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ON THE FUNCTIONAL EQUATION U;+U_;=V;+V_; IN
A BANACH SPACE

KARMELITA PJANIC

ABSTRACT. In this paper we consider commuting one-parameter groups,
{U; : t € R} and {V; : t € R} of unitary operators and the functional
equation Uy +U_¢ = V; +V_,; on a reflexive strictly convex Banach space
with Gateaux differentiable norm.

The operator equation oo+ a_1 = 3+ [S_1, where o and 3 are *-automor-
phisms on a Von Neumann algebra, has an important role in the geometric
interpretation of Tomita-Takesaki modular theory and its generalization for
Jordan algebras. Commuting one-parameter groups {U; :t € R} and {V; :
t € R} of unitary operators on Hilbert space H such that Uy+U_; = V;+V_y,
for all t € R, are considered in [4].

The following theorem is proved in [4].

Theorem 1. Let {U; : t € R} and {V; : t € R} be two commuting one-
parameter groups of unitary operators on a Hilbert space H such that Uy +
U=V, +V_y for allt € R. Then there is projection P on H such that
U =V,on PH, Uy =V_; on (I — P)H and P commutes with Uy and V; for
allt € R.

We can remark that it is not explicitly stated in Theorem 1 that U; and
V; are strongly continuous groups. However, in the proof of this theorem in
[4] it is taken into account that U; and V; are strongly continuous groups. In
this note, we consider one-parameter groups {U; : t € R} and {V; : t € R}
of unitary operators on reflexive strictly convex Banach space with Gateaux
differentiable norm.

Let X be real normed linear space and f a functional defined on X. Recall
that by the first right-hand Géteaux derivative of f at x in the direction h

we mean f( _|_th) f( )
Fil@)(h) = Jlim S

(1)
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We have an analogous definition for first left-hand Gateaux derivative of f
at 2 in the direction h. If fi (z)(h) = f_(z)(h) we say that f is Gateaux dif-
ferentiable at z in the direction h. Let f(z) = 3|z||? and (z,y) = Fi(2)(y).
It is easy to prove that this derivative exists.

The proof of the next proposition is given in [3].

Proposition 2. Fvery real normed linear space is a generalized inner prod-
uct space in the sense that
(a) (x,y) is well defined;
(b) |zl = (z,2)"/?;
(c) z, )| <|lz|| - llyl| (Cauchy - Schwarz - Buniakovsky inequality);
(d) If X is an inner product space with inner product [x,y] then (x,y) =
[z, y].

Definition. A normed linear space X is said to be strictly convez if ||z|| =
Iyl =1 and @ # y imply ||=5*] < 1.

Some features of strictly convex space are given in [2].
The next theorem is proved in [3].

Theorem 3. Suppose X is real Banach space. Then the Riesz representa-
tion theorem holds: Given 6 € X*, there exist xs€X such that

0(y) =< s,y > (Vy € X) and |z[| = [lzs]|

if and only if X 1is reflexive with the Gateauz differentiable norm.
Furthermore x5 is unique (and mapping § — x5 is continuous from the
norm topology on X* to the weak topology on X ) if and only if X is also
strictly convex.
In addition the mapping § — x5 is also continuous from the norm topology
on X* to the norm topology on X if and only if X is also weakly uniformly
convex.

From now on, let X be complex strictly convex Banach space X with
Gateaux differentiable norm. Let

(@,9) Y (@,y) —ilw, iy).

It is easy to prove that
(z,1y) = i(z,y), (2)
(iz,y) = —i(z,y). (3)
Function (x,y) is linear relative to y, however (z,y) is not linear relative to

z. It can be shown that (Az,y) = A(z,y). Using known methods it can be
proved that

(@, )| < lll - fly]l-
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Similar to Theorem 3, in the case of a complex Banach space the following
holds.

Theorem 3’. Given § € X*, there exist unique x5 € X such that
o(y) = (zs,y) (Vy € X) and |z| = [[=s]]

if and only if X is reflexive strictly convexr Banach space with Gateaux dif-
ferentiable norm.

As d—uxs is a bijective mapping from X* to X we can define its inverse
mapping ¢ : X—X*

o(x)(y) = (z,y) yeX.

*
Now, for all x,y € X we can introduce a new operation + in X by

zHy=¢ (o) +oy) w,yeX.
The space X provided with the operation + will be denoted by (X, +), and

* *
by (X, +) we mean the space X provided with the operation 4. Previously,
we noted that (z,y) is linear relative to y in the (X, +).
Next note that

(z+y,2) = (2,2) + (y, 2)
i.e. (z,y) is linear relative to x in the space (X, 4*—)

Definition. A linear operator U : X — X is said to be isometric, i.e.
unitary if

D U] = =] Ve e X,
2) UX = X, i.e. U is mapping from X on X.

Let us show that U preserves inner product, i.e.
(Uz,Uy) = (z,y).
We have

(Uz,Uy) = (Uz,Uy) —i(Uzx,Uiy)

Uz + tUy||—[[Uz| [Uz +itUy| —[|Uz|

= [|[Uz|| lim i||Uz|| lim
t—0 t t—0 t
tyl — ity|| —
ol ) i e

= [zl (y) — ill«[| T (iy) = (z,y) —i(z, iy) = (z,y).



244 KARMELITA PJANIC

Remark*. Taking into account that U preserves inner product and that
*
(z,y) is linear relative to z in the space (X, +) we have that every unitary

*
operator U : X — X is linear in the space (X, +), i.e.

Ulz ¥y) = Uz + Uy,
U(Ax) = \Uz.

The next theorem is proved in [5].

Theorem 4. Let X be complex reflexive and strictly convexr Banach space
with Gateauz differentiable norm. For every closed linear subspace L of

the space (X,+) there exists a subspace L* of the space (X,—T—) such that
X =L&L* (ie. everyx € X can be written in unique way in the form
x=1+10* leL, I*eL* (I*/1)=0).

Note that a theorem similar to Theorem 4 is valid for the space (X, —T—)

Theorem 5. Let X be Banach space with the same properties as in Theorem

4. Let L and L* be subspaces of (X,+) and (X, —T—) respectively, such that
X = L& L* and let Uy be group of unitary operators on X. If L is invariant
under U; then L* is also invariant under Uy.

Proof. Suppose L is invariant under U;. This means, for [ € L we have
UdeL,te R Takel € L and I* € L*. We have

e iy — e e W RO — [
0= (", Usl) = ||I"|| i W
_ T [ el (L% | N
= (U i : — ).
Thus, U_4* € L*.
Since this holds for every t € R, the theorem is proved. O

Before we give a generalization of Theorem 1, let us prove the following
lemma.

Lemma 6. Let {U; : t € R} and {V; : t € R} be two commuting, strongly
continuous one-parameter groups of unitary operators on reflexive strictly
convex Banach space X with Gateauz differentiable norm. Suppose that

a) Uy +U_y =Vi+V_y, for allt € R.
b) There is no x € X,z # 0, such that Ugx = Vix for all t € R.

Then
Uwx =V_x, Vxe X, VteR.



ON THE FUNCTIONAL EQUATION Uy +U_; = V; +V_; IN A BANACH SPACE 245

Proof. Let Cy = %, Vi€ R, ie. Cy = %, vVt € R.

Then, C; is strongly continuous cosine operator function on X. If C' is
infinitesimal generator of Cy, and A and B are infinitesimal generators of Uy
and V; respectively, then —C = A% = B2,

Using the fact that U; and V; commute, we get

(A—B)(A+B)x=0, z€Dz.

Let (A+ B)x = y. Then (A — B)y = 0. Furthermore, for all t € R we

have
d(UV_y)
dt

Thus, for all t € R it is U;V_; y = 4, where ¥ is a constant vector.

Hence, for t = 0, we get § = y. So, Uyy = Viy for all ¢ € R. Taking into
account b), this implies y = 0, i.e. (A + B)x = 0.

Thus, taking % we get UyViz =z, ie. Ur =V_ 1z, x € Dpo.

As the set D, is dense in X and the groups U; and V; are strongly
continuous, we have

y=AUV_yy — BUV_1y=UV_(A—B)y=0.

Ux=V_x, VrxelX, VteR.

Now, we can prove a generalization of the Theorem 1.

Theorem 7. Let {U; : t € R} and {V; : t € R} be two commuting, strongly
continuous one-parameter groups of unitary operators on reflerive strictly
convexr Banach space X with Gateaux differentiable norm such that

Ut—i—Uft_V;f“‘Vft
2 - 2

Then there exist subspaces L C (X,+) and L* C (X, —T—) such that X =
LeL* andU; =V; on L and Uy = V_; on L*.

Proof. Let L = {l|Uil = V4l, ¥Vt € R}. It can be easily shown that L is linear
closed subspace of the space (X, +). L is invariant under {U,}.
Let [ € L. Then Ul = Vil. Performing U on Uil we get

US(Utl) — Us+tl,

, VteR. (4)

and on the other hand
Us(Upl) = Us(Vil) = ViUl = ViVl = VUil = Vi (Url),
i.e. Ul € L. Tt can be easily proved that L is invariant under {V;}.

According to Theorem 4, there is subspace L* of the space (X, —T—) such
that X = L ® L*.
By Theorem 5, the subspace L* is also invariant under U; and under V4.
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Moreover, taking in the account Remark®, it can be easily proved that

operators U; and V; are linear in (X, —T—), and thus, in L*. As X is reflexive
space, U; and V; are strongly continuous semigroups in L*. From the defini-
tion of the subspace L* it follows that there is no x € L*, x # 0 such that
Uix = Vix, Vt € R.

Now, we can apply Lemma 6 to obtain the statement of the theorem. [J

The notion of the Hilbert transform on local convex space X is given in
paper [1]. In our note, we will consider the limit lim .o H. y on reflexive

N—oo
strictly convex Banach space X with Gateaux differentiable norm, where
H.yzx = fe<t<N % dt, (x € X, U, unitary group of operators).

If 2 =1lim .o H. n x exists then Z is called the Hilbert transform of the

element x gengl"%oted by group U; and it is denoted by * = H x.

In the following part of paper we will need some results obtained in [5].
From the Theorem 7 in [5] it follows that there are subspaces L and M of
(X, +) such that

a) Space (X, +) is the direct sum of L and M.

) Cix =z, Vo € L, Vt € R.

) Ui+U_¢ Vi+V_y )
)

M is invariant under all operators C; = 45— = ~=5
If we consider C; on M, then point 0 does not belong to punctual
spectrum of infinitesimal generator C' of C}.

b
c
d

From d) it follows, as seen in [5], that in the subspace M operators A and B
do not have eigenvectors that correspond to the eigenvalue 0. Also, taking
into account that U, and V; are unitary operators and X is strictly convex,
a) implies that

Uwx =Viz =2, Vte R if and only if x € L.
Finally, from the proof of Theorem 7 in [5], it follows that < I, m >= 0, VI €
L,Ym e M.
Using the previously mentioned facts we can now easily prove that M is
invariant under unitary operators Uy and V;.
Form e M, let Uym =1l + my, Iy € L, my € M. Then for any x € L and
m € M, we have

0=<z,m>=<U_z,m>=<z,Um >=< x,l; + my >
=<z, >+ <x,my>=<x,l; >, ie l;=0.
Thus, Usm € M. We can show in a similar way that M is invariant under
Vi
Also, it can be easily seen that there is no vector m € M, m # 0 such
that Uym = Vym = m.
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Now, by applying Theorem 7 on space M we can obtain subspaces M; of
*
M, +) and My of (M, +) such that M = M; & Mo, and
Uix =Vix, Vre M,Vte R
Utm:V,tx, V.TEMQ,VtER
and < mg, mq >= 0 for all m; € My and mo € Ms. Moreover, we know that
My and My are invariant under U; and V4.

Let us show that M; is linear subspace of (M,+). Take m/,m” € M.
Obviously we can write m’ +m” = my + mg, (m1 € My, my € Ms). Also,
we have Uym’ = V_ym/,Um” = V_ym”. Applying Uy on m/ +m” = my +mg
and using previous equalities we get:

Vo + Vom” = Vimg + Voyme. (5)
On the other hand, if we apply V_; on m’ +m” = my + mo we obtain
Veem! +Vom!” = Voymy + Voyme. (6)
Comparing (5) and (6) we have
Vimi +V_yme =V_ymq + V_ymg, forall t € R,

where my € My, mo € Ms. Thus, Vimq = V_ymq, for all t € R. This implies
Vim1 = mq, for all t € R. So, m1 = 0.
Therefore we have proved following theorem:

Theorem 8. Under the previous assumptions on the space X and the oper-
ators Uy and Vi, X can be written as direct sum of its three linear subspaces
L, My and My that are invariant under all operators Uy and Vi, t € R and
such that

1) Uz =Viz =z, VYo € L, Vt € R.
2) Uyx = Vix, Vo € My, Vt € R.
)UtCC— —tZ, \V/SUEMQ,VtER
4) <l,mi+mge >=0 and < mg,my >= 0 for alll € L,miM;,mg €

M.

Note. If we use the notation from [5] where Ay represents positive second
root of —C(= A? = B?), then it is easy to see that L, M; and My are
invariant under A, .

From Theorem 8 we have the next theorem:

Theorem 9. If {U, : t € R} and {V, : t € R} are two commuting, strongly
continuous one-parameter groups of unitary operators on reflexive strictly
convexr Banach space X with Gateaux differentiable norm and if

Uy+U_+ =V, +V_,, VteR.
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and if one of those groups generates the bounded Hilbert transform on the
whole space X than the same holds for other group.

Proof. According to Theorem 8, space X can be written as direct sum of
its subspaces L, My and Ms. Obviously, those subspaces are invariant under
infinitesimal generators A and B of groups U; and V4, respectively, and as
well, under the infinitesimal generator C of cosine operator Cy. According
to Theorem 8, A=B=0on L, A=Bon L, and A= —B on Ls.

Now, using Theorem 8 from [5] and previously given Note, we can easily
obtain the statement given in our theorem. ([
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