ON NORMAL SUBGROUPS OF UNITARY GROUPS OF SOME UNITAL AF-ALGEBRAS

AHMED AL-RAWASHDEH

ABSTRACT. In the case of von Neumann factors of types II_1 and III, P. de la Harpe proved that, if \mathcal{N} is a normal subgroup of the unitary group which contains a non-trivial self-adjoint unitary, then \mathcal{N} contains all self-adjoint unitaries of the factor. In this paper, we prove that if Ais a unital AF-algebra, which is either a UHF-algebra or its dimension group $K_0(A)$ is a 2-divisible, then any normal subgroup of the unitary group contains all self-adjoint unitaries if it contains some certain nontrivial self-adjoint unitary. Afterwards, we prove that if two unitary group automorphisms agree on a normal subgroup \mathcal{N} of the unitaries, which contains some certain non-trivial self-adjoint unitary, then they differ by some character on the unitary group of A.

1. INTRODUCTION

Let A be a unital C^* -algebra and let $\mathcal{U}(A)$ be the group of unitaries of A. Throughout this paper, self-adjoint unitaries of A are called the involutions of A. If we assume that the center of A is the set of scalar multiples of the unity, then the center of $\mathcal{U}(A)$ will be identified with the group circle \mathbb{S}^1 . P. de la Harpe in [4] called the quotient group $\mathcal{U}(A)/\mathbb{S}^1$ by the projective unitary group of A and is denoted by $P\mathcal{U}(A)$. The main result, that P. de la Harpe proved in [4, Proposition 2 and 3], was that the projective unitary group $P\mathcal{U}(A)$ is a simple group if A is a factor of type II_1 or III (i.e. either finite continuous or purely infinite factors).

In particular, P. de la Harpe proved the following main theorem:

Theorem 1.1. [4] If A is a factor of type II₁ or III, and \mathcal{N} is any normal subgroup of $\mathcal{U}(A)$, which is not contained in \mathbb{S}^1 , then $\mathcal{N} = \mathcal{U}(A)$.

The proof was spliced into two parts, the first part was to prove that \mathcal{N} contains a non-trivial involution and in the second part he proved that \mathcal{N} contains all involutions of A. Afterwards, P. de la Harpe used the fact that,

²⁰⁰⁰ Mathematics Subject Classification. 46L05, 46L80, 16U60.

 $Key\ words\ and\ phrases.\ UHF$ -algebras, dimension group, self-adjoint unitary.

in factors, the set of involutions generates the unitary group, and this result was proved by M. Broise in [1, Theorem 1].

In this paper, we study some cases of approximately finite C^* -algebras (AF-algebras). Recall that a C^* -algebra A is an AF-algebra if $A = \overline{\bigcup A_n}$ such that for every $n \ge 1$, A_n is a finite dimensional C^* -subalgebra of A, and $A_n \subseteq A_{n+1}$. In other words A is an AF-algebra if it is the C^* -algebraic direct limit of a directed system of finite dimensional C^* -algebras and C^* algebra homomorphisms, see [2, Ch. III] and [5, 5.6] for more details. First we consider the case that A is a unital AF-algebra, its dimension group $K_0(A)$ is a 2-divisible group, i.e., every element can expressed as a product of 2, and we show that if \mathcal{N} is any normal subgroup of A, which contains a non-trivial involution, then \mathcal{N} contains all the involutions of A.

Also, without any condition on the dimension group $K_0(A)$ of an AFalgebra A, we study the case that A is a UHF-algebra. Recall that a UHF-algebra A is an AF-algebra with C^* -subalgebra

$$A_n = \bigotimes_{j=1}^n \mathbb{M}_{k_j}(\mathbb{C}) \approx \mathbb{M}_{k_1 k_2 \dots k_n}(\mathbb{C}),$$

where $(k_j)_{j\geq 1}$ is a sequence of integers with $k_j \geq 2$, and the embedding from A_n to A_{n+1} is given by $x \mapsto x \otimes 1_{k_{n+1}}$ (for more details see [5, §5.9]). If for all n, the size of A_n is even, then it is 2-divisible UHF-algebra. We prove by the same argument as in a 2-divisible AF-algebra's case, i.e., if \mathcal{N} is any normal subgroup of A, which contains some certain non-trivial involution, then \mathcal{N} contains all involutions of A.

As a good application of the above result, we apply it to the unitary group automorphism of an AF-algebra A. If \mathcal{N} is a normal subgroup of $\mathcal{U}(A)$, which contains a non-trivial involution, and φ , ψ are two automorphisms of $\mathcal{U}(A)$, which agree on \mathcal{N} , then $\varphi = \lambda \psi$ for some character λ of $\mathcal{U}(A)$. In particular, if ψ is a *-automorphism of A, then we are able to say that φ is implemented by ψ (up to some character). The extension problem of a group automorphism of the unitary group to a *-automorphism of A was discussed in the case of von Neumann factors by H. Dye [3], and in the case of AF-algebras by the author in [6].

2. Main result

We recall some definitions and results from [4] concerning the case of factors, and we extend these results to some cases of unital AF-algebras. If u is an involution of a unital C^* -algebra A, then u = 1 - 2p, where p is a projection of A.

Let \mathcal{B} be a factor and recall the dimension function D on the set of projections of \mathcal{B} , P. de la Harpe in [4] defined the type of u to be the pair

(x, y), with x = D(1 - p) and y = D(p). Then he used this definition to prove his main result.

Let A be a unital AF-algebra, recall that the scale of A (which generates $K_0^+(A)$, and is denoted by ΣA) is realized as the equivalence classes of projections in A (see [2, Theorem IV.1.6]). Therefore, let us define the type of involutions of unital AF-algebras as follows:

Definition 2.1. Let A be a unital AF-algebra and let u be an involution in $\mathcal{U}(A)$. We define the type of u to be the element $\left[\frac{1-u}{2}\right]$ in the scale ΣA .

Then we extend [4, Lemma 5] in the following result.

Lemma 2.2. Let u, v be any two involutions in a unital AF-algebra A. Then u and v are conjugate in U(A) if and only if they have the same type.

Proof. If u and v are two conjugate involutions in $\mathcal{U}(A)$, then there exists a unitary w in A such that $u = wvw^*$. But u = 1 - 2e and v = 1 - 2ffor some projections e, f in A, so $u = w(1 - 2f)w^* = 1 - 2wfw^*$, therefore $e = wfw^*$, and hence [e] = [f].

Conversely, assume that the involutions u and v have the same type. This implies that $e \sim_u f$. So for some unitary w, we have that $e = wfw^*$, therefore

$$u = 1 - 2(wfw^*) = 1 - 2(\frac{1 - wvw^*}{2}) = wvw^*,$$

hence the proof of the lemma is completed.

For a unital C^* -algebra A, let $\mathcal{P}(A)$ denote the set of all projections of A. Now, we prove the following lemma.

Lemma 2.3. Let A be a unital AF-algebra and let e be a non-trivial projection in A. If $a \in K_0^+(A)$ with $0 < a \le [e]$, then there exists a projection p in A such that [p] = a, $p \le e'$, and $e' \sim e$ for some $e' \in \mathcal{P}(A)$. Indeed, the projections p and e' are in $A_{\infty} = \bigcup_{n=1}^{\infty} A_n$.

Proof. Given $e \in \mathcal{P}(A) \setminus \{0, 1\}$, $A = \overline{A_{\infty}}$. Then there exists an $e' \in \mathcal{P}(A_{\infty}) \setminus \{0, 1\}$ such that $e' \sim e$, which means that [e'] = [e]. As A is an AF-algebra, the scale ΣA of A equals to $\{[p]; p \in \mathcal{P}(A)\}$ indeed, $\Sigma A = [0, [1]]$. Since $[e] \in \Sigma(A)$, we have that $a \in \Sigma A$, therefore a = [f] for some $f \in \mathcal{P}(A)$. Then there exists a projection $f' \in \mathcal{P}(A_{\infty})$ such that $f \sim f'$, which means that a = [f'].

Now choose an n large enough so that the projections f' and e' belong to A_n . From the hypothesis we have that $[f'] \leq [e']$ the other hand,

$$A_n = \mathbb{M}_{n_1} \oplus \mathbb{M}_{n_2} \oplus \cdots \oplus \mathbb{M}_{n_k}.$$

Therefore,

$$e' = (e_1, e_2, \dots, e_k)$$
 and $f' = (f_1, f_2, \dots, f_k),$

where $e_i, f_i \in \mathcal{P}(\mathbb{M}_{n_i}(\mathbb{C})).$

Recall that $K_0(A_n) = \mathbb{Z}^k$, and \mathbb{Z}^k has the simplicial ordering. Denote the class of e_i, f_i in \mathbb{Z}^+ by $\overline{e_i}, \overline{f_i}$, respectively. Therefore,

 $[e'] = (\overline{e_1}, \overline{e_2}, \dots, \overline{e_k}) \text{ and } [f'] = (\overline{f_1}, \overline{f_2}, \dots, \overline{f_k})$

and for every $1 \leq l \leq k$, we have that $\overline{f_l} \leq \overline{e_l}$. But f_l, e_l are in $\mathbb{M}_{n_l}(\mathbb{C})$, so this means that $\operatorname{rank}(f_l) \leq \operatorname{rank}(e_l)$. Then there exists a projection $g_l \in \mathcal{P}(\mathbb{M}_{n_l}(\mathbb{C}))$ such that g_l has the same rank as f_l moreover, $g_l \leq e_l$.

Finally, choose $p = (g_1, g_2, \ldots, g_k) \in \mathcal{P}(A_n)$. Therefore, a = [p], moreover $p \leq e' \sim e$, which completes the proof.

Proposition 2.4. Let A be a unital AF-algebra. If q, f and e are projections in A such that $q \leq f$ and [f] = [e], then there exists a projection t in A such that [t] = [q] and $t \leq e$.

Proof. As $e \sim_u f$, there exists a unitary u in A such that $e = ufu^*$. Let $t = uqu^*$. Then [t] = [q], and $t \leq e$, hence the proof is completed. \Box

Now, we shall prove the following main lemma which is similar to a result in the case of factors of type II, proved by P. de la Harpe ([4, Lemma 6]).

Lemma 2.5. Let A be a unital AF-algebra. If e is a non-trivial projection in A, and $r \in K_0^+(A)$ such that $0 < r \leq [e]$ and $r \leq [1-e]$, then there exists an involution in A of type 2r.

Proof. By Lemma 2.3, there exist projections p and e' in A_{∞} such that

 $r = [p], p \le e' \text{ and } e' \sim e.$

Also, we have projections t and f' in A_{∞} such that

 $r = [t], t \le f' \text{ and } f' \sim 1 - e.$

Notice that [f'] = [1 - e'], therefore, by Proposition 2.4, there exists a projection q such that

$$[t] = [q]$$
 and $q \le 1 - e'$.

Therefore, p and q are orthogonal equivalent projections. If s is a partial isometry such that $s^*s = p$ and $ss^* = q$, then sq = ps = 0 and $s^2 = (sp)(qs) = 0$.

If $w = e'-p+s+s^* = w^*$, then $w^2 = e'+q$ and if we put v = w+(1-e'-q), then we have

$$v^{2} = 1 + w(1 - e' - q) + (1 - e' - q)w = 1,$$

therefore, v is an involution in A. Moreover,

$$ve'v = (w + (1 - e' - q))e'(w + (1 - e' - q))$$

= $we'(w + (1 - e' - q))$

$$= wew$$

= $(e' - p + sp)(e' - p + s + s^*)$
= $e' - p + q$.

Let u' be the involution defined by u' = 1 - 2e'. Then we have

$$u'vu'v = (1 - 2e')v(1 - 2e')v$$

= $(v - 2e'v)(v - 2e'v)$
= $1 - 2ve'v - 2e' + 4e've'v$
= $1 - 2(e' - p + q) - 2e' + 4e' - 4p$
= $1 - 2(p + q)$.

Therefore, u'vu'v is an involution in A of type 2r, as desired.

The following corollary is a consequence of the previous lemma.

Corollary 2.6. Let A be a unital AF-algebra. If \mathcal{N} is a normal subgroup of $\mathcal{U}(A)$, which contains a non-trivial involution u (u = 1 - 2e), and r is the same as in the previous lemma, then \mathcal{N} contains an involution of type 2r.

Proof. Let u' be the same involution as in the proof of the previous lemma. Then u' and u are conjugate involutions, and hence $u' \in \mathcal{N}$, therefore, the involution $u'vu'v \in \mathcal{N}$, which is of the type 2r.

Now we proceed to prove our main results. We study the case of UHFalgebras, whose K_0 are not 2-divisible groups, for such algebras, we prove that any normal subgroup of $\mathcal{U}(A)$ contains all involutions if it contains at least a single non-trivial involution. Afterwards, we prove the validity of the result for any UHF- algebras.

If A is a UHF-algebra such that its dimension group $K_0(A)$ is not a 2-divisible, then the generalized integer \bar{n} of A equals $(2^{n_2}, 3^{n_3}, 5^{n_5}, \ldots)$,

where $0 \le n_2 < \infty$ and $0 \le n_p \le \infty$ for every odd prime p > 2. Indeed,

$$K_0(A) \simeq \left\{ \frac{m}{2^{n_2} p_1 p_2 \dots p_k} \mid m \in \mathbb{Z}, \ k \in \mathbb{Z}^+, 1 \le i \le k, \right.$$

and p_i is an odd prime $\bigg\}$.

For every $n \ge 0$, put $s_n = 2^{n_2} p_1 \dots p_n$. Let τ denote the normalized trace of A.

For such C^* -algebras, we have the following lemma:

237

Lemma 2.7. Let A be a UHF-algebra such that its $K_0(A)$ is not a 2divisible group. If \mathcal{N} is a normal subgroup of $\mathcal{U}(A)$ which contains an involution of type $\frac{m}{s_n} \in \tau(K_0(A))$ for some odd integer m and some non-negative integer n, then \mathcal{N} contains all involutions of A.

Proof. Given any normal subgroup \mathcal{N} of $\mathcal{U}(A)$, first we assume that \mathcal{N} contains an involution of type $\frac{1}{s_n}$ for some $n \ge 0$, and hence any involution

of type $\frac{1}{s_n}$ therefore, \mathcal{N} contains any involution of type $\frac{s}{s_n}$ for all $1 \le s \le s_n$. It is enough to show that \mathcal{N} contains an involution of type $\frac{1}{s_{n+1}}$. We know that \mathcal{N} contains any involution of type $\frac{sp_{n+1}}{s_{n+1}}$ for all $1 \le s \le s_n$. As

$$\frac{1}{s_{n+1}} < \frac{p_{n+1}}{s_{n+1}}$$
 and $\frac{1}{s_{n+1}} < 1 - \frac{p_{n+1}}{s_{n+1}}$

by Lemma 2.5, \mathcal{N} contains an involution of type $\frac{2}{s_{n+1}}$, and hence any involution of type $\frac{2m}{s_{n+1}}$ such that $1 \le 2m \le s_{n+1}$. Now choose an odd integer s such that $1 \le s \le s_n$ therefore, sp_{n+1} is an

odd integer, $sp_{n+1} - 1 < s_{n+1}$ and

$$\frac{1}{s_{n+1}} = \frac{sp_{n+1}}{s_{n+1}} - \frac{sp_{n+1} - 1}{s_{n+1}}$$

Let u = 1 - 2p, and v = 1 - 2q indeed,

$$[p] = \frac{sp_{n+1}}{s_{n+1}}, \ [q] = \frac{sp_{n+1}-1}{s_{n+1}}$$

in $\tau(K_0(A))$ and q < p, then $uv \in \mathcal{N}$, moreover, type of uv is $\frac{1}{s_{n+1}}$.

In the general case, assume that \mathcal{N} contains an involution of type $\frac{m}{s_n}$ for some odd integer m > 1 and some non-negative integer n. As $\frac{1}{s_n} \leq \frac{m}{s_n}$ and $\frac{1}{s_n} \leq 1 - \frac{m}{s_n}$, then \mathcal{N} contains any involution of type $\frac{2s}{s_n}$ such that $2 \leq 2s \leq s_n$. Let u = 1 - 2q and v = 1 - 2r such that $[q] = \frac{m}{s_n}$, $[r] = \frac{m-1}{s_n}$ and $r \leq q$. Then $uv \in \mathcal{N}$ and its type is $\frac{1}{s_n}$, hence the proof is completed. \Box

A similar result to the preceding one is now given in the case of unital AF-algebras, whose K_0 -dimension groups are 2-divisible.

Recall that if A is a unital C^{*}-algebra, then a set $\{e_{i,j}^r\}, 1 \leq i, j \leq i$ n and $1 \leq r \leq m$ of elements of A is said to be a system of matrix units in A if it satisfies the followings:

$$e_{i,j}^r e_{j,k}^r = e_{i,k}^r, e_{i,j}^r e_{k,l}^s = 0$$
 if $r \neq s \text{ or } j \neq k$, $(e_{i,j}^r)^* = e_{j,i}^r, \sum_{i,r}^{n,m} e_{i,i}^r = 1$,

and $e_{i,i}$ is a projection in A for every *i*, this projection is denoted by p_i .

In [6, Corollary 2.5.3.2], the author proved that if A is a unital AF-algebra and if for some projection p of A, n[p] = [1] in $K_0(A)$ for some n > 1, then Ahas a system of matrix units of dimension n. Also in [6, Proposition 2.5.3.3], the author proved that if A is a unital AF-algebra such that $K_0(A)$ is a 2divisible ordered group, then for any k > 1, A has a system of matrix units of dimension 2^k . Using the idea that in such C^* -algebras, we can express elements of K_0 as a product of 2, then we have the following lemma.

Lemma 2.8. Let A be a unital AF-algebra such that the dimension group $K_0(A)$ is a 2-divisible group. If \mathcal{N} is any normal subgroup of $\mathcal{U}(A)$ which contains a non-trivial involution of type $[p_1]$, then \mathcal{N} contains all involutions of A.

Proof. As $\{e_{i,j}\}_{i,j=1}^{2^k}$ is a system of matrix units of A for some k > 1, we have $[1] = 2^k[p_1]$. We will do the proof for the case k = 2, and the general case is similar. From the assumption $[p_1]$ is a type of a non-trivial involution in \mathcal{N} . Therefore for every r belongs to the scale ΣA of A such that $0 < r \leq [p_1]$, apply Lemma 2.5, to get an involution in \mathcal{N} of type 2r. Indeed, an involution of type $2[p_1]$.

Again, for every r such that $0 < r \leq 2[p_1]$, we get an involution in \mathcal{N} of type 2r, indeed an involution of type [1]. For a general case, continue applying the lemma to get involutions in \mathcal{N} of types: $8[p_1], \ldots, 2^{k-1}[p_1], [1]$.

Now for any [p] in the scale of A, therefore $0 \leq [p] \leq 4[p_1]$ and [p] = 2[t], for some projection t in A. As $K_0(A)$ is unperforated, we have $2[p_1] - \frac{1}{2}[p] \in K_0^+(A)$, hence $[t] \leq 2[p_1]$, therefore by the first part of the proof, we get an involution in \mathcal{N} of type [p]. So we have proved that \mathcal{N} contains an involution of any given type.

Now to finish the proof, if u is any involution of A, then by Lemma 2.2, u is a conjugate to some involution in \mathcal{N} therefore, $u \in \mathcal{N}$.

More generally, for the case of unital AF-algebras, whose dimension groups are not necessary 2-divisible groups, we have the following.

Proposition 2.9. Let A be a unital AF-algebra with a set of matrix units $\{e_{i,j}\}_{i,j}^n$, and m_0 be the largest positive integer such that $2^{m_0+1} \leq n$. If \mathcal{N} is any normal subgroup of $\mathcal{U}(A)$ which contains an involution of type $[p_1]$, then \mathcal{N} contains any involution of the following types: $s[p_1]$ for all $1 \leq s \leq n$ and 2r for all $0 < r \leq 2^{m_0}[p_1]$.

Proof. Recall that for all $1 \leq i \leq n$, $u_i = 1 - 2p_i$. As \mathcal{N} contains an involution of type $[p_1]$, by Lemma 2.2, we have that \mathcal{N} contains all the $u'_i s$, and hence for all $1 \leq s \leq n$, the product $\prod_{i=1}^{s} u_i$ belongs to \mathcal{N} , which is of type $s[p_1]$ in particular, $-1 \in \mathcal{N}$.

AHMED AL-RAWASHDEH

By Lemma 2.5, there is an involution in \mathcal{N} of type 2r for all $0 < r \leq 2^{m_0}[p_1]$, hence \mathcal{N} contains any involution of such type.

Therefore, we now have the following main result in this paper.

Theorem 2.10. If A is a unital AF-algebra such that either

- (i) The dimension group $K_0(A)$ is a 2-divisible, or
- (ii) A is any UHF-algebra,

and \mathcal{N} is a normal subgroup of the unitary group $\mathcal{U}(A)$, which contains an involution of type $[p_1]$, then \mathcal{N} contains all involutions of A.

Proof. Lemma 2.8 proves (i). Lemma 2.7 together with (i) proves (ii), and hence the proof of the theorem is completed. \Box

Consequently, we have the following result concerning the group automorphisms of $\mathcal{U}(A)$.

Corollary 2.11. Let A and \mathcal{N} be as in Theorem 2.10. If φ and ψ are automorphisms of $\mathcal{U}(A)$ such that $\varphi = \psi$ on \mathcal{N} , then $\varphi = \lambda \psi$ for some possible character λ of $\mathcal{U}(A)$.

Proof. By Theorem 2.10, we have that \mathcal{N} contains all involutions of A, hence $\varphi = \psi$ on the normal subgroup K which is generated by all involutions of A. Therefore, as in [6, Theorem 6.3.0.8], we have that $\varphi = \lambda \psi$ for some possible character λ of $\mathcal{U}(A)$.

References

- M. Broise, Commutateurs dans le groupe unitaire d'un facteur, J. Math. Pures Appl., 46 (1967), 299–312.
- [2] K. R. Davidson, C^{*}-Algebras by Example, Fields Institute Monographs 6, Amer. Math. Soc., Providencs, RI, 1996.
- [3] H. Dye, On the geometry of projections in certain operator algebras, Ann. Math., 61 (1955), 73–89.
- [4] P. de la Harpe, Simplicity of the projective unitary groups defined by simple factors, Comment. Math. Helv. 54 (1979), 334–345.
- [5] P. de la Harpe and V. F. R
 Jones, An Introduction to $C^{\ast}\mbox{-}Algebras,$ Université de Genève, 1995.
- [6] A. Al-Rawashdeh, The Unitary Group as an Invariant of a Simple Unital C*-Algebra, Ph.D Thesis, University of Ottawa, 2003.

(Received: November 19, 2006) (Revised: January 18, 2007) Department of Mathematics and Statistics Jordan University of Science and Technology Irbid 22110, Jordan E-mail: rahmed72@just.edu.jo