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ON FOCI AND ASYMPTOTES OF CONICS IN THE
ISOTROPIC PLANE

J. BEBAN-BRKIĆ, M. ŠIMIĆ AND V. VOLENEC

Abstract. The paper shows that every conic with foci in the isotropic
plane can be represented by the equation of the form y2 = εx2 + x,
where ε ∈ {−1, 0, 1} for an ellipse, a parabola and a hyperbola with foci
respectively. Using this equation some important properties of the foci
are proved. According to duality the properties of asymptotes of the
hyperbola in the isotropic plane are valid as well.

A conic section or conic is the locus of all points (x : y : z) in a real
projective plane that are the solutions of an equation written in the form

lx2 + my2 + nz2 + 2qxy + 2pxz + 2oyz = 0, l,m, n, q, p, o ∈ R (1)

where

δ = det




l q p
q m o
p o n


 = lmn + 2opq − lo2 −mp2 − nq2. (2)

We are going to consider the proper conics, i. e. the conics with δ 6= 0.
To any point T (x0 : y0 : z0) its polar T with respect to (w.r.t.) the conic C
is the straight line with the equation

lx0x + my0y + nz0z + o(y0z + z0y) + p(z0x + x0z) + q(x0y + y0x) = 0

which can be also written in the form

(lx0 + qy0 + pz0)x + (qx0 + my0 + oz0)y + (px0 + oy0 + nz0)z = 0. (3)

Conversely, one says that the point T is the pole of the line T with respect to
the conic C. The isotropic plane is a projective metric plane whose absolute
figure is a pair consisting of a point Ω and a line ω incident to it, i.e. of
the absolute point Ω and the absolute line ω respectively. As the absolute
figure is dual to itself, the principle of duality from the projective plane is
preserved in the isotropic plane. The points of the absolute line ω are called
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isotropic points and the lines incident to the absolute point Ω are isotropic
lines. Two lines are parallel if they have the same isotropic point, and two
points are parallel if they are incident to the same isotropic line.

All the notions related to the geometry of the isotropic plane can be found
for example in Sachs [1] and Strubecker [2].

If the absolute figure is determined by the line ω with the equation z = 0
and by the point Ω = (0 : 1 : 0) of the line ω, then the non-isotropic points
(x : y : z) are characterized by z 6= 0. As a consequence, it can be assumed
that z = 1, and the non-isotropic points can be denoted by (x, y). Letting
z = 1 the equation (1) turns into the form

lx2 + 2qxy + my2 + 2px + 2oy + n = 0, (4)

being the equation of the conic C in the isotropic plane.
The conic C in the isotropic plane is a circle if the absolute line ω is

tangent to it at the absolute point Ω, a parabola if the line ω is tangent to it
at an isotropic point different from Ω, an ellipse if it does not intersect the
line ω, and a hyperbola if they intersect at two different points.

Common points of the line ω and the conic C given in (1) fulfill the
equation

lx2 + 2qxy + my2 = 0. (5)

The conic C is a circle provided that the equation (5) has a double solution
in y for x = 0. This is achieved if, and only if, m = q = 0. From (2) it
follows that δ = −lo2 6= 0, i.e. l, o 6= 0. Choosing l = 1, we get:

Theorem 1. Every circle of the isotropic plane (with chosen affine coordi-
nate system) has the equation x2 + 2px + 2oy + n = 0 that can be written in
the form 2ρy = x2 + ux + v. In the latter case ρ is the radius of this circle.

Considering equation (5) it follows:

Theorem 2. The conic C with the equation (4) is an ellipse if q2 < lm, a
hyperbola if q2 > lm and a parabola if q2 = lm with l,m, q 6= 0.

In the third case in Theorem 2 we do not allow m = q = 0. The condition
l, m 6= 0 implies q 6= 0, the condition q 6= 0 implies l,m 6= 0, but it is possible
that l = q = 0, m 6= 0.

The pole S of the absolute line ω w.r.t. the conic C is called the center of
the conic. Dually, the polar S of the absolute point Ω w.r.t. the conic C is
called the axis. The axis of the conic passes through its center because the
point Ω is incident to the line ω. Possible points of intersection of the conic
C with its axis are called foci of the conic (see [1]). Tangents to the conic C
at those points pass through the point Ω, i.e. they are isotropic lines. The
isotropic tangents to C at the foci are called directrices of the conic C.
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Considering duality, the tangents in the isotropic points of the hyperbola
C are called asymptotes of C and they pass through its center.

In the case of the parabola C the center S is an isotropic point. As the
parabola is a conic that touches the line ω at the isotropic point S different
from Ω, it is dual to the conic C that passes through the point Ω, and at that
point touches the isotropic line S different from ω. This means that the line
S is an asymptote of the conic C which is a hyperbola. Such a hyperbola
with one isotropic line as one of its asymptotes is called a special hyperbola.
At the same time the line S is an axis as well, and besides the isotropic
asymptote S the special hyperbola has one more non-isotropic asymptote.

Lines through the center of the conic C are its diameters. Possible in-
tersection points of the conic with its isotropic diameter are called vertices.
The line ω can be considered as the isotropic diameter of the parabola C,
while in the case of the special hyperbola C the isotropic diameter coincides
with its axis S and at the same time it is an isotropic asymptote of C.

For the absolute point Ω = (0 : 1 : 0) the polar equation (3) with z = 1
turns into the form

qx + my + o = 0. (6)

Theorem 3. The conic with the equation (4) has the axis given by equation
(6).

The line (6) is an isotropic line under m = 0 and q 6= 0, i.e. the next
theorem is valid:

Theorem 4. The conic with the equation (4) is a special hyperbola if and
only if m = 0 and q 6= 0 is valid.

Theorem 5. Abscissae of the foci of the conic given in equation (4) are the
solutions on x of the equation

(q2 − lm)x2 + 2(oq −mp)x + o2 −mn = 0. (7)

With m 6= 0 this conic has two foci if δm < 0, and it has none if δm > 0,
with δ given in (2).

Proof. The equation (4) can be written in the form

my2 + 2(qx + o)y + lx2 + 2px + n = 0.

We seek the values of x for which the equation has double solutions in y. A
condition for obtaining this is

(qx + o)2 −m(lx2 + 2px + n) = 0

which satisfies (7). Because of (2) its discriminant is equal to

(oq−mp)2−(o2−mn)(q2−lm) = −m(lmn+2opq−lo2−mp2−nq2) = −δm,

from which the second claim of the theorem follows. ¤
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Latter, we will be interested in the conic C with two different foci. By
an affine coordinate transformation, leaving ω and Ω invariant, every conic
with two different foci can be represented as the conic having the x-axis as
its axis and the origin as its focus.

Theorem 6. Every conic with the origin as its focus and the x-axis as its
axis has the equation of the form

y2 = εx2 + x (8)

where ε ∈ {−1, 0, 1}. Depending on ε = −1, ε = 0 or ε = 1 the conic given
in (8) is an ellipse, a parabola or a hyperbola.

Proof. The axis given in the form of (6) coincides with the x-axis provided
that o = q = 0 and m 6= 0. Under the same conditions the equation (7)
divided by −m has the form lx2 + 2px + n = 0. With n = 0 this equation
has one solution x = 0. The equation (4) therefore has the form

lx2 + my2 + 2px = 0, (9)

by (2) it follows that−mp2 6= 0, i.e. m, p 6= 0. If l 6= 0, using the substitution

x → 2pε

l
x, y → 2p√

|lm|y,

where ε = −sgn(lm), the equation (9) turns into

4p2

l
x2 − 4p2

lε
y2 +

4p2ε

l
x = 0

because of |lm| = −lmε. Because of ε2 = 1, multiplying the latter equation
by lε

4p2 it transforms into the form given in (8). On the other hand, if l = 0,
using the substitution x → −m

2p x the equation my2 + 2px = 0 turns into
the form my2 − mx = 0, i.e. y2 = x being the equation (8) with ε = 0,
representing a parabola. With l = ε, m = −1, p = 1

2 and n = o = q = 0 the
equation (4) turns into (8) and so if ε ∈ {−1, 1}, then q = 0 and lm = −ε
are valid. If ε = −1, then lm = 1 > 0 and by Theorem 2 the conic is an
ellipse. By the same theorem, if ε = 1, then lm = −1 < 0 and the conic is
a hyperbola. ¤

Under y = 0 from (8) it follows that x = 0 or x = −ε. Thus we have:

Corollary 1. The second focus of the ellipse or the hyperbola from Theorem
6 is the point O′ = (−ε, 0).

These observations do not lead to the conclusion that every ellipse or
hyperbola has foci.
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Theorem 7. A line through the focus (0, 0) with the equation y = tx meets
the conic (8) residually at the point

T = (
1

t2 − ε
,

t

t2 − ε
). (10)

Proof. The point T from (10) obviously lies on the line y = tx but it lies on
the conic (8) as well because of

ε
1

(t2 − ε)2
+

1
t2 − ε

=
t2

(t2 − ε)2
.

¤

Corollary 2. The conic (8) has parametric equations

x =
1

t2 − ε
, y =

t

t2 − ε
, (11)

where t ∈ R ∪ {∞}.
The parameter t = ∞ corresponds to the focus (0, 0), and in the case of

an ellipse or a hyperbola the parameter t = 0 corresponds to another focus
(−ε, 0), while in the case of a parabola for t = 0 an isotropic point of the
parabola is found. In the case of a hyperbola an isotropic point is reached
for t = 1 or t = −1.

The point T from (10) will be denoted by T = (t).

Theorem 8. The conic with the equation (8), i.e. with the parametric
equations (11) has a tangent whose equation is

y =
t2 + ε

2t
x +

1
2t

(12)

at the point T = (t) given in (10).

Proof. Eliminating the variable y from (8) and (12) we get the equation

[(t2 + ε)x + 1]2 = 4t2(εx2 + x),

where factors next to x2 and x are

(t2 + ε)2 − 4t2ε = (t2 − ε)2

and

2(t2 + ε)− 4t2 = −2(t2 − ε),

so the equation becomes of the form [(t2−ε)x−1]2 = 0 with double solution
x = 1

t2−ε
. So the line (12) touches the considered conic at the point T = (t)

given in (10). ¤
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Theorem 9. The point of the intersection of the tangents T1 and T2 of the
conic (8) at the points T1 and T2 with parameters t = t1 and t = t2 in (10)
is

T12 = (
1

t1t2 − ε
,

t1 + t2
2(t1t2 − ε)

). (13)

Proof. It is sufficient to show that the point T12 from (13) is incident to the
tangent T1 given in the equation (12) with t = t1. As a matter of fact, the
equality

t1
2 + ε

2t1
· 1
t1t2 − ε

+
1

2t1
=

t1 + t2
2(t1t2 − ε)

is valid. ¤

Let us prove now a few claims on points, tangents, and a focus of any
conic. To begin with, we need the following definition: lines through the
vertex of an angle and symmetric with respect to the bisector of the angle
are called isogonal lines.

Theorem 10. A line joining a focus of a conic to the point of intersection
of two of its tangents is the bisector of the lines joining the focus to the
points of contact of those tangents.

Proof. The tangents T1 and T2 at the points T1 = (t1) and T2 = (t2) meet
in the point T12 given in (13). Let O be the focus (0, 0). The lines OT1

and OT2 have slopes t1 and t2, and the line OT12 has the slope t1+t2
2 , which

proves the claim in the theorem. ¤

Theorem 11. The lines joining a focus of the conic to the point of inter-
section of its two tangents and to a point of contact of the third tangent
are isogonal with respect to the lines joining the focus with the points of
intersection of the first two tangents with the third one.

Proof. Let T1, T2, T3 be tangents on the conic (8) at the points T1 = (t1),
T2 = (t2), T3 = (t3) and let T12 = T1 ∩ T2, T13 = T1 ∩ T3, T23 = T2 ∩ T3.
We need to show that OT13, OT23 and OT12, OT3 are isogonal pairs of lines.
Those lines have slopes t1+t3

2 , t2+t3
2 and t1+t2

2 , t3 respectively and we have

t1 + t3
2

+
t2 + t3

2
=

t1 + t2
2

+ t3.

¤

Theorem 12. The joint lines of the focus and the endpoints of the segment
of any tangent of the conic cut by its two fixed tangents form the angle that
is equal to half of an angle formed by the lines joining the focus to the points
of contact of those fixed tangents.
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Proof. With the previously used notation let us prove for example the equal-
ity ∠(OT13, OT23) = 1

2∠(OT1, OT2), where T1, T2 are fixed tangents of the
conic and T3 its variable one. The lines OT13, OT23 and OT1, OT2 have slopes
1
2(t1 + t3), 1

2(t2 + t3) and t1, t2 respectively. Hence

∠(OT13, OT23) =
1
2
(t2 + t3)− 1

2
(t1 + t3) =

1
2
(t2 − t1) =

1
2
∠(OT1, OT2).

¤

Theorem 13. Pairs of lines joining the focus of a conic to the pairs of
opposite vertices of a complete quadrilateral made by four tangents of a
conic have a common bisector.

Proof. By Ti, i ∈ {1, 2, 3, 4} are denoted the tangents of the conic (8) at
the points T = (ti). Let us put Tij = Ti ∩ Tj with i, j ∈ {1, 2, 3, 4} and
i < j. Then T12, T34; T13, T24; T14, T23 are pairs of opposite vertices of the
quadrilateral made by the lines T1, T2, T3, T4. As lines OT12 and OT34 have
slopes 1

2(t1 + t2) and 1
2(t3 + t4), their bisector has slope 1

4(t1 + t2 + t3 + t4).
The symmetry in the all items of the latter sum proves the claim in the
theorem. ¤

Under t4 = t3 Theorem 11 follows from Theorem 13, and under t4 = t1
and t3 = t2 Theorem 10 follows from Theorem 13. Applying Theorem 10
twice on a variable tangent and on one fixed tangent, Theorem 12 can be
proved as well.

Let us prove now a few more claims on points, tangents and two foci of
the conic.

Theorem 14. The tangent of an ellipse or a hyperbola is a bisector of the
lines joining its point of contact to the foci of the conic.

Proof. Let T be a tangent of the conic (8) at the point T = (t). The conic
has foci O and O′ = (−ε, 0). Slopes of the lines OT and O′T are t and

t
t2−ε
1

t2−ε
+ ε

=
ε

t

respectively, and the line T given in equation (12) has slope 1
2t(t

2 + ε). The
equality

1
2
(t +

ε

t
) =

t2 + ε

2t
completes the proof. ¤

Theorem 15. Two tangents of an ellipse or a hyperbola are isogonal w.r.t.
the lines joining their point of intersection to the foci of the conic.
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Proof. Using the notation from Theorem 10 and the foci O and O′ from the
previous proof, the lines T1 and T2 have slopes

t1
2 + ε

2t1
and

t2
2 + ε

2t2
,

while lines OT12 and O′T12 have slopes 1
2(t1 + t2) and

t1+t2
2(t1t2−ε)

1
t1t2−ε + ε

=
t1 + t2
2t1t2ε

respectively. Adding the two pairs of slopes, we get

t1
2 + ε

2t1
+

t2
2 + ε

2t2
=

1
2t1t2

(t1 + t2)(t1t2 + ε), and

1
2
(t1 + t2) +

t1 + t2
2t1t2ε

=
1

2t1t2
(t1 + t2)(t1t2 + ε),

i.e. equal sums. ¤

Theorems 14 and 15 have been proved in [1], p.74, p.75 in a different way
and Theorems 10, 14, 15 have been stated in [2] without proofs. The claims
of Theorem 14 and 15 are valid for a parabola provided that the other focus
is considered as its isotropic point. In that case the line O′T from the proof
of Theorem 14 has slope 0 and the line T has slope t

2 . The lines T1, T2 and
OT12, O′T12 in the proof of Theorem 15 have slopes 1

2 t1,
1
2 t2 and 1

2(t1 + t2), 0
respectively.

Foci of a conic are the points of contact of its tangents drawn from the
absolute point Ω as well as they are the points of intersection of a conic with
its axis i.e. the polar of the absolute point Ω. Dual statement: asymptotes
of a hyperbola are the tangents at its isotropic points. They are also the
tangents drawn from the center of the hyperbola, the pole of the absolute
line. Thus the notions of the center and the foci of a conic are dual to the
notions of the axis and the asymptotes.

Theorems 10-15 are dual to the well known theorems in an affine plane.
Before stating those theorems we need the following definition: two pairs of
points incident to the same line are called isotomic if they have the same
midpoint.

Theorem 16. A point of intersection of a hyperbola’s asymptote with a line
joining two of its points is the midpoint of the points of intersection of the
asymptote with the tangents of the hyperbola at these two points.

Theorem 17. Points of intersection of the hyperbola’s asymptote with a
line joining two of its points with the tangent at a third point are isotomic
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w.r.t. the points of intersection of the asymptote with the lines joining the
first two points to the third one.

Theorem 18. The lines joining any point of the hyperbola with two of its
points cut its asymptote in the segment whose length is equal to half a length
of the segment of the asymptote that is cut by the tangents of the hyperbola
at these two chosen points.

Theorem 19. Pairs of the points of intersection of the hyperbola’s asymp-
tote with pairs of opposite sides of a complete quadrangle made by four points
of the hyperbola have a common midpoint.

Theorem 20. Any point on a hyperbola is the midpoint of the points of
intersection of its tangent at that point with the asymptotes of the hyperbola.

Theorem 21. Any two points of the hyperbola are isotomic w.r.t. the points
of intersection of their joint line with the asymptotes of the hyperbola.

Theorems 16, 20, 21 have been stated in [2]. The claim stated in Theorem
19 is a special case of the so called Butterfly theorem. Let us say a little bit
more about that midpoint.

Theorem 22. The common midpoint given in Theorem 19 is symmetrical
to the center of the hyperbola w.r.t. the line parallel to another asymptote
and passing through the centroid of the vertices of the considered complete
quadrangle.

Proof. The claim has affine character. Thus, it can be proved for any hy-
perbola in the affine plane. Let us take an affine coordinate system in such
a way that the hyperbola has the equation xy = 1. With i ∈ {1, 2, 3, 4} we
have points of the form Ti = (xi,

1
xi

). The line joining the points Ti and Tj

has the equation
xixjy = −x + xi + xj .

This line meets the asymptote given with the equation y = 0 in the point
having the abscissa xi+xj and denoted by Tij . Two points T12 = (x1+x2, 0)
and T34 = (x3+x4, 0), for example, have the midpoint (1

2(x1+x2+x3+x4), 0).
This midpoint is symmetrical to the center of the hyperbola, i.e. to the origin
w.r.t. the line with the equation x = 1

4(x1+x2+x3+x4) passing through the
centroid of the points T1, T2, T3, T4 and parallel to the y-axis, i.e. another
asymptote of the hyperbola. ¤
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