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ON THE FUNCTIONAL EQUATION U t + U−t = V t + V −t IN
A BANACH SPACE

KARMELITA PJANIĆ

Abstract. In this paper we consider commuting one-parameter groups,
{Ut : t ∈ R} and {Vt : t ∈ R} of unitary operators and the functional
equation Ut +U−t = Vt +V−t on a reflexive strictly convex Banach space
with Gâteaux differentiable norm.

The operator equation α+α−1 = β +β−1, where α and β are ∗-automor-
phisms on a Von Neumann algebra, has an important role in the geometric
interpretation of Tomita-Takesaki modular theory and its generalization for
Jordan algebras. Commuting one-parameter groups {Ut : t ∈ R} and {Vt :
t ∈ R} of unitary operators on Hilbert space H such that Ut+U−t = Vt+V−t,
for all t ∈ R, are considered in [4].

The following theorem is proved in [4].

Theorem 1. Let {Ut : t ∈ R} and {Vt : t ∈ R} be two commuting one-
parameter groups of unitary operators on a Hilbert space H such that Ut +
U−t = Vt + V−t for all t ∈ R. Then there is projection P on H such that
Ut = Vt on PH, Ut = V−t on (I −P )H and P commutes with Ut and Vt for
all t ∈ R.

We can remark that it is not explicitly stated in Theorem 1 that Ut and
Vt are strongly continuous groups. However, in the proof of this theorem in
[4] it is taken into account that Ut and Vt are strongly continuous groups. In
this note, we consider one-parameter groups {Ut : t ∈ R} and {Vt : t ∈ R}
of unitary operators on reflexive strictly convex Banach space with Gâteaux
differentiable norm.

Let X be real normed linear space and f a functional defined on X. Recall
that by the first right-hand Gâteaux derivative of f at x in the direction h
we mean

f
′
+(x)(h) = lim

t→+0

f(x + th)− f(x)
t

. (1)
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We have an analogous definition for first left-hand Gâteaux derivative of f
at x in the direction h. If f

′
+(x)(h) = f

′
−(x)(h) we say that f is Gâteaux dif-

ferentiable at x in the direction h. Let f(x) = 1
2‖x‖2 and 〈x, y〉 = f

′
+(x)(y).

It is easy to prove that this derivative exists.
The proof of the next proposition is given in [3].

Proposition 2. Every real normed linear space is a generalized inner prod-
uct space in the sense that

(a) 〈x, y〉 is well defined;
(b) ‖x‖ = 〈x, x〉1/2;
(c) |〈x, y〉| ≤ ‖x‖ · ‖y‖ (Cauchy - Schwarz - Buniakovsky inequality);
(d) If X is an inner product space with inner product [x, y] then 〈x, y〉 =

[x, y].

Definition. A normed linear space X is said to be strictly convex if ‖x‖ =
‖y‖ = 1 and x 6= y imply ‖x+y

2 ‖ < 1.

Some features of strictly convex space are given in [2].
The next theorem is proved in [3].

Theorem 3. Suppose X is real Banach space. Then the Riesz representa-
tion theorem holds: Given δ ∈ X∗, there exist xδ∈X such that

δ(y) =< xδ, y > (∀y ∈ X) and ‖x‖ = ‖xδ‖
if and only if X is reflexive with the Gâteaux differentiable norm.

Furthermore xδ is unique (and mapping δ → xδ is continuous from the
norm topology on X∗ to the weak topology on X) if and only if X is also
strictly convex.

In addition the mapping δ → xδ is also continuous from the norm topology
on X∗ to the norm topology on X if and only if X is also weakly uniformly
convex.

From now on, let X be complex strictly convex Banach space X with
Gâteaux differentiable norm. Let

(x, y)
def
= 〈x, y〉 − i〈x, iy〉.

It is easy to prove that

(x, iy) = i(x, y), (2)

(ix, y) = −i(x, y). (3)

Function (x, y) is linear relative to y, however (x, y) is not linear relative to
x. It can be shown that (λx, y) = λ(x, y). Using known methods it can be
proved that

|(x, y)| ≤ ‖x‖ · ‖y‖.
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Similar to Theorem 3, in the case of a complex Banach space the following
holds.

Theorem 3’. Given δ ∈ X∗, there exist unique xδ ∈ X such that

δ(y) = (xδ, y) (∀y ∈ X) and ‖x‖ = ‖xδ‖
if and only if X is reflexive strictly convex Banach space with Gâteaux dif-
ferentiable norm.

As δ→xδ is a bijective mapping from X∗ to X we can define its inverse
mapping ϕ : X→X∗

ϕ(x)(y) = (x, y) y ∈ X.

Now, for all x, y ∈ X we can introduce a new operation
∗
+ in X by

x
∗
+ y = ϕ−1(ϕ(x) + ϕ(y)) x, y ∈ X.

The space X provided with the operation + will be denoted by (X, +), and

by (X,
∗
+) we mean the space X provided with the operation

∗
+. Previously,

we noted that (x, y) is linear relative to y in the (X, +).
Next note that

(x
∗
+ y, z) = (x, z) + (y, z)

i.e. (x, y) is linear relative to x in the space (X,
∗
+).

Definition. A linear operator U : X → X is said to be isometric, i.e.
unitary if

1) ‖Ux‖ = ‖x‖ ∀x ∈ X,
2) UX = X, i.e. U is mapping from X on X.

Let us show that U preserves inner product, i.e.

(Ux, Uy) = (x, y).

We have

(Ux, Uy) = 〈Ux, Uy〉 − i〈Ux, Uiy〉

= ‖Ux‖ lim
t→0

‖Ux + tUy‖−‖Ux‖
t

− i‖Ux‖ lim
t→0

‖Ux + itUy‖−‖Ux‖
t

= ‖x‖ lim
t→0

‖x + ty‖ − ‖x‖
t

− i‖x‖ lim
t→0

‖x + ity‖ − ‖x‖
t

= ‖x‖T (y)− i‖x‖T (iy) = 〈x, y〉 − i〈x, iy〉 = (x, y).
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Remark∗. Taking into account that U preserves inner product and that
(x, y) is linear relative to x in the space (X,

∗
+) we have that every unitary

operator U : X → X is linear in the space (X,
∗
+), i.e.

U(x
∗
+ y) = Ux

∗
+ Uy,

U(λx) = λUx.

The next theorem is proved in [5].

Theorem 4. Let X be complex reflexive and strictly convex Banach space
with Gâteaux differentiable norm. For every closed linear subspace L of
the space (X,+) there exists a subspace L∗ of the space (X,

∗
+) such that

X = L ⊕ L∗ (i.e. every x ∈ X can be written in unique way in the form
x = l + l∗, l ∈ L, l∗ ∈ L∗, 〈l∗, l〉 = 0).

Note that a theorem similar to Theorem 4 is valid for the space (X,
∗
+).

Theorem 5. Let X be Banach space with the same properties as in Theorem
4. Let L and L∗ be subspaces of (X, +) and (X,

∗
+) respectively, such that

X = L⊕L∗ and let Ut be group of unitary operators on X. If L is invariant
under Ut then L∗ is also invariant under Ut.

Proof. Suppose L is invariant under Ut. This means, for l ∈ L we have
Utl ∈ L, t ∈ R. Take l ∈ L and l∗ ∈ L∗. We have

0 = 〈l∗, Utl〉 = ‖l∗‖ lim
t→0

‖l∗ + hUtl‖ − ‖l∗‖
h

= ‖U−tl
∗‖ lim

t→0

‖U−tl
∗ + hl‖ − ‖U−tl

∗‖
h

= 〈U−tl
∗, l〉.

Thus, U−tl
∗ ∈ L∗.

Since this holds for every t ∈ R, the theorem is proved. ¤

Before we give a generalization of Theorem 1, let us prove the following
lemma.

Lemma 6. Let {Ut : t ∈ R} and {Vt : t ∈ R} be two commuting, strongly
continuous one-parameter groups of unitary operators on reflexive strictly
convex Banach space X with Gâteaux differentiable norm. Suppose that

a) Ut + U−t = Vt + V−t, for all t ∈ R.
b) There is no x ∈ X, x 6= 0, such that Utx = Vtx for all t ∈ R.

Then
Utx = V−tx, ∀x ∈ X, ∀t ∈ R.
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Proof. Let Ct = Ut+U−t

2 , ∀t ∈ R, i.e. Ct = Vt+V−t

2 , ∀t ∈ R.
Then, Ct is strongly continuous cosine operator function on X. If C is

infinitesimal generator of Ct, and A and B are infinitesimal generators of Ut

and Vt respectively, then −C = A2 = B2.
Using the fact that Ut and Vt commute, we get

(A−B)(A + B)x = 0, x ∈ Dc2 .

Let (A + B)x = y. Then (A − B)y = 0. Furthermore, for all t ∈ R we
have

d(UtV−t)
dt

y = AUtV−t y −BUtV−t y = UtV−t(A−B) y = 0.

Thus, for all t ∈ R it is UtV−t y = ȳ, where ȳ is a constant vector.
Hence, for t = 0, we get ȳ = y. So, Uty = Vty for all t ∈ R. Taking into

account b), this implies y = 0, i.e. (A + B)x = 0.

Thus, taking d(UtVtx)
dt we get UtVtx = x, i.e. Utx = V−tx, x ∈ Dc2 .

As the set Dc2 is dense in X and the groups Ut and Vt are strongly
continuous, we have

Utx = V−tx, ∀x ∈ X, ∀t ∈ R.

¤
Now, we can prove a generalization of the Theorem 1.

Theorem 7. Let {Ut : t ∈ R} and {Vt : t ∈ R} be two commuting, strongly
continuous one-parameter groups of unitary operators on reflexive strictly
convex Banach space X with Gâteaux differentiable norm such that

Ut + U−t

2
=

Vt + V−t

2
, ∀t ∈ R. (4)

Then there exist subspaces L ⊆ (X, +) and L∗ ⊆ (X,
∗
+) such that X =

L⊕ L∗ and Ut = Vt on L and Ut = V−t on L∗.

Proof. Let L = {l|Utl = Vtl, ∀t ∈ R}. It can be easily shown that L is linear
closed subspace of the space (X,+). L is invariant under {Ut}.

Let l ∈ L. Then Utl = Vtl. Performing Us on Utl we get

Us(Utl) = Us+tl,

and on the other hand

Us(Utl) = Us(Vtl) = VtUsl = VtVsl = VsUtl = Vs(Utl),

i.e. Utl ∈ L. It can be easily proved that L is invariant under {Vt}.
According to Theorem 4, there is subspace L∗ of the space (X,

∗
+) such

that X = L⊕ L∗.
By Theorem 5, the subspace L∗ is also invariant under Ut and under Vt.
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Moreover, taking in the account Remark∗, it can be easily proved that
operators Ut and Vt are linear in (X,

∗
+), and thus, in L∗. As X is reflexive

space, Ut and Vt are strongly continuous semigroups in L∗. From the defini-
tion of the subspace L∗ it follows that there is no x ∈ L∗, x 6= 0 such that
Utx = Vtx, ∀t ∈ R.

Now, we can apply Lemma 6 to obtain the statement of the theorem. ¤

The notion of the Hilbert transform on local convex space X is given in
paper [1]. In our note, we will consider the limit lim ε→0

N→∞
Hε,N on reflexive

strictly convex Banach space X with Gâteaux differentiable norm, where
Hε,N x =

∫
ε≤t<N

Utx
t dt, (x ∈ X, Ut unitary group of operators).

If x̄ = lim ε→0
N→∞

Hε,N x exists then x̄ is called the Hilbert transform of the

element x generated by group Ut and it is denoted by x̄ = H x.
In the following part of paper we will need some results obtained in [5].

From the Theorem 7 in [5] it follows that there are subspaces L and M of
(X, +) such that

a) Space (X, +) is the direct sum of L and M.
b) Ctx = x, ∀x ∈ L, ∀t ∈ R.

c) M is invariant under all operators Ct = Ut+U−t

2 = Vt+V−t

2 .
d) If we consider Ct on M, then point 0 does not belong to punctual

spectrum of infinitesimal generator C of Ct.

From d) it follows, as seen in [5], that in the subspace M operators A and B
do not have eigenvectors that correspond to the eigenvalue 0. Also, taking
into account that Ut and Vt are unitary operators and X is strictly convex,
a) implies that

Utx = Vtx = x, ∀t ∈ R if and only if x ∈ L.

Finally, from the proof of Theorem 7 in [5], it follows that < l, m >= 0, ∀l ∈
L, ∀m ∈ M.

Using the previously mentioned facts we can now easily prove that M is
invariant under unitary operators Ut and Vt.

For m ∈ M, let Utm = lt + mt, lt ∈ L, mt ∈ M. Then for any x ∈ L and
m ∈ M, we have

0 =< x, m >=< U−tx,m >=< x,Utm >=< x, lt + mt >

=< x, lt > + < x,mt >=< x, lt >, i.e. lt = 0.

Thus, Utm ∈ M. We can show in a similar way that M is invariant under
Vt.

Also, it can be easily seen that there is no vector m ∈ M, m 6= 0 such
that Utm = Vtm = m.
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Now, by applying Theorem 7 on space M we can obtain subspaces M1 of
M, +) and M2 of (M,

∗
+) such that M = M1 ⊕M2, and

Utx = Vtx, ∀x ∈ M1, ∀t ∈ R

Utx = V−tx, ∀x ∈ M2, ∀t ∈ R

and < m2,m1 >= 0 for all m1 ∈ M1 and m2 ∈ M2. Moreover, we know that
M1 and M2 are invariant under Ut and Vt.

Let us show that M2 is linear subspace of (M, +). Take m′, m′′ ∈ M2.
Obviously we can write m′ + m′′ = m1 + m2, (m1 ∈ M1,m2 ∈ M2). Also,
we have Utm

′ = V−tm
′,Utm

′′ = V−tm
′′. Applying Ut on m′+m′′ = m1 +m2

and using previous equalities we get:

V−tm
′ + V−tm

′′ = Vtm1 + V−tm2. (5)

On the other hand, if we apply V−t on m′ + m′′ = m1 + m2 we obtain

V−tm
′ + V−tm

′′ = V−tm1 + V−tm2. (6)

Comparing (5) and (6) we have

Vtm1 + V−tm2 = V−tm1 + V−tm2, for all t ∈ R,

where m1 ∈ M1, m2 ∈ M2. Thus, Vtm1 = V−tm1, for all t ∈ R. This implies
Vtm1 = m1, for all t ∈ R. So, m1 = 0.

Therefore we have proved following theorem:

Theorem 8. Under the previous assumptions on the space X and the oper-
ators Ut and Vt, X can be written as direct sum of its three linear subspaces
L,M1 and M2 that are invariant under all operators Ut and Vt, t ∈ R and
such that

1) Utx = Vtx = x, ∀x ∈ L, ∀t ∈ R.
2) Utx = Vtx, ∀x ∈ M1, ∀t ∈ R.
3) Utx = V−tx, ∀x ∈ M2, ∀t ∈ R.
4) < l, m1 + m2 >= 0 and < m2,m1 >= 0 for all l ∈ L, m1M1,m2 ∈

M2.

Note. If we use the notation from [5] where A+ represents positive second
root of −C(= A2 = B2), then it is easy to see that L,M1 and M2 are
invariant under A+.

From Theorem 8 we have the next theorem:

Theorem 9. If {Ut : t ∈ R} and {Vt : t ∈ R} are two commuting, strongly
continuous one-parameter groups of unitary operators on reflexive strictly
convex Banach space X with Gâteaux differentiable norm and if

Ut + U−t = Vt + V−t, ∀t ∈ R.
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and if one of those groups generates the bounded Hilbert transform on the
whole space X than the same holds for other group.

Proof. According to Theorem 8, space X can be written as direct sum of
its subspaces L,M1 and M2. Obviously, those subspaces are invariant under
infinitesimal generators A and B of groups Ut and Vt, respectively, and as
well, under the infinitesimal generator C of cosine operator Ct. According
to Theorem 8, A = B = 0 on L, A = B on L1, and A = −B on L2.

Now, using Theorem 8 from [5] and previously given Note, we can easily
obtain the statement given in our theorem. ¤
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