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ON NORMAL SUBGROUPS OF UNITARY GROUPS OF
SOME UNITAL AF -ALGEBRAS

AHMED AL-RAWASHDEH

Abstract. In the case of von Neumann factors of types II1 and III,
P. de la Harpe proved that, if N is a normal subgroup of the unitary
group which contains a non-trivial self-adjoint unitary, then N contains
all self-adjoint unitaries of the factor. In this paper, we prove that if A
is a unital AF -algebra, which is either a UHF -algebra or its dimension
group K0(A) is a 2-divisible, then any normal subgroup of the unitary
group contains all self-adjoint unitaries if it contains some certain non-
trivial self-adjoint unitary. Afterwards, we prove that if two unitary
group automorphisms agree on a normal subgroup N of the unitaries,
which contains some certain non-trivial self-adjoint unitary, then they
differ by some character on the unitary group of A.

1. Introduction

Let A be a unital C∗-algebra and let U(A) be the group of unitaries of A.
Throughout this paper, self-adjoint unitaries of A are called the involutions
of A. If we assume that the center of A is the set of scalar multiples of the
unity, then the center of U(A) will be identified with the group circle S1.
P. de la Harpe in [4] called the quotient group U(A)/S1 by the projective
unitary group of A and is denoted by PU(A). The main result, that P. de
la Harpe proved in [4, Proposition 2 and 3], was that the projective unitary
group PU(A) is a simple group if A is a factor of type II1 or III (i.e. either
finite continuous or purely infinite factors).

In particular, P. de la Harpe proved the following main theorem:

Theorem 1.1. [4] If A is a factor of type II1 or III, and N is any normal
subgroup of U(A), which is not contained in S1, then N = U(A).

The proof was spliced into two parts, the first part was to prove that N
contains a non-trivial involution and in the second part he proved that N
contains all involutions of A. Afterwards, P. de la Harpe used the fact that,
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in factors, the set of involutions generates the unitary group, and this result
was proved by M. Broise in [1, Theorem 1].

In this paper, we study some cases of approximately finite C∗-algebras
(AF -algebras). Recall that a C∗-algebra A is an AF -algebra if A = ∪An

such that for every n ≥ 1, An is a finite dimensional C∗-subalgebra of A,
and An ⊆ An+1. In other words A is an AF -algebra if it is the C∗-algebraic
direct limit of a directed system of finite dimensional C∗-algebras and C∗-
algebra homomorphisms, see [2, Ch. III] and [5, 5.6] for more details. First
we consider the case that A is a unital AF -algebra, its dimension group
K0(A) is a 2-divisible group, i.e., every element can expressed as a product
of 2, and we show that if N is any normal subgroup of A, which contains a
non-trivial involution, then N contains all the involutions of A.

Also, without any condition on the dimension group K0(A) of an AF -
algebra A, we study the case that A is a UHF -algebra. Recall that a
UHF -algebra A is an AF -algebra with C∗-subalgebra

An =
n⊗

j=1

Mkj (C) ≈Mk1k2...kn(C),

where (kj)j≥1 is a sequence of integers with kj ≥ 2, and the embedding from
An to An+1 is given by x 7−→ x⊗ 1kn+1 (for more details see [5, §5.9]). If for
all n, the size of An is even, then it is 2-divisible UHF -algebra. We prove
by the same argument as in a 2-divisible AF -algebra’s case, i.e., if N is any
normal subgroup of A, which contains some certain non-trivial involution,
then N contains all involutions of A.

As a good application of the above result, we apply it to the unitary group
automorphism of an AF -algebra A. If N is a normal subgroup of U(A),
which contains a non-trivial involution, and ϕ, ψ are two automorphisms of
U(A), which agree on N , then ϕ = λψ for some character λ of U(A). In
particular, if ψ is a ∗-automorphism of A, then we are able to say that ϕ
is implemented by ψ (up to some character). The extension problem of a
group automorphism of the unitary group to a ∗-automorphism of A was
discussed in the case of von Neumann factors by H. Dye [3], and in the case
of AF -algebras by the author in [6].

2. Main result

We recall some definitions and results from [4] concerning the case of
factors, and we extend these results to some cases of unital AF -algebras. If
u is an involution of a unital C∗-algebra A, then u = 1 − 2p, where p is a
projection of A.

Let B be a factor and recall the dimension function D on the set of
projections of B, P. de la Harpe in [4] defined the type of u to be the pair
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(x, y), with x = D(1 − p) and y = D(p). Then he used this definition to
prove his main result.

Let A be a unital AF -algebra, recall that the scale of A (which generates
K+

0 (A), and is denoted by ΣA) is realized as the equivalence classes of
projections in A (see [2, Theorem IV.1.6]). Therefore, let us define the type
of involutions of unital AF -algebras as follows:

Definition 2.1. Let A be a unital AF -algebra and let u be an involution in
U(A). We define the type of u to be the element [1−u

2 ] in the scale ΣA.

Then we extend [4, Lemma 5] in the following result.

Lemma 2.2. Let u, v be any two involutions in a unital AF -algebra A.
Then u and v are conjugate in U(A) if and only if they have the same type.

Proof. If u and v are two conjugate involutions in U(A), then there exists
a unitary w in A such that u = wvw∗. But u = 1 − 2e and v = 1 − 2f
for some projections e, f in A, so u = w(1− 2f)w∗ = 1− 2wfw∗, therefore
e = wfw∗, and hence [e] = [f ].

Conversely, assume that the involutions u and v have the same type.
This implies that e ∼u f . So for some unitary w, we have that e = wfw∗,
therefore

u = 1− 2(wfw∗) = 1− 2(
1− wvw∗

2
) = wvw∗,

hence the proof of the lemma is completed. ¤
For a unital C∗-algebra A, let P(A) denote the set of all projections of

A. Now, we prove the following lemma.

Lemma 2.3. Let A be a unital AF -algebra and let e be a non-trivial pro-
jection in A . If a ∈ K+

0 (A) with 0 < a ≤ [e], then there exists a projection
p in A such that [p] = a, p ≤ e′, and e′ ∼ e for some e′ ∈ P(A). Indeed, the
projections p and e′ are in A∞ = ∪∞n=1An.

Proof. Given e ∈ P(A)\{0, 1}, A = A∞. Then there exists an e′ ∈ P(A∞)
\{0, 1} such that e′ ∼ e, which means that [e′] = [e]. As A is an AF -algebra,
the scale ΣA of A equals to {[p]; p ∈ P(A) } indeed, ΣA = [0, [1]]. Since
[e] ∈ Σ(A), we have that a ∈ ΣA, therefore a = [f ] for some f ∈ P(A).
Then there exists a projection f ′ ∈ P(A∞) such that f ∼ f ′, which means
that a = [f ′].

Now choose an n large enough so that the projections f ′ and e′ belong to
An. From the hypothesis we have that [f ′] ≤ [e′] the other hand,

An =Mn1 ⊕Mn2 ⊕ · · · ⊕Mnk
.

Therefore,
e′ = (e1, e2, . . . , ek) and f ′ = (f1, f2, . . . , fk),
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where ei, fi ∈ P(Mni(C)).
Recall that K0(An) = Zk, and Zk has the simplicial ordering. Denote the

class of ei, fi in Z+ by ei, fi, respectively. Therefore,

[e′] = (e1, e2, . . . , ek) and [f ′] = (f1, f2, . . . , fk)

and for every 1 ≤ l ≤ k, we have that fl ≤ el. But fl, el are in Mnl
(C),

so this means that rank(fl) ≤ rank(el). Then there exists a projection
gl ∈ P(Mnl

(C)) such that gl has the same rank as fl moreover, gl ≤ el.
Finally, choose p = (g1, g2, . . . , gk) ∈ P(An). Therefore, a = [p], moreover

p ≤ e′ ∼ e, which completes the proof. ¤
Proposition 2.4. Let A be a unital AF -algebra. If q, f and e are projections
in A such that q ≤ f and [f ] = [e], then there exists a projection t in A such
that [t] = [q] and t ≤ e.

Proof. As e ∼u f , there exists a unitary u in A such that e = ufu∗. Let
t = uqu∗. Then [t] = [q], and t ≤ e, hence the proof is completed. ¤

Now, we shall prove the following main lemma which is similar to a result
in the case of factors of type II, proved by P. de la Harpe ([4, Lemma 6]).

Lemma 2.5. Let A be a unital AF -algebra. If e is a non-trivial projection
in A, and r ∈ K+

0 (A) such that 0 < r ≤ [e] and r ≤ [1− e], then there exists
an involution in A of type 2r.

Proof. By Lemma 2.3, there exist projections p and e′ in A∞ such that

r = [p], p ≤ e′ and e′ ∼ e.

Also, we have projections t and f ′ in A∞ such that

r = [t], t ≤ f ′ and f ′ ∼ 1− e.

Notice that [f ′] = [1 − e′], therefore, by Proposition 2.4, there exists a
projection q such that

[t] = [q] and q ≤ 1− e′.

Therefore, p and q are orthogonal equivalent projections. If s is a partial
isometry such that s∗s = p and ss∗ = q, then sq = ps = 0 and s2 =
(sp)(qs) = 0.

If w = e′−p+s+s∗ = w∗, then w2 = e′+q and if we put v = w+(1−e′−q),
then we have

v2 = 1 + w(1− e′ − q) + (1− e′ − q)w = 1,

therefore, v is an involution in A. Moreover,

ve′v = (w + (1− e′ − q))e′(w + (1− e′ − q))

= we′(w + (1− e′ − q))
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= wew

= (e′ − p + sp)(e′ − p + s + s∗)

= e′ − p + q.

Let u′ be the involution defined by u′ = 1− 2e′. Then we have

u′vu′v = (1− 2e′)v(1− 2e′)v

= (v − 2e′v)(v − 2e′v)

= 1− 2ve′v − 2e′ + 4e′ve′v

= 1− 2(e′ − p + q)− 2e′ + 4e′ − 4p

= 1− 2(p + q).

Therefore, u′vu′v is an involution in A of type 2r, as desired. ¤

The following corollary is a consequence of the previous lemma.

Corollary 2.6. Let A be a unital AF -algebra. If N is a normal subgroup
of U(A), which contains a non-trivial involution u (u = 1−2e), and r is the
same as in the previous lemma, then N contains an involution of type 2r.

Proof. Let u′ be the same involution as in the proof of the previous lemma.
Then u′ and u are conjugate involutions, and hence u′ ∈ N , therefore, the
involution u′vu′v ∈ N , which is of the type 2r. ¤

Now we proceed to prove our main results. We study the case of UHF -
algebras, whose K0 are not 2-divisible groups, for such algebras, we prove
that any normal subgroup of U(A) contains all involutions if it contains at
least a single non-trivial involution. Afterwards, we prove the validity of the
result for any UHF - algebras.

If A is a UHF -algebra such that its dimension group K0(A) is not a
2-divisible, then the generalized integer n̄ of A equals (2n2 , 3n3 , 5n5 , . . .),

where 0 ≤ n2 < ∞ and 0 ≤ np ≤ ∞ for every odd prime p > 2. Indeed,

K0(A) '
{

m

2n2p1p2 . . . pk
| m ∈ Z, k ∈ Z+, 1 ≤ i ≤ k,

and pi is an odd prime
}

.

For every n ≥ 0, put sn = 2n2p1 . . . pn. Let τ denote the normalized trace
of A.

For such C∗-algebras, we have the following lemma:
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Lemma 2.7. Let A be a UHF -algebra such that its K0(A) is not a 2-
divisible group. If N is a normal subgroup of U(A) which contains an invo-
lution of type m

sn
∈ τ(K0(A)) for some odd integer m and some non-negative

integer n, then N contains all involutions of A.

Proof. Given any normal subgroup N of U(A), first we assume that N
contains an involution of type 1

sn
for some n ≥ 0, and hence any involution

of type 1
sn

therefore, N contains any involution of type s
sn

for all 1 ≤ s ≤ sn.
It is enough to show that N contains an involution of type 1

sn+1
. We know

that N contains any involution of type spn+1

sn+1
for all 1 ≤ s ≤ sn. As

1
sn+1

<
pn+1

sn+1
and

1
sn+1

< 1− pn+1

sn+1
,

by Lemma 2.5, N contains an involution of type 2
sn+1

, and hence any invo-
lution of type 2m

sn+1
such that 1 ≤ 2m ≤ sn+1.

Now choose an odd integer s such that 1 ≤ s ≤ sn therefore, spn+1 is an
odd integer, spn+1 − 1 < sn+1 and

1
sn+1

=
spn+1

sn+1
− spn+1 − 1

sn+1
.

Let u = 1− 2p, and v = 1− 2q indeed,

[p] =
spn+1

sn+1
, [q] =

spn+1 − 1
sn+1

in τ(K0(A)) and q < p, then uv ∈ N , moreover, type of uv is 1
sn+1

.
In the general case, assume that N contains an involution of type m

sn
for

some odd integer m > 1 and some non-negative integer n. As 1
sn
≤ m

sn
and

1
sn
≤ 1−m

sn
, thenN contains any involution of type 2s

sn
such that 2 ≤ 2s ≤ sn.

Let u = 1 − 2q and v = 1 − 2r such that [q] = m
sn

, [r] = m−1
sn

and r ≤ q.
Then uv ∈ N and its type is 1

sn
, hence the proof is completed. ¤

A similar result to the preceding one is now given in the case of unital
AF -algebras, whose K0-dimension groups are 2-divisible.

Recall that if A is a unital C∗-algebra, then a set {er
i,j}, 1 ≤ i, j ≤

n and 1 ≤ r ≤ m of elements of A is said to be a system of matrix units in
A if it satisfies the followings:

er
i,je

r
j,k = er

i,k, e
r
i,je

s
k,l = 0 if r 6= s or j 6= k, (er

i,j)
∗ = er

j,i,

n,m∑

i,r

er
i,i = 1,

and ei,i is a projection in A for every i, this projection is denoted by pi.
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In [6, Corollary 2.5.3.2], the author proved that if A is a unital AF -algebra
and if for some projection p of A, n[p] = [1] in K0(A) for some n > 1, then A
has a system of matrix units of dimension n. Also in [6, Proposition 2.5.3.3],
the author proved that if A is a unital AF -algebra such that K0(A) is a 2-
divisible ordered group, then for any k > 1, A has a system of matrix units
of dimension 2k. Using the idea that in such C∗-algebras, we can express
elements of K0 as a product of 2, then we have the following lemma.

Lemma 2.8. Let A be a unital AF -algebra such that the dimension group
K0(A) is a 2-divisible group. If N is any normal subgroup of U(A) which
contains a non-trivial involution of type [p1], then N contains all involutions
of A.

Proof. As {ei,j}2k

i,j=1 is a system of matrix units of A for some k > 1, we have
[1] = 2k[p1]. We will do the proof for the case k = 2, and the general case is
similar. From the assumption [p1] is a type of a non-trivial involution in N .
Therefore for every r belongs to the scale ΣA of A such that 0 < r ≤ [p1],
apply Lemma 2.5, to get an involution inN of type 2r. Indeed, an involution
of type 2[p1].

Again, for every r such that 0 < r ≤ 2[p1], we get an involution in N
of type 2r, indeed an involution of type [1]. For a general case, continue
applying the lemma to get involutions in N of types: 8[p1], . . . , 2k−1[p1], [1].

Now for any [p] in the scale of A, therefore 0 ≤ [p] ≤ 4[p1] and [p] = 2[t],
for some projection t in A. As K0(A) is unperforated, we have 2[p1]− 1

2 [p] ∈
K+

0 (A), hence [t] ≤ 2[p1], therefore by the first part of the proof, we get an
involution in N of type [p]. So we have proved that N contains an involution
of any given type.

Now to finish the proof, if u is any involution of A, then by Lemma 2.2,
u is a conjugate to some involution in N therefore, u ∈ N . ¤

More generally, for the case of unital AF -algebras, whose dimension
groups are not necessary 2-divisible groups, we have the following.

Proposition 2.9. Let A be a unital AF -algebra with a set of matrix units
{ei,j}n

i,j, and m0 be the largest positive integer such that 2m0+1 ≤ n. If N is
any normal subgroup of U(A) which contains an involution of type [p1], then
N contains any involution of the following types: s[p1] for all 1 ≤ s ≤ n and
2r for all 0 < r ≤ 2m0 [p1].

Proof. Recall that for all 1 ≤ i ≤ n, ui = 1 − 2pi. As N contains an
involution of type [p1], by Lemma 2.2, we have that N contains all the u′is,
and hence for all 1 ≤ s ≤ n, the product

∏s
i=1 ui belongs to N , which is of

type s[p1] in particular, −1 ∈ N .
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By Lemma 2.5, there is an involution in N of type 2r for all 0 < r ≤
2m0 [p1], hence N contains any involution of such type. ¤

Therefore, we now have the following main result in this paper.

Theorem 2.10. If A is a unital AF -algebra such that either
(i) The dimension group K0(A) is a 2-divisible, or
(ii) A is any UHF -algebra,

and N is a normal subgroup of the unitary group U(A), which contains an
involution of type [p1], then N contains all involutions of A.

Proof. Lemma 2.8 proves (i). Lemma 2.7 together with (i) proves (ii), and
hence the proof of the theorem is completed. ¤

Consequently, we have the following result concerning the group auto-
morphisms of U(A).

Corollary 2.11. Let A and N be as in Theorem 2.10. If ϕ and ψ are
automorphisms of U(A) such that ϕ = ψ on N , then ϕ = λψ for some
possible character λ of U(A).

Proof. By Theorem 2.10, we have thatN contains all involutions of A, hence
ϕ = ψ on the normal subgroup K which is generated by all involutions of
A. Therefore, as in [6, Theorem 6.3.0.8], we have that ϕ = λψ for some
possible character λ of U(A). ¤
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