ON THE FUNCTIONAL EQUATION $U_t + U_{-t} = V_t + V_{-t}$ IN A BANACH SPACE

KARMELITA PJANIC´

ABSTRACT. In this paper we consider commuting one-parameter groups, $\{U_t : t \in R\}$ and $\{V_t : t \in R\}$ of unitary operators and the functional equation $U_t + U_{-t} = V_t + V_{-t}$ on a reflexive strictly convex Banach space with Gâteaux differentiable norm.

The operator equation $\alpha + \alpha_{-1} = \beta + \beta_{-1}$, where α and β are ^{*}-automorphisms on a Von Neumann algebra, has an important role in the geometric interpretation of Tomita-Takesaki modular theory and its generalization for Jordan algebras. Commuting one-parameter groups $\{U_t : t \in R\}$ and $\{V_t : t \in R\}$ $t \in R$ of unitary operators on Hilbert space H such that $U_t + U_{-t} = V_t + V_{-t}$, for all $t \in R$, are considered in [4].

The following theorem is proved in [4].

Theorem 1. Let $\{U_t : t \in R\}$ and $\{V_t : t \in R\}$ be two commuting oneparameter groups of unitary operators on a Hilbert space H such that U_t + $U_{-t} = V_t + V_{-t}$ for all $t \in R$. Then there is projection P on H such that $U_t = V_t$ on PH, $U_t = V_{-t}$ on $(I - P)H$ and P commutes with U_t and V_t for all $t \in R$.

We can remark that it is not explicitly stated in Theorem 1 that U_t and V_t are strongly continuous groups. However, in the proof of this theorem in [4] it is taken into account that U_t and V_t are strongly continuous groups. In this note, we consider one-parameter groups $\{U_t : t \in R\}$ and $\{V_t : t \in R\}$ of unitary operators on reflexive strictly convex Banach space with Gâteaux differentiable norm.

Let X be real normed linear space and f a functional defined on X. Recall that by the first right-hand Gâteaux derivative of f at x in the direction h we mean

$$
f'_{+}(x)(h) = \lim_{t \to +0} \frac{f(x+th) - f(x)}{t}.
$$
 (1)

²⁰⁰⁰ Mathematics Subject Classification. 47D03.

Key words and phrases. Commuting one-parameter group of unitary operators, reflexive strictly convex Banach space with Gâteaux differentiable norm.

242 KARMELITA PJANIC´

We have an analogous definition for first left-hand Gâteaux derivative of f at x in the direction h. If $f'_{+}(x)(h) = f'_{-}(x)(h)$ we say that f is Gâteaux differentiable at x in the direction h. Let $f(x) = \frac{1}{2} ||x||^2$ and $\langle x, y \rangle = f'_{+}(x)(y)$. It is easy to prove that this derivative exists.

The proof of the next proposition is given in [3].

Proposition 2. Every real normed linear space is a generalized inner product space in the sense that

- (a) $\langle x, y \rangle$ is well defined;
- (b) $||x|| = \langle x, x \rangle^{1/2};$
- (c) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ (Cauchy Schwarz Buniakovsky inequality);
- (d) If X is an inner product space with inner product $[x, y]$ then $\langle x, y \rangle =$ $[x, y]$.

Definition. A normed linear space X is said to be strictly convex if $||x|| =$ $||y|| = 1$ and $x \neq y$ imply $||\frac{x+y}{2}||$ $\frac{+y}{2}$ || < 1.

Some features of strictly convex space are given in [2].

The next theorem is proved in [3].

Theorem 3. Suppose X is real Banach space. Then the Riesz representation theorem holds: Given $\delta \in X^*$, there exist $x_{\delta} \in X$ such that

$$
\delta(y) = \langle x_{\delta}, y \rangle \quad (\forall y \in X) \ \text{and} \ \|x\| = \|x_{\delta}\|
$$

if and only if X is reflexive with the Gâteaux differentiable norm.

Furthermore x_{δ} is unique (and mapping $\delta \rightarrow x_{\delta}$ is continuous from the norm topology on X^* to the weak topology on X) if and only if X is also strictly convex.

In addition the mapping $\delta \to x_{\delta}$ is also continuous from the norm topology on X^* to the norm topology on X if and only if X is also weakly uniformly convex.

From now on, let X be complex strictly convex Banach space X with Gâteaux differentiable norm. Let

$$
(x,y) \stackrel{def}{=} \langle x,y\rangle - i\langle x,iy\rangle.
$$

It is easy to prove that

$$
(x, iy) = i(x, y),\tag{2}
$$

$$
(ix, y) = -i(x, y). \tag{3}
$$

Function (x, y) is linear relative to y, however (x, y) is not linear relative to x. It can be shown that $(\lambda x, y) = \overline{\lambda}(x, y)$. Using known methods it can be proved that

$$
|(x,y)| \leq ||x|| \cdot ||y||.
$$

ON THE FUNCTIONAL EQUATION $U_t + U_{-t} = V_t + V_{-t}$ IN A BANACH SPACE 243

Similar to Theorem 3, in the case of a complex Banach space the following holds.

Theorem 3'. Given $\delta \in X^*$, there exist unique $x_{\delta} \in X$ such that

 $\delta(y) = (x_{\delta}, y)$ $(\forall y \in X)$ and $||x|| = ||x_{\delta}||$

if and only if X is reflexive strictly convex Banach space with Gâteaux differentiable norm.

As $\delta \rightarrow x_{\delta}$ is a bijective mapping from X^* to X we can define its inverse mapping $\varphi : X \rightarrow X^*$

$$
\varphi(x)(y) = (x, y) \quad y \in X.
$$

Now, for all $x, y \in X$ we can introduce a new operation $\stackrel{*}{+}$ in X by

$$
x \stackrel{*}{+} y = \varphi^{-1}(\varphi(x) + \varphi(y)) \quad x, y \in X.
$$

The space X provided with the operation $+$ will be denoted by $(X, +)$, and by $(X, \overset{*}{+})$ we mean the space X provided with the operation $\overset{*}{+}$. Previously, we noted that (x, y) is linear relative to y in the $(X, +)$.

Next note that

$$
(x * y, z) = (x, z) + (y, z)
$$

i.e. (x, y) is linear relative to x in the space $(X, \stackrel{*}{+})$.

Definition. A linear operator $U: X \rightarrow X$ is said to be isometric, i.e. unitary if

- 1) $||Ux|| = ||x|| \quad \forall x \in X,$
- 2) $UX = X$, *i.e.* U is mapping from X on X.

Let us show that U preserves inner product, i.e.

$$
(Ux, Uy) = (x, y).
$$

We have

$$
(Ux, Uy) = \langle Ux, Uy \rangle - i \langle Ux, Uiy \rangle
$$

= $||Ux|| \lim_{t \to 0} \frac{||Ux + tUy|| - ||Ux||}{t} - i||Ux|| \lim_{t \to 0} \frac{||Ux + itUy|| - ||Ux||}{t}$
= $||x|| \lim_{t \to 0} \frac{||x + ty|| - ||x||}{t} - i||x|| \lim_{t \to 0} \frac{||x + ity|| - ||x||}{t}$
= $||x||T(y) - i||x||T(iy) = \langle x, y \rangle - i \langle x, iy \rangle = (x, y).$

Remark^{*}. Taking into account that U preserves inner product and that (x, y) is linear relative to x in the space $(X, \overset{*}{+})$ we have that every unitary operator $U: X \to X$ is linear in the space $(X, \overset{*}{+})$, i.e.

$$
U(x + y) = Ux + Uy,
$$

$$
U(\lambda x) = \lambda Ux.
$$

The next theorem is proved in [5].

Theorem 4. Let X be complex reflexive and strictly convex Banach space with Gâteaux differentiable norm. For every closed linear subspace L of the space $(X, +)$ there exists a subspace L^* of the space $(X, +)$ such that $X = L \oplus L^*$ (i.e. every $x \in X$ can be written in unique way in the form $x = l + l^*, \ \ l \in L, \ l^* \in L^*, \ \ \langle l^*, l \rangle = 0$.

Note that a theorem similar to Theorem 4 is valid for the space $(X, \stackrel{*}{+})$.

Theorem 5. Let X be Banach space with the same properties as in Theorem 4. Let L and L^{*} be subspaces of $(X,+)$ and $(X,+)$ respectively, such that $X = L \oplus L^*$ and let U_t be group of unitary operators on X. If L is invariant under U_t then L^* is also invariant under U_t .

Proof. Suppose L is invariant under U_t . This means, for $l \in L$ we have $U_t l \in L$, $t \in R$. Take $l \in L$ and $l^* \in L^*$. We have

$$
0 = \langle l^*, U_t l \rangle = ||l^*|| \lim_{t \to 0} \frac{||l^* + hU_t l|| - ||l^*||}{h}
$$

= $||U_{-t}l^*|| \lim_{t \to 0} \frac{||U_{-t}l^* + hl|| - ||U_{-t}l^*||}{h} = \langle U_{-t}l^*, l \rangle.$

Thus, $U_{-t}l^* \in L^*$.

Since this holds for every $t \in R$, the theorem is proved. \Box

Before we give a generalization of Theorem 1, let us prove the following lemma.

Lemma 6. Let $\{U_t : t \in R\}$ and $\{V_t : t \in R\}$ be two commuting, strongly continuous one-parameter groups of unitary operators on reflexive strictly convex Banach space X with Gâteaux differentiable norm. Suppose that

a) $U_t + U_{-t} = V_t + V_{-t}$, for all $t \in R$.

b) There is no $x \in X$, $x \neq 0$, such that $U_t x = V_t x$ for all $t \in R$.

Then

$$
U_t x = V_{-t} x, \quad \forall x \in X, \ \forall t \in R.
$$

ON THE FUNCTIONAL EQUATION $U_t + U_{-t} = V_t + V_{-t}$ IN A BANACH SPACE 245

Proof. Let $C_t = \frac{U_t + U_{-t}}{2}$ $\frac{U_{-t}}{2}$, ∀t ∈ R, i.e. $C_t = \frac{V_t + V_{-t}}{2}$ $\frac{1}{2}^{\nu-t}, \forall t \in R.$

Then, C_t is strongly continuous cosine operator function on X. If C is infinitesimal generator of C_t , and A and B are infinitesimal generators of U_t and V_t respectively, then $-C = A^2 = B^2$.

Using the fact that U_t and V_t commute, we get

 $(A - B)(A + B)x = 0, \quad x \in \mathcal{D}_{c^2}.$

Let $(A + B)x = y$. Then $(A - B)y = 0$. Furthermore, for all $t \in R$ we have

$$
\frac{d(U_t V_{-t})}{dt} y = AU_t V_{-t} y - BU_t V_{-t} y = U_t V_{-t} (A - B) y = 0.
$$

Thus, for all $t \in R$ it is $U_t V_{-t} y = \bar{y}$, where \bar{y} is a constant vector.

Hence, for $t = 0$, we get $\bar{y} = y$. So, $U_t y = V_t y$ for all $t \in R$. Taking into account b), this implies $y = 0$, i.e. $(A + B)x = 0$.

Thus, taking $\frac{d(U_t V_t x)}{dt}$ we get $U_t V_t x = x$, i.e. $U_t x = V_{-t} x$, $x \in \mathcal{D}_{c^2}$.

As the set \mathcal{D}_{c^2} is dense in X and the groups U_t and V_t are strongly continuous, we have

$$
U_t x = V_{-t} x, \quad \forall x \in X, \ \forall t \in R.
$$

¤

Now, we can prove a generalization of the Theorem 1.

Theorem 7. Let $\{U_t : t \in R\}$ and $\{V_t : t \in R\}$ be two commuting, strongly continuous one-parameter groups of unitary operators on reflexive strictly convex Banach space X with Gâteaux differentiable norm such that

$$
\frac{U_t + U_{-t}}{2} = \frac{V_t + V_{-t}}{2}, \quad \forall t \in R.
$$
\n
$$
(4)
$$

Then there exist subspaces $L \subseteq (X, +)$ and $L^* \subseteq (X, +)$ such that $X =$ $L \oplus L^*$ and $U_t = V_t$ on L and $U_t = V_{-t}$ on L^* .

Proof. Let $L = \{l | U_t l = V_t l, \forall t \in R\}$. It can be easily shown that L is linear closed subspace of the space $(X, +)$. L is invariant under $\{U_t\}$.

Let $l \in L$. Then $U_t l = V_t l$. Performing U_s on $U_t l$ we get

$$
U_s(U_t l) = U_{s+t} l,
$$

and on the other hand

$$
U_s(U_t l) = U_s(V_t l) = V_t U_s l = V_t V_s l = V_s U_t l = V_s(U_t l),
$$

i.e. $U_t l \in L$. It can be easily proved that L is invariant under $\{V_t\}$.

According to Theorem 4, there is subspace L^* of the space $(X, \overset{*}{+})$ such that $X = L \oplus L^*$.

By Theorem 5, the subspace L^* is also invariant under U_t and under V_t .

246 KARMELITA PJANIC´

Moreover, taking in the account Remark^{*}, it can be easily proved that operators U_t and V_t are linear in $(X, \stackrel{*}{+})$, and thus, in L^* . As X is reflexive space, U_t and V_t are strongly continuous semigroups in L^* . From the definition of the subspace L^* it follows that there is no $x \in L^*$, $x \neq 0$ such that $U_t x = V_t x, \forall t \in R.$

Now, we can apply Lemma 6 to obtain the statement of the theorem. \Box

The notion of the Hilbert transform on local convex space X is given in paper [1]. In our note, we will consider the limit $\lim_{\varepsilon \to 0} H_{\varepsilon,N}$ on reflexive strictly convex Banach space X with Gâteaux differentiable norm, where $H_{\varepsilon,N} x = \int_{\varepsilon \le t \le N} \frac{U_t x}{t} dt$, $(x \in X, U_t$ unitary group of operators).

If $\bar{x} = \lim_{\substack{\varepsilon \to 0 \\ N \to \infty}} H_{\varepsilon, N} x$ exists then \bar{x} is called the Hilbert transform of the element x generated by group U_t and it is denoted by $\bar{x} = H x$.

In the following part of paper we will need some results obtained in [5]. From the Theorem 7 in $[5]$ it follows that there are subspaces L and M of $(X,+)$ such that

- a) Space $(X,+)$ is the direct sum of L and M.
- b) $C_t x = x, \forall x \in L, \forall t \in R$.
- c) M is invariant under all operators $C_t = \frac{U_t + U_{-t}}{2} = \frac{V_t + V_{-t}}{2}$ $\frac{-V-t}{2}$.
- d) If we consider C_t on M, then point 0 does not belong to punctual spectrum of infinitesimal generator C of C_t .

From d) it follows, as seen in [5], that in the subspace M operators A and B do not have eigenvectors that correspond to the eigenvalue 0. Also, taking into account that U_t and V_t are unitary operators and X is strictly convex, a) implies that

$$
U_t x = V_t x = x, \quad \forall t \in R \text{ if and only if } x \in L.
$$

Finally, from the proof of Theorem 7 in [5], it follows that $\langle l, m \rangle = 0$, $\forall l \in$ L, $\forall m \in M$.

Using the previously mentioned facts we can now easily prove that M is invariant under unitary operators U_t and V_t .

For $m \in M$, let $U_t m = l_t + m_t$, $l_t \in L$, $m_t \in M$. Then for any $x \in L$ and $m \in M$, we have

$$
0 = ===
$$

=+=, i.e. $l_{t}=0$.

Thus, $U_t m \in M$. We can show in a similar way that M is invariant under V_t .

Also, it can be easily seen that there is no vector $m \in M$, $m \neq 0$ such that $U_t m = V_t m = m$.

Now, by applying Theorem 7 on space M we can obtain subspaces M_1 of $M, +$) and M_2 of $(M, +)$ such that $M = M_1 \oplus M_2$, and

$$
U_t x = V_t x, \quad \forall x \in M_1, \forall t \in R
$$

$$
U_t x = V_{-t} x, \quad \forall x \in M_2, \forall t \in R
$$

and $\langle m_2, m_1 \rangle = 0$ for all $m_1 \in M_1$ and $m_2 \in M_2$. Moreover, we know that M_1 and M_2 are invariant under U_t and V_t .

Let us show that M_2 is linear subspace of $(M, +)$. Take $m', m'' \in M_2$. Obviously we can write $m' + m'' = m_1 + m_2$, $(m_1 \in M_1, m_2 \in M_2)$. Also, we have $U_t m' = V_{-t} m', U_t m'' = V_{-t} m''.$ Applying U_t on $m' + m'' = m_1 + m_2$ and using previous equalities we get:

$$
V_{-t}m' + V_{-t}m'' = V_t m_1 + V_{-t}m_2.
$$
\n⁽⁵⁾

On the other hand, if we apply V_{-t} on $m' + m'' = m_1 + m_2$ we obtain

$$
V_{-t}m' + V_{-t}m'' = V_{-t}m_1 + V_{-t}m_2.
$$
\n⁽⁶⁾

Comparing (5) and (6) we have

$$
V_t m_1 + V_{-t} m_2 = V_{-t} m_1 + V_{-t} m_2
$$
, for all $t \in R$,

where $m_1 \in M_1$, $m_2 \in M_2$. Thus, $V_t m_1 = V_{-t} m_1$, for all $t \in R$. This implies $V_t m_1 = m_1$, for all $t \in R$. So, $m_1 = 0$.

Therefore we have proved following theorem:

Theorem 8. Under the previous assumptions on the space X and the operators U_t and V_t , X can be written as direct sum of its three linear subspaces L, M_1 and M_2 that are invariant under all operators U_t and $V_t, t \in R$ and such that

- 1) $U_t x = V_t x = x, \forall x \in L, \forall t \in R.$
- 2) $U_tx = V_tx, \ \forall x \in M_1, \forall t \in R.$
- 3) $U_t x = V_{-t} x$, $\forall x \in M_2, \forall t \in R$.
- 4) $\langle l, m_1 + m_2 \rangle = 0$ and $\langle m_2, m_1 \rangle = 0$ for all $l \in L, m_1 M_1, m_2 \in L$ M_2 .

Note. If we use the notation from [5] where A_{+} represents positive second root of $-C(= A^2 = B^2)$, then it is easy to see that L, M_1 and M_2 are invariant under A_{+} .

From Theorem 8 we have the next theorem:

Theorem 9. If $\{U_t : t \in R\}$ and $\{V_t : t \in R\}$ are two commuting, strongly continuous one-parameter groups of unitary operators on reflexive strictly $convex Banach space X with Gâteaux differentiable norm and if$

$$
U_t + U_{-t} = V_t + V_{-t}, \quad \forall t \in R.
$$

248 KARMELITA PJANIC´

and if one of those groups generates the bounded Hilbert transform on the whole space X than the same holds for other group.

Proof. According to Theorem 8, space X can be written as direct sum of its subspaces L, M_1 and M_2 . Obviously, those subspaces are invariant under infinitesimal generators A and B of groups U_t and V_t , respectively, and as well, under the infinitesimal generator C of cosine operator C_t . According to Theorem 8, $A = B = 0$ on L, $A = B$ on L₁, and $A = -B$ on L₂.

Now, using Theorem 8 from [5] and previously given Note, we can easily obtain the statement given in our theorem. \Box

REFERENCES

- [1] S. Ishikawa, Hilbert transforms on one-parametar groups of operators I, II, Tokyo J. Math., 9 (2) (1986), 383–393, 395–414.
- [2] S. Kurepa, Funkcionalna analiza, Školska knjiga, Zagreb, 1990.
- [3] R. A. Tapia, A characterization of inner product spaces, Proc. Am. Math. Soc., 41 (1973), 569–574.
- [4] A. B. Thaheem i Noor Mohammad, On functional equation over Hilbert spaces, Funkc. Ekvacioj, 32 (1989), 479–481.
- [5] F. Vajzović and A. Šahović, *Cosine operator functions and Hilbert transforms*, Novi Sad J. Math., 35 (2) (2005), 41–55.

(Received: January 16, 2007) Pedagogical Academy (Revised: July 2, 2007) University of Sarajevo

71000 Sarajevo Bosnia and Herzegovina E–mail: kpjanic@gmail.com