

n=1

Γ3
(

α
2 + n

)

4n(n!)2Γ
(

α+1
2 + n

) , 0 < α < 2.

Consequently via Stirling’s asymptotic formulas for gamma-functions and factori-
als [3] the general term of the latter series isO

(
nα−5/24−n

)
, n →∞. Therefore

it converges and accordingly

|ωα(t, τ, θ)| = O
(
|t|α+1

2 eπ|t|/4
)

, |t| → ∞. (17)

Further appealing to the asymptotic formula for the modified Bessel function
with respect to an index (see [1], formula (1.148)) we find

|Kit(x)| =
√

2π

|t| e
−π|t|/2 (1 + O (1/|t|)) , |t| → ∞. (18)

ThereforeIα(x) exists as an absolutely convergent integral for allx ∈ R+ and
0 < α < 2.
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On the other hand, by virtue of Lemma 2 and formulas (2), (7), (8), (14) we
derive

xαKiτ (x)Kiθ(x) =
2
π2

l.i.m.
N→∞

N∫

0

t sinhπtΩα(t, τ, θ)Kit(x) dt

= 2 l.i.m.
N→∞

N∫

0

Kit(x)Reωα(t, τ, θ) dt

= l.i.m.
N→∞

N∫

−N

ωα(t, τ, θ)Kit(x) dt. (19)

This means that the latter limit in mean coincides withIα(x). Thus we prove (13)
and end the proof of Corollary 1. ¤

The mapping properties for convolution (6) are given by

Theorem 1. Let f, g ∈ Lν
2 with 0 < ν < π. Then convolution

(
f

α∗ g
)

(t) exists

as a Lebesgue integral and is continuous onR+. Besides it belongs toLπ
2 .

Proof. Using Schwarz’s inequality for double integrals we deduce

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣ ≤ 2

π2
t sinhπt

∞∫

0

∞∫

0

|f(τ)||g(θ)||Ωα(t, τ, θ)|dτdθ

≤ 2
π2

t sinhπt

( ∞∫

0

∞∫

0

|f(τ)|2|g(θ)|2 dτdθ

τθ sinh ντ sinh νθ

)1/2

J1/2(t)

=
2
π2
||f ||Lν

2
||g||Lν

2
t sinhπtJ1/2(t), (20)

where by

J(t) =

∞∫

0

∞∫

0

τθ sinh ντ sinh νθ|Ωα(t, τ, θ)|2dτdθ. (21)

Meanwhile (see (7))

|Ωα(t, τ, θ)|2 ≤
[ ∞∫

0

xα−1|Kiτ (x)Kiθ(x)Kit(x)| dx

]2

≤
∞∫

0

xα−1K2
iτ (x)K2

iθ(x) dx

∞∫

0

yα−1K2
it(y) dy.
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Hence plainly

J(t) ≤
∞∫

0

yα−1K2
it(y) dy

∞∫

0

∞∫

0

τθ sinh ντ sinh νθ

∞∫

0

xα−1K2
iτ (x)K2

iθ(x)dxdτdθ

=

∞∫

0

yα−1K2
it(y) dy

∞∫

0

xα−1

[ ∞∫

0

τ sinh ντK2
iτ (x)dτ

]2

dx. (22)

Calculating the inner integral with respect toτ by (11) and integrals with respect
to y andx via [4], relation 2.16.33.2

∞∫

0

yα−1K2
µ(y)dy = 2α−3B

(α

2
+ µ,

α

2
− µ

)
Γ2

(α

2

)
, α > 2|Reµ| (23)

we arrive at the estimate

J1/2(t) ≤ Cα

cosα/2+1 ν/2

∣∣∣Γ
(α

2
+ it

)∣∣∣ , 0 < ν < π,

whereCα > 0 is a constant depending only onα. Therefore, for allt > 0
∣∣∣
(
f

α∗ g
)

(t)
∣∣∣ ≤ const.||f ||Lν

2
||g||Lν

2

|Γ(α
2 + it)|

|Γ(it)|2

and clearly
(
f

α∗ g
)

(t) = O
(
t

α+1
2 eπt/2

)
, t → +∞. Thus we obtain that under

conditions of the theorem the convolution
(
f

α∗ g
)

(t) exists as a Lebesgue integral

for all t > 0. To establish its continuity onR+ we proceed in a way similar
to the approach in Lemma 1. Indeed, choosing a bigA > 0, t ∈ [0, T ] andδ ∈
(ν/2, π/2) we invoke the inequality [1]|Kit(x)| ≤ K0(x) and we derive (see (22))

2
π2

t sinhπt

∞∫

A

∞∫

A

|f(τ)||g(θ)||Ωα(t, τ, θ)| dτdθ ≤ 2
π2

t sinhπt||f ||Lν
2
||g||Lν

2

×
( ∞∫

A

∞∫

A

τθ sinh ντ sinh νθ|Ωα(t, τ, θ)|2dτdθ

)1/2

≤ 2
π2

T sinhπT ||f ||Lν
2
||g||Lν

2

×
( ∞∫

0

yα−1K2
0 (y) dy

∞∫

0

xα−1K4
0 (x cos δ) dx

)1/2 ∞∫

A

τ sinh ντe−2δτdτ

= const.

∞∫

A

τ sinh ντe−2δτdτ → 0, A →∞.

Therefore integral (6) converges uniformly byt ∈ [0, T ] for anyT > 0.
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Now we are ready to prove that
(
f

α∗ g
)

(t) ∈ Lπ
2 . In fact, in view of (20)

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2
≤ 4

π4
t2 sinh2 πt||f ||2Lν

2
||g||2Lν

2
J(t),

whereJ(t) is defined by (21). Then

||f α∗ g||Lπ
2
≤ 2

π2
||f ||Lν

2
||g||Lν

2

( ∞∫

0

t sinhπtJ(t) dt

)1/2

=
2
π2
||f ||Lν

2
||g||Lν

2

×
( ∞∫

0

∞∫

0

τθ sinh ντ sinh νθ

∞∫

0

t sinhπt|Ωα(t, τ, θ)|2dtdτdθ

)1/2

.

Using (12) we have

||f α∗ g||Lπ
2
≤
√

2
π
||f ||Lν

2
||g||Lν

2

×
( ∞∫

0

∞∫

0

τθ sinh ντ sinh νθ

∞∫

0

x2α−1K2
iτ (x)K2

iθ(x) dxdτdθ

)1/2

=
√

2
π
||f ||Lν

2
||g||Lν

2

×
( ∞∫

0

x2α−1

∞∫

0

τ sinh ντK2
iτ (x)dτ

∞∫

0

θ sinh νθK2
iθ(x) dθdx

)1/2

=
√

2
π
||f ||Lν

2
||g||Lν

2

( ∞∫

0

x2α−1

[ ∞∫

0

τ sinh ντK2
iτ (x)dτ

]2

dx

)1/2

.

The latter iterated integral can be easily calculated explicitly invoking again (11)
and (23). So the final inequality for theLπ

2 -norm of the convolution (6) can be
written as

||f α∗ g||Lπ
2
≤ Cα,ν ||f ||Lν

2
||g||Lν

2
,

whereCα,ν > 0 is a constant. ¤

Remark 1. It is clear via Fubini’s theorem that convolution (6) is a commutative
operation, i.e.f

α∗ g = g
α∗ f .
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Theorem 2. Under the conditions of Theorem1 the following factorization equal-
ity for convolution (6) is valid

xαF (x)G(x) = l.i.m.
N→∞

N∫

0

(
f

α∗ g
)

(t)Kit(x)dt, (24)

whereF , G are transforms (1) of f and g, respectively. Besides, the Parseval
equality of type

∞∫

0

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2 dt

t sinhπt
=

2
π2

∞∫

0

x2α−1|F (x)G(x)|2dx (25)

is valid.

Proof. By appealing to Lemma 1 and Fubini’s theorem we derive the chain of
equalities

(
f

α∗ g
)

(t) =
2
π2

t sinhπt

∞∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ)dτdθ

=
2
π2

t sinhπt

∞∫

0

∞∫

0

f(τ)g(θ)

∞∫

0

xα−1Kiτ (x)Kiθ(x)Kit(x) dxdτdθ

=
2
π2

t sinhπt

∞∫

0

xα−1

( ∞∫

0

f(τ)Kiτ (x) dτ

)( ∞∫

0

g(θ)Kiθ(x)dθ

)
Kit(x) dx

=
2
π2

t sinhπt

∞∫

0

xα−1F (x)G(x)Kit(x) dx

and all inner integrals are absolutely convergent. But since
(
f

α∗ g
)

(t) ∈ Lπ
2

we havexαF (x)G(x) ∈ L2

(
R+, dx

x

)
. Therefore, equalities (24), (25) are di-

rect consequences of the reciprocities (1), (2) and the Parseval identity (3) for the
Kontorovich-Lebedev transformation. ¤

Theorems 1-2 can be extended if one of the functions under convolution (6)
belongs toLπ

2 . Precisely, we prove

Theorem 3. Let f ∈ Lπ
2 andg ∈ Lν

2 , 0 < ν < π. Then convolution
(
f

α∗ g
)

(t)
exists as a Lebesgue integral and is continuous onR+. Moreover, it belongs toLπ

2 .
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Proof. Similar estimations as in Theorem 1 lead us at the chain of inequalities

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣ ≤ 2

π2
t sinhπt

∞∫

0

∞∫

0

|f(τ)||g(θ)||Ωα(t, τ, θ)| dτdθ

≤ 2
π2

t sinhπt

( ∞∫

0

∞∫

0

|f(τ)|2|g(θ)|2 dτdθ

τθ sinhπτ sinh νθ

)1/2

Ψ1/2(t)

=
2
π2
||f ||Lπ

2
||g||Lν

2
t sinhπtΨ1/2(t), (26)

with

Ψ(t) =

∞∫

0

∞∫

0

τθ sinhπτ sinh νθ|Ωα(t, τ, θ)|2dτdθ. (27)

However, the inner integral with respect toτ in (27) can be expressed by using
the Parseval equality (12). Hence employing (11), (23) and again the inequality
xK1(x) ≤ 1, x > 0 we find

Ψ(t) =
π2

2

∞∫

0

∞∫

0

x2α−1θ sinh νθ K2
iθ(x)K2

it(x) dxdθ

=
π3

4
sin

ν

2

∞∫

0

x2αK2
it(x)K1

(
2x cos

ν

2

)
dx ≤ const.

∞∫

0

x2α−1K2
it(x) dx

= const.|Γ(α + it)|2 .

Thus combining with (26) and taking into account the asymptotic behavior of the
gamma function at infinity we get that the convolution (6) exists as a Lebesgue
integral and satisfies the following estimate∣∣∣

(
f

α∗ g
)

(t)
∣∣∣ = O(eπt/2tα+1/2), t → +∞.

In the same manner as in Theorem 1 we get its continuity. In fact,

2
π2

t sinhπt

∞∫

A

∞∫

A

|f(τ)||g(θ)||Ωα(t, τ, θ)| dτdθ ≤ 2
π2

T sinhπT ||f ||Lπ
2
||g||Lν

2

×
( ∞∫

A

∞∫

A

τθ sinhπτ sinh νθ |Ωα(t, τ, θ)|2dτdθ

)1/2

≤ const.

( ∞∫

0

x2α−1K2
0 (x)K2

0 (x cos δ) dx

)1/2( ∞∫

A

θ sinh νθ e−2δθdθ

)1/2
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= const.

∞∫

A

θ sinh νθ e−2δθdθ → 0,
ν

2
< δ <

π

2
, A →∞.

Therefore under the conditions of the theorem integral (6) converges uniformly on
[0, T ] for anyT > 0.

Further, let us estimate the norm of the convolution (6) in the spaceLπ
2 and show

that it is finite. First we observe that since integral (6) is in the sense of Lebesgue
one, we can write it for allt > 0 as a usual limit

(
f

α∗ g
)

(t) =
2
π2

t sinhπt lim
n→∞

n∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ) dθdτ.

Hence denoting byfn(τ) = f(τ), τ ∈ [0, n], which vanishes outside of the inter-
val [0, n] we easily find thatfn ∈ Lν

2 for all n ∈ N. Therefore appealing to the
Parseval equality (25) via the Fatou lemma we obtain

∞∫

0

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2 dt

t sinhπt
≤ lim inf

n→∞

∞∫

0

∣∣∣
(
fn

α∗ g
)

(t)
∣∣∣
2 dt

t sinhπt

=
2
π2

lim inf
n→∞

∞∫

0

x2α−1|Fn(x)G(x)|2dx, (28)

whereFn(x) is the Kontorovich-Lebedev transformation (1) of the functionfn

and the corresponding integral converges absolutely. Moreover, sinceg ∈ Lν
2

then making similar estimates as in the proof of Lemma 1 (see (10)) and invoking
equality (11) we derive for allα > 0

xα|G(x)| ≤ const.sup
x>0

[
xα+1/2K

1/2
1

(
2x cos

ν

2

)]
< const.

The latter estimate yields thatxαG(x) is bounded. Consequently, recalling again
equality (3) we return to (28) and it becomes

∞∫

0

∣∣∣
(
f

α∗ g
)

(t)
∣∣∣
2 dt

t sinhπt
≤ const. lim inf

n→∞

∞∫

0

|Fn(x)|2 dx

x

= const. lim inf
n→∞

∞∫

0

|fn(τ)|2 dτ

τ sinhπτ
= const.||f ||2Lπ

2
< ∞.

¤

Corollary 2. Formulas(24), (25)also hold under the conditions of Theorem3.
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Proof. Similar to the proof of Theorem 2 we derive by straightforward calculations
for all t > 0
(
f

α∗ g
)

(t) =
2
π2

t sinhπt lim
n→∞

n∫

0

∞∫

0

f(τ)g(θ)Ωα(t, τ, θ) dτdθ

=
2
π2

t sinhπt lim
n→∞

n∫

0

∞∫

0

f(τ)g(θ)

∞∫

0

xα−1Kiτ (x)Kiθ(x)Kit(x) dxdτdθ

=
2
π2

t sinhπt lim
n→∞

∞∫

0

xα−1

( n∫

0

f(τ)Kiτ (x)dτ

)( ∞∫

0

g(θ)Kiθ(x)dθ

)
Kit(x) dx

=
2
π2

t sinhπt lim
n→∞

∞∫

0

xα−1Fn(x)G(x)Kit(x) dx

=
2
π2

t sinhπt

∞∫

0

xα−1F (x)G(x)Kit(x) dx.

The latter equality is true since for allt > 0 we have
∞∫

0

xα−1|F (x)− Fn(x)||G(x)Kit(x)| dx

≤



∞∫

0

|F (x)− Fn(x)|2 dx

x




1/2 ( ∞∫

0

x2α−1|G(x)K0(x)|2dx

)1/2

≤ sup
x>0

[xαK0(x)]||G||L2(R+;x−1dx)

( ∞∫

0

|F (x)−Fn(x)|2 dx

x

)1/2

→ 0, n →∞.

Hence the statement in the corollary follows as in Theorem 2. ¤
Remark 2. It is not difficult now to establish the associativity of the convolu-
tion (6), which is guaranteed by Theorems 1-3 and Corollary 2. Precisely, it has
the property (

f
α∗ g

)
α∗ h = f

α∗
(
g

α∗ h
)

= g
α∗

(
f

α∗ h
)

,

for anyf, g, h ∈ Lν
2 , 0 < ν < π.

3. CONVOLUTION INTEGRAL EQUATIONS

As applications we consider in this last section theLπ
2 -solvability of integral

equations related to convolution (6). Precisely, we exhibit the following integral
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equations of the first and second kind, respectively.

g(x) = (k
α∗ f)(x), x ∈ R+, (29)

f(x) = h(x) + λ(k
α∗ f)(x), x ∈ R+, λ ∈ C, (30)

whereg, h ∈ Lπ
2 , k ∈ Lν

2 , 0 < ν < π are given functions andf(x) ∈ Lπ
2 is to be

determined. We will prove two theorems, which will guarantee the existence and
uniqueness ofLπ

2 -solutions and give them in the closed form. Certain examples of
the functionk will be considered. Similar questions for the convolution integral
equations related to (5) were investigated in [1, Ch. 4].

Denoting by

Kα(x, y) =

∞∫

0

k(θ)Ωα(x, y, θ)dθ (31)

the integral equation (29) can be written in the form

g(x) =
2
π2

x sinhπx

∞∫

0

Kα(x, y)f(y)dy. (32)

Theorem 4. Let α > 0, g ∈ Lπ
2 andk ∈ Lν

2 , 0 < ν < π. Then for the existence

of a Lπ
2 -solution of the equation(32) it is necessary and sufficient thatG(u)

uαk̂(u)
∈

L2

(
R+; du

u

)
, whereG, k̂ are the Kontorovich-Lebedev transformations(1) of the

functionsg, k, respectively. Moreover the solution is unique and is given by the
formula

f(x) =
2
π2

l.i.m.
N→∞

x sinhπx

N∫

1/N

G(u)

k̂(u)
Kix(u)

du

uα+1
, (33)

where the convergence is with respect to the norm inLπ
2 .

Proof. Necessity.If we assume thatg, k, f belong to the correspondingL-classes
and the equation (32) is satisfied, then via Corollary 2 we have the equality

G(u) = uαk̂(u)F (u),

whereF is the transformation (1) of the functionf . Hence sinceF ∈ L2

(
R+; du

u

)

we get that G(u)

uαk̂(u)
∈ L2

(
R+; du

u

)
and theLπ

2 -solution is given reciprocally by

formula (33).
Sufficiency.If conversely, G(u)

uαk̂(u)
∈ L2

(
R+; du

u

)
, thenf being defined by (33)

belongs toLπ
2 and by virtue of Theorem 3 the right-hand side of (32) belongs toLπ

2 .
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Therefore by Corollary 2 the Kontorovich-Lebedev transform (1) of the right-hand
side of (32) is equal to

uαk̂(u)F (u) = uαk̂(u)
G(u)

uαk̂(u)
= G(u).

By the reciprocity (2) we see that equation (32) is satisfied and (33) is a unique
Lπ

2 -solution. ¤

Let us consider the convolution integral equation (30), which can be written as

f(x) = h(x) +
2λ

π2
x sinhπx

∞∫

0

Kα(x, y)f(y) dy. (34)

We have

Theorem 5. Let α > 0, λ ∈ C\{0}, h ∈ Lπ
2 , k ∈ Lν

2 , 0 < ν < π and
H(u) is the Kontorovich-Lebedev transformation(1) of the functionh. Let also
supu>0 |uαk̂(u)| < 1

|λ| . Then

f(x) =
2
π2

l.i.m.
N→∞

x sinhπx

N∫

1/N

H(u)

1− λuαk̂(u)
Kix(u)

du

u
, (35)

is a solution of(34) belonging toLπ
2 and any another solution fromLπ

2 coincides
with (35) for almost allx ∈ R+.

Proof. Since [1 − λuαk̂(u)]−1 is bounded we have H(u)

1−λuαk̂(u)
∈ L2

(
R+; du

u

)
.

Consequently, (35) exists in the mean sense and defines a functionf from Lπ
2 .

At the same time the convolution in the right-hand side of (34) belongs toLπ
2 via

Theorem 3. The transformation (1) of the right-hand side of (34) gives

H(u) + λuαk̂(u)
H(u)

1− λuαk̂(u)
=

H(u)

1− λuαk̂(u)
= F (u).

Thereforef by formula (35) satisfies equation (34) for almost allx ∈ R+.
Conversely, iff, h ∈ Lπ

2 , k ∈ Lν
2 and equality (34) holds then by Corollary 2

we have
F (u) = H(u) + λuαk̂(u)F (u),

which implies (35). ¤

Remark 3. Solution (35) can be written in terms of the resolvent. Indeed, denoting
by

M(u) =
k̂(u)

1− λuαk̂(u)
,
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and bym(θ) ∈ Lπ
2 the transform (2) ofM ∈ L2

(
R+; du

u

)
we can write the solu-

tion (35) in the form

f(x) = h(x) +
2λ

π2
x sinhπx

∞∫

0

Mα(x, y)h(y) dy, (36)

where

Mα(x, y) =

∞∫

0

m(θ)Ωα(x, y, θ) dθ (37)

Finally we give certain concrete examples of the kernel (31), the corresponding
convolution integral equations (32), (34) and theirLπ

2 -solutions (33), (35).

Example 1. Let k(θ) = θ tanh πθ
2 . It evidently belongs toLν

2 for any ν > 0.
Recalling relation 2.16.48.14 from [4] in order to calculate the kernel (31) we write
it in terms of the notation in (7). Precisely, we haveKα(x, y) = Ωα+1(x, y, 0).
Thus we arrive at the following integral equations

g(x) =
2
π2

x sinhπx

∞∫

0

Ωα+1(x, y, 0)f(y) dy, (38)

f(x) = h(x) +
2λ

π2
x sinhπx

∞∫

0

Ωα+1(x, y, 0)f(y) dy. (39)

Hence a uniqueLπ
2 -solution of the equation (38) can be obtained via Theorem 4 by

the formula

f(x) =
2
π2

l.i.m.
N→∞

x sinhπx

N∫

1/N

G(u)
K0(u)

Kix(u)
du

uα+2

under the condition G(u)
uα+1K0(u)

∈ L2

(
R+; du

u

)
. Even, if |λ| < [supu>0 uα+1

K0(u)]−1, then (see Theorem 5) we have a uniqueLπ
2 -solution of the equation (39)

written in the form (36), whereMα(x, y) is defined by (37) with

m(θ) =
2
π2

θ sinhπθ

∞∫

0

K0(u)
1− λuα+1K0(u)

Kiθ(u) du.

Example 2. Let k(t) = t sinhπt
∣∣Γ (

1
4 + it

2

)∣∣4 ∈ Lν
2 . By relation 2.16.49.2

from [4] we arrive at the following convolution integral equations

g(x) = 4
√

2π x sinhπx

∞∫

0

Ωα+1/2(x, y, 0)f(y) dy, (40)
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f(x) = h(x) + 4λ
√

2π x sinhπx

∞∫

0

Ωα+1/2(x, y, 0)f(y) dy. (41)

Hence a uniqueLπ
2 -solution of the equation (40) is represented by the formula

f(x) =
1

π4
√

2π
l.i.m.
N→∞

x sinhπx

N∫

1/N

G(u)
K0(u)

Kix(u)
du

uα+3/2

under condition G(u)

uα+1/2K0(u)
∈ L2

(
R+; du

u

)
. Moreover, if |λ| < [2π2

√
2π

supu>0 uα+1/2K0(u)]−1 then we have a uniqueLπ
2 -solution of the equation (41)

written in the form (36), whereMα(x, y) is defined by (37) with

m(θ) = 4
√

2π θ sinhπθ

∞∫

0

u−1/2K0(u)
1− 2π2

√
2πλuα+1/2K0(u)

Kiθ(u) du.

Example 3. Let k(t) = t sin at, a 6= 0. It is easily seen thatk(t) ∈ Lν
2 , when

|Im a| < ν
2 . Appealing in [4] to relation 2.16.48.19 we get the following equations

g(x) =
sinh a

π
x sinhπx

∞∫

0

Kα(x, y)f(y) dy, (42)

f(x) = h(x) +
λ sinh a

π
x sinhπx

∞∫

0

Kα(x, y)f(y) dy, (43)

where

Kα(x, y) =

∞∫

0

uαe−u cosh αKix(u)Kiy(u) du.

A uniqueLπ
2 -solution of the equation (42) is given by the formula

f(x) =
4

π3 sinh a
l.i.m.
N→∞

x sinhπx

N∫

1/N

eu cosh αG(u)Kix(u)
du

uα+2

under the conditionu−(α+1)eu cosh αG(u) ∈ L2

(
R+; du

u

)
. Moreover, if |λ| <

[π sinh a
2 supu>0 uα+1e−u cosh α]−1 then we have a uniqueLπ

2 -solution of the equa-
tion (43) written in the form (36), whereMα(x, y) is defined by (37) with

m(θ) =
2 sinh a

π
θ sinhπθ

∞∫

0

Kiθ(u)
2 eu cosh α − πλ sinh a uα+1

du.
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