ON WEAKLY SEMI-\mathcal{I}-OPEN SETS

V. RENUKA DEVI AND D. SIVARAJ

Abstract. A decomposition of continuity via ideals is given. Characterizations of completely codense ideals are given in terms of weakly semi-\mathcal{I}-open sets. Also, properties of weakly semi-\mathcal{I}-open sets and their relation with other sets are discussed.

1. Introduction and Preliminaries.

Hatir and Jafari [7] have introduced the notions of weakly semi-\mathcal{I}-open sets and weakly semi-\mathcal{I}-continuous functions and obtained a decomposition of continuity. In this paper, we further study the properties of weakly semi-\mathcal{I}-open sets. We define weakly semi-\mathcal{I}-interior and weakly semi-\mathcal{I}-closure for subsets of ideal spaces, discuss their properties, give a decomposition of continuity and characterize completely codense ideals.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, $\text{cl}(A)$ and $\text{int}(A)$ will, respectively, denote the closure and interior of A in (X, τ). A subset A of a space (X, τ) is said to be regularclosed if $\text{cl}(\text{int}(A)) = A$. A is said to be semiopen [13] (resp. β-open [1]) if $A \subset \text{cl}(\text{int}(A))$ (resp. $A \subset \text{cl}(\text{int}(\text{cl}(A)))$). The complement of a semiopen set is said to be semiclosed. Also, A is semiclosed if and only if $\text{int}(A) = \text{int}(\text{cl}(A))$ [6, Proposition 1]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\varphi(X)$ is the set of all subsets of X, a set operator $(\cdot)^* : \varphi(X) \to \varphi(X)$, called a local function [12] of A with respect to τ and \mathcal{I}, is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{ x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x) \}$ where $\tau(x) = \{ U \in \tau \mid x \in U \}$. We will make use of the basic facts concerning the local function [11, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(\cdot)$

2000 Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. Codense and completely codense ideals, preopen, almost strong \mathcal{I}-open, almost \mathcal{I}-open, strong β-\mathcal{I}-open, β-open, semi-\mathcal{I}-open, weakly semi-\mathcal{I}-open, weakly semi-\mathcal{I}-closed.
for a topology $\tau^*(\mathcal{I}, \tau)$, called the $*$-topology, finer than τ is defined by $\text{cl}^*(A) = A \cup A^*(\mathcal{I}, \tau)$ \cite{16, 17}. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. Given an ideal space (X, τ, \mathcal{I}), \mathcal{I} is said to be codense \cite{5} if $\tau \cap \mathcal{I} = \{\emptyset\}$. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be $*$-dense in itself \cite{10} (resp. $*$-perfect \cite{10}) if $A \subseteq A^*$ (resp. $A = A^*$). The following lemmas will be useful in the sequel.

Lemma 1.1. Let (X, τ, \mathcal{I}) be an ideal space and A be a $*$-dense in itself subset of X. Then $A^* = \text{cl}(A) = \text{cl}^*(A)$ \cite{15, Theorem 5}.

Lemma 1.2. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent \cite{11, Theorem 6.1}.
(a) \mathcal{I} is codense.
(b) $G \subset G^*$ for every open set G.

Lemma 1.3. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is codense. Then the following hold \cite{15, Corollary 2}.
(a) $\text{cl}(G) = \text{cl}^*(G)$ for every semiclosed set G.
(b) $\text{int}(F) = \text{int}^*(F)$ for every semiopen set F.

Lemma 1.4. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then $\text{cl}^*({\text{int}(\text{cl}^*({\text{int}(A)}))}) = \text{cl}^*({\text{int}(A)})$ (The proof follows from Lemma 1.13 of \cite{3} if we take $i = \text{int}$ and $\kappa = \text{cl}^*$).

2. Weakly semi-\mathcal{I}-open sets

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be almost strong \mathcal{I}-open \cite{8} (resp. almost \mathcal{I}-open \cite{2}) if $A \subseteq \text{cl}^*({\text{int}(A^*)})$ (resp. $A \subseteq \text{cl}({\text{int}(A^*)})$).

Every almost strong \mathcal{I}-open set is almost \mathcal{I}-open but not the converse \cite{8}. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be strong β-\mathcal{I}-open \cite{8} if $A \subseteq \text{cl}^*({\text{int}(\text{cl}^*(A))})$.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be strong β-\mathcal{I}-open \cite{9} if $A \subseteq \text{cl}({\text{int}(\text{cl}^*(A))})$. Every almost strong \mathcal{I}-open set is a strong β-\mathcal{I}-open set, every strong β-\mathcal{I}-open set is a β-\mathcal{I}-open set and every β-\mathcal{I}-open set is a β-open set \cite{8, Propositions 1,2}. The reverse implications are not true \cite{8}. Every almost \mathcal{I}-open set is β-\mathcal{I}-open but not the converse \cite{8}. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be weakly semi-\mathcal{I}-open \cite{7} if $A \subseteq \text{cl}^*({\text{int}(\text{cl}(A))})$.

Every weakly semi-\mathcal{I}-open set is a β-open set but not the converse \cite{7, Remark 2.2}. Since $\tau \subset \tau^*$, it follows that every strong β-\mathcal{I}-open set is a weakly semi-\mathcal{I}-open set. Example 2.1 below shows that the converse is not true and Theorem 2.2 gives a decomposition for almost strong \mathcal{I}-open sets. Example 2.3 shows that weakly semi-\mathcal{I}-open sets and $*$-dense in itself sets are independent. Theorem 2.4 shows that if the ideal is codense, then the concepts β-openness and weakly semi-\mathcal{I}-openness coincide.
Example 2.1. Consider the ideal space \((X, \tau, I)\) where \(X = \{a, b, c\}\), \(\tau = \{\emptyset, \{a\}, \{a, c\}, X\}\) and \(I = \{\emptyset, \{a\}\}\). If \(A = \{a, b\}\), then \(A^* = \{b\}\) and so \(\text{cl}^*(A) = \{a, b\}\). Now \(\text{cl}^*(\text{int}(\text{cl}^*(A))) = \text{cl}^*(\text{int}(\{a, b\})) = \text{cl}^*(\{a\}) = \{a\} \not\subset A\) and so \(A\) is not strong \(\beta-I\)-open. But \(\text{cl}^*(\text{int}(\text{cl}(A))) = \text{cl}^*(\text{int}(X)) = X \supset A\) and so \(A\) is weakly semi-\(I\)-open.

Theorem 2.2. Let \((X, \tau, I)\) be an ideal space and \(A \subset X\). Then the following are equivalent.

(a) \(A\) is almost strong \(I\)-open.
(b) \(A\) is both strong \(\beta-I\)-open and almost \(I\)-open.
(c) \(A\) is both weakly semi-\(I\)-open and almost \(I\)-open.
(d) \(A\) is both weakly semi-\(I\)-open and \(\ast\)-dense in itself.

Proof. It is enough to prove that \((d) \Rightarrow (a)\). If \(A\) is weakly semi-\(I\)-open, then \(A \subset \text{cl}^*(\text{int}(\text{cl}(A)))\). If \(A \subset A^*\), by Lemma 1.1, \(\text{cl}(A) = A^*\) and so \(A \subset \text{cl}^*(\text{int}(A^*))\) which implies that \(A\) is almost strong \(I\)-open. \(\square\)

Example 2.3. Consider the ideal space \((X, \tau, I)\) where \(X = \{a, b, c, d\}\), \(\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}\) and \(I = \{\emptyset, \{a\}\}\). If \(A = \{b\}\), then \(A^* = \{b, d\}\) and so \(A\) is \(\ast\)-dense in itself. Now \(\text{cl}^*(\text{int}(\text{cl}(A))) = \text{cl}^*(\text{int}(\{b, d\})) = \text{cl}^*(\text{int}(\emptyset)) = \emptyset \not\subset A\) and so \(A\) is not weakly semi-\(I\)-open. Also if \(B = \{a, c\}\), then \(B^* = \{b, c, d\}\) which does not contain \(B\) and hence \(B\) is not \(\ast\)-dense in itself. But \(\text{cl}^*(\text{int}(\text{cl}(B))) = \text{cl}^*(\text{int}(X)) = X\) and so \(B\) is weakly semi-\(I\)-open.

Theorem 2.4. Let \((X, \tau, I)\) be an ideal space where \(I\) is codense. If \(A\) is \(\beta\)-open, then \(A\) is weakly semi-\(I\)-open.

Proof. If \(A\) is \(\beta\)-open, then \(A \subset \text{cl}(\text{int}(\text{cl}(A)))\). By Lemmas 1.1 and 1.2, \(\text{cl}(\text{int}(\text{cl}(A))) = \text{cl}^*(\text{int}(\text{cl}(A)))\) and so \(A \subset \text{cl}^*(\text{int}(\text{cl}(A)))\) which implies that \(A\) is weakly semi-\(I\)-open. \(\square\)

Corollary 2.5. Let \((X, \tau, I)\) be an ideal space where \(I\) is codense. If \(A\) is \(\ast\)-dense in itself, then the following are equivalent.

(a) \(A\) is almost strong \(I\)-open.
(b) \(A\) is strong \(\beta-I\)-open.
(c) \(A\) is \(\beta-I\)-open.
(d) \(A\) is \(\beta\)-open.
(e) \(A\) is weakly semi-\(I\)-open.

The following Examples 2.6 and 2.7 show that weakly semi-\(I\)-openness and \(\beta-I\)-openness are independent concepts.

Example 2.6. Let \(X = \{a, b, c\}\), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}\) and \(I = \{\emptyset, \{a\}\}\) [7, Example 2.2]. In [7], it is shown that \(A = \{a, c\}\), is not weakly semi-\(I\)-open. Since \(\text{cl}(\text{int}(\text{cl}^*(A))) = \text{cl}(\text{int}(\{a, c\})) = \text{cl}(\{a\}) = \{a, c\} = A\), \(A\) is \(\beta-I\)-open.
Example 2.7. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. If $A = \{b, c\}$, then $\text{cl}^*(A) = \{b, c\}$ and $\text{cl}(\text{int}(\text{cl}^*(A))) = \text{cl}(\text{int}(\{b, c\})) = \text{cl}(\emptyset) = \emptyset \not\supset A$. Hence A is not β-\mathcal{I}-open. So A is a weakly semi-\mathcal{I}-open set since $\text{cl}^*(\text{int}(\text{cl}(A))) = \text{cl}^*(\text{int}(\{a, b, c\})) = \text{cl}^*(\{a, c\}) = \{a, b, c\} \supset A$.

A subset A of an ideal space (X, τ) is said to be preopen [14] if $A \subset \text{int}(\text{cl}(A))$. The family of all preopen sets is denoted by $PO(X)$. The following Theorem 2.8 discuss the relation between preopen and weakly semi-\mathcal{I}-open sets. Example 2.9 shows that a weakly semi-\mathcal{I}-open set need not be preopen.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal space. Then the following hold.
(a) If A is preopen, then A is weakly semi-\mathcal{I}-open.
(b) If open sets are \ast–closed, then every weakly semi-\mathcal{I}-open set is preopen.

Proof. (a) If A is preopen, then $A \subset \text{int}(\text{cl}(A))$ and so $A \subset \text{cl}^*(\text{int}(\text{cl}(A)))$ which implies that A is weakly semi-\mathcal{I}-open.
(b) If A is weakly semi-\mathcal{I}-open, then $A \subset \text{cl}^*(\text{int}(\text{cl}(A)))$. Since $\text{int}(\text{cl}(A))$ is open, by hypothesis, $\text{int}(\text{cl}(A)) = \text{cl}^*(\text{int}(\text{cl}(A)))$ and so $A \subset \text{int}(\text{cl}(A))$ which implies that A is preopen.

Example 2.9. Consider the ideal space (X, τ, \mathcal{I}) of Example 2.7. If $A = \{b, c\}$, then A is weakly semi-\mathcal{I}-open. Also, $\text{int}(\text{cl}(A)) = \text{int}(\{a, b, c\}) = \{a, b, c\} \not\supset A$. Therefore, A is not preopen.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be α-\mathcal{I}-open [9] if $A \subset \text{int}(\text{cl}^*(\text{int}(A)))$. Every open set is an α-\mathcal{I}-open set but not the converse. In Theorem 2.1(2) of [7], it is established that the intersection of an open set and a weakly \mathcal{I}-open set is weakly \mathcal{I}-open. The following Theorem 2.10 is a generalization of this result. Theorem 2.11 below gives a property of weakly semi-\mathcal{I}-open sets.

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal space. If A is α-\mathcal{I}-open and B is weakly semi-\mathcal{I}-open, then $A \cap B$ is weakly semi-\mathcal{I}-open.

Proof. Since A is α-\mathcal{I}-open, $A \subset \text{int}(\text{cl}^*(\text{int}(A)))$ and B is weakly semi-\mathcal{I}-open, $B \subset \text{cl}^*(\text{int}(\text{cl}(B)))$. Now $A \cap B \subset \text{int}(\text{cl}^*(\text{int}(A))) \cap \text{cl}^*(\text{int}(\text{cl}(B))) \subset \text{cl}^*(\text{int}(\text{cl}^*(\text{int}(A))) \cap \text{int}(\text{cl}(B))) = \text{cl}^*(\text{int}(\text{cl}^*(\text{int}(A))) \cap \text{int}(\text{cl}(B))) \subset \text{cl}^*(\text{int}(\text{cl}^*(\text{int}(A)) \cap \text{cl}(B))) \subset \text{cl}^*(\text{int}(\text{cl}^*(\text{int}(A) \cap \text{cl}(B)))) \subset \text{cl}^*(\text{int}(\text{cl}^*(\text{int}(A \cap B)))) = \text{cl}^*(\text{int}(\text{cl}(A \cap B)))$ by Lemma 1.4, which implies that $A \cap B$ is weakly semi-\mathcal{I}-open.

Theorem 2.11. Let (X, τ, \mathcal{I}) be an ideal space. If $A \subset B \subset \text{cl}^*(A)$ and A is weakly semi-\mathcal{I}-open, then B is weakly semi-\mathcal{I}-open. In particular, if A is weakly semi-\mathcal{I}-open, then $\text{cl}^*(A)$ is weakly semi-\mathcal{I}-open.
Proof. If A is weakly semi-\mathcal{I}-open, then $A \subseteq cl^*(int(cl(A)))$. Since $B \subseteq cl^*(A) \subseteq cl^*(cl^*(int(cl(A)))) = cl^*(int(cl(A))) \subseteq cl^*(int(cl(B)))$. Therefore, B is weakly semi-\mathcal{I}-open.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}-locally closed [4] if $A = U \cap V$ where U is open and V is \mathcal{I}-perfect or equivalently, $A = U \cap A^*$ for some open set U. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be semi-\mathcal{I}-open [9] if $A \subseteq cl^*(int(A))$. Every semi-\mathcal{I}-open set is weakly semi-\mathcal{I}-open [7, Remark 2.1] and but not the converse [7, Example 2.1]. The following Theorem 2.12 deals with the reverse direction. Example 2.13 below shows that the condition semiclosed or \mathcal{I}-locally closed on the subset in Theorem 2.12 cannot be dropped.

Theorem 2.12. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$ be a weakly semi-\mathcal{I}-open. If A is either semiclosed or \mathcal{I}-locally closed, then A is semi-\mathcal{I}-open.

Proof. Suppose A is \mathcal{I}-locally closed. A is \mathcal{I}-locally closed implies that $A = U \cap A^*$ for some open set U. A is weakly semi-\mathcal{I}-open implies that $A \subseteq cl^*(int(cl(A)))$. Now $A = U \cap A^* \subseteq U \cap (cl^*(int(cl(A))))^* \subseteq U \cap cl^*(cl^*(int(cl(U \cap A^*)))) = U \cap cl^*(int(cl(U \cap A^*))) \subseteq cl^*(U \cap int(cl(U \cap A^*))) = cl^*(int(U \cap cl(U \cap A^*))) = cl^*(int(cl(U \cap A^*))) = cl^*(int(U \cap A^*))$. Hence A is semi-\mathcal{I}-open.

Suppose A is semiclosed. Then $int(cl(A)) = int(A)$. Since A is weakly semi-\mathcal{I}-open, $A \subseteq cl^*(int(cl(A))) = cl^*(int(A))$. Hence A is semi-\mathcal{I}-open. \square

Example 2.13. Consider the ideal space (X, τ, \mathcal{I}) with $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \emptyset, \{c\}$. If $A = \{a\}$, then $A^* = X$ and $cl^*(int(cl(A))) = cl^*(int(X)) = X$ $\supseteq A$ and so A is weakly semi-\mathcal{I}-open. Also $cl^*(int(A)) = cl^*(\emptyset) = \emptyset$. Hence A is not semi-\mathcal{I}-open. Moreover, A is neither \mathcal{I}-locally closed nor semiclosed.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be weakly semi-\mathcal{I}-closed [7] if $X - A$ is weakly semi-\mathcal{I}-open or equivalently, $int^*(cl(int(A))) \subset A$ [7, Theorem 2.2]. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be $\alpha^*-\mathcal{I}$-set [9] if $int(cl^*(int(A))) = int(A)$. The following Theorem 2.14 examines the relation between weakly semi-\mathcal{I}-closed set and $\alpha^*-\mathcal{I}$-set. Example 2.15 below shows that an $\alpha^*-\mathcal{I}$-set need not be a weakly semi-\mathcal{I}-closed set.

Theorem 2.14. The following hold in any ideal space (X, τ, \mathcal{I}).

(a) If A is a weakly semi-\mathcal{I}-closed subset of X, then A is an $\alpha^*-\mathcal{I}$-set.

(b) If \mathcal{I} is codense, then A is weakly semi-\mathcal{I}-closed if and only if $int(cl^*(int(A))) \subset A$.

Proof. (a) If A is weakly semi-\mathcal{I}-closed, then by Theorem 2.3 of [7], $\text{int}(\text{cl}^{\ast}(\text{int}(A))) \subset A$ and so $\text{int}(\text{cl}^{\ast}(\text{int}(A))) \subset \text{int}(A)$. Hence it follows that $\text{int}(\text{cl}^{\ast}(\text{int}(A))) = \text{int}(A)$ which implies that A is an $\alpha^{\ast}\mathcal{I}$-set.

(b) If A is any subset of X, then $\text{int}^{\ast}(\text{cl}(X - A)) = \text{int}(\text{cl}(X - A))$ by Lemma 1.3(b). Therefore, $\text{cl}(\text{int}^{\ast}(\text{cl}(X - A))) = \text{cl}(\text{int}(\text{cl}(X - A)))$. By Lemma 1.3(a), $\text{cl}(\text{int}(\text{cl}(X - A))) = \text{cl}^{\ast}(\text{int}(\text{cl}(X - A)))$ and so $\text{cl}(\text{int}^{\ast}(\text{cl}(X - A))) = \text{cl}^{\ast}(\text{int}(\text{cl}(X - A)))$ which implies that $X - \text{int}(\text{cl}^{\ast}(\text{int}(A))) = \text{cl}^{\ast}(\text{int}(\text{cl}(X - A)))$. By Corollary 2.1 of [7], (b) follows.

Example 2.15. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. If $A = \{a, b\}$, then $\text{cl}(\text{int}(A)) = \text{cl}(\{a\}) = \{a, b, c\}$ and so $\text{int}(\text{cl}^{\ast}(\text{int}(A))) = \text{int}(\{a, b, c\}) = \{a\} = \text{int}(A)$. Hence A is an $\alpha^{\ast}\mathcal{I}$-set. Since $\text{int}^{\ast}(\text{cl}(\text{int}(A))) = \text{int}^{\ast}(\text{cl}(\{a\})) = \text{int}^{\ast}(\{a, b, c\}) = \{a, b, c\} \not\subset A$, A is not weakly semi-\mathcal{I}-closed.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be weakly $S_{\mathcal{I}}$-set (resp. $C_{\mathcal{I}}$-set [9]) if $A = G \cap V$ where G is open and V is weakly semi-\mathcal{I}-closed (resp. $\alpha^{\ast}\mathcal{I}$-set). Clearly, every open set is a weakly $S_{\mathcal{I}}$-set and every weakly $S_{\mathcal{I}}$-set is a $C_{\mathcal{I}}$-set. Hence we have the following decomposition of open sets. Example 2.17 shows that the concepts $\alpha\mathcal{I}$-open sets and weakly $S_{\mathcal{I}}$-sets are independent.

Theorem 2.16. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent.

(a) A is open.

(b) A is $\alpha\mathcal{I}$-open and a weakly $S_{\mathcal{I}}$-set.

(c) A is $\alpha\mathcal{I}$-open and a $C_{\mathcal{I}}$-set.

Proof. (a)\Rightarrow(b) and (b)\Rightarrow(c) are clear. (c)\Rightarrow(a) follows from Proposition 3.3 of [9].

Example 2.17. Consider the ideal space (X, τ, \mathcal{I}) with $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. If $A = \{b\}$, then $\text{int}^{\ast}(\text{cl}(\text{int}(A))) = \text{int}^{\ast}(\text{cl}(\emptyset)) = \emptyset \subset A$ and so A is weakly semi-\mathcal{I}-closed. Hence A is a weakly $S_{\mathcal{I}}$-set. Also, $\text{int}(\text{cl}(\text{int}(A))) = \emptyset$ and so A is not $\alpha\mathcal{I}$-open. If $B = \{c\}$, then $\text{int}^{\ast}(\text{cl}(\text{int}(B))) = \text{int}^{\ast}(\text{cl}(\{c\})) = \text{int}^{\ast}(\{b, c, d\}) = \{b, c, d\} \not\subset B$ and so B is not a weakly $S_{\mathcal{I}}$-set. But $\text{int}(\text{cl}(\text{int}(B))) = \text{int}(\{b, c, d\}) = \{c\} = B$. Therefore, B is $\alpha\mathcal{I}$-open.

A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be $\alpha\mathcal{I}$-continuous [9] (resp. $C_{\mathcal{I}}$-continuous [9], weakly $S_{\mathcal{I}}$-continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is an $\alpha\mathcal{I}$-open set (resp. $C_{\mathcal{I}}$-set, weakly $S_{\mathcal{I}}$-set). The following Theorem 2.18 is a decomposition continuity which follows from Theorem 2.16.

Theorem 2.18. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is a function, then the following are equivalent.
(a) \(f \) is continuous.
(b) \(f \) is \(\alpha\mathcal{I} \)-continuous and weakly \(S_\mathcal{I} \)-continuous.
(c) \(f \) is \(\alpha\mathcal{I} \)-continuous and \(C_\mathcal{I} \) continuous.

3. Completely codense ideals

An ideal \(\mathcal{I} \) of an ideal space \((X, \tau, \mathcal{I})\) is said to be completely codense [5] if \(PO(X) \cap \mathcal{I} = \{\emptyset\} \). In Theorem 4.13 of [5], it is established that \(\mathcal{I} \) is completely codense if and only if \(\mathcal{I} \subset \mathcal{N} \), where \(\mathcal{N} \) is the ideal of all nowhere dense sets in \(X \). Also, every completely codense ideal is codense but not the converse[5]. In this section, we define weakly \(\mathcal{I} \)-interior and weakly \(\mathcal{I} \)-closure of a subset of an ideal space, discuss its properties and characterize completely codense ideals in terms of weakly \(\mathcal{I} \)-open sets.

The weakly \(\mathcal{I} \)-interior of a subset \(A \) of an ideal space \((X, \tau, \mathcal{I})\) is the largest weakly \(\mathcal{I} \)-open set contained in \(A \) and is denoted by \(ws\mathcal{I} \text{Int}(A) \).

By Theorem 2.1(a) of [7], \(ws\mathcal{I} \text{Int}(A) \) is a weakly \(\mathcal{I} \)-open set and it is clear that \(A \) is a weakly \(\mathcal{I} \)-open set if and only if \(A = ws\mathcal{I} \text{Int}(A) \).

The weakly \(\mathcal{I} \)-closure of a subset \(A \) of an ideal space \((X, \tau, \mathcal{I})\) is the smallest weakly \(\mathcal{I} \)-closed set containing \(A \) and is denoted by \(ws\mathcal{I} \text{Cl}(A) \).

It is clear that \(ws\mathcal{I} \text{Cl}(A) \) is a weakly \(\mathcal{I} \)-closed set and \(A \) is a weakly \(\mathcal{I} \)-closed set if and only if \(A = ws\mathcal{I} \text{Cl}(A) \). The following results are essential to characterize completely codense ideals in terms of weakly \(\mathcal{I} \)-open sets.

Theorem 3.1. If \((X, \tau, \mathcal{I})\) is an ideal space and \(A \subset X \), then the following holds.

(a) \(ws\mathcal{I} \text{Int}(A) = A \cap \text{cl}^*(\text{int}(\text{cl}(A))) \).
(b) \(ws\mathcal{I} \text{Cl}(A) = A \cup \text{int}^*(\text{cl}(\text{int}(A))) \).

Proof. (a) If \(A \) is any subset of \(X \), then \(A \cap \text{cl}^*(\text{int}(\text{cl}(A))) \subset \text{cl}^*(\text{int}(\text{cl}(A))) = \text{cl}^*(\text{int}(\text{cl}(A) \cap \text{int}(\text{cl}(A)))) \subset \text{cl}^*(\text{int}(\text{cl}(A) \cap \text{cl}(\text{int}(A)))) \subset \text{cl}^*(\text{int}(\text{cl}(A) \cap \text{cl}(\text{int}(A)))) \cap \text{cl}^*(\text{int}(\text{cl}(A)) \cap \text{cl}(\text{int}(A))) \subset \text{cl}^*(\text{int}(\text{cl}(A) \cap \text{cl}(\text{int}(A)))) \)

Since \(ws\mathcal{I} \text{Int}(A) \) is weakly \(\mathcal{I} \)-open, \(ws\mathcal{I} \text{Int}(A) \subset \text{cl}^*(\text{int}(\text{cl}(ws\mathcal{I} \text{Int}(A)))) \subset \text{cl}^*(\text{int}(\text{cl}(A))) \)

and so \(ws\mathcal{I} \text{Int}(A) \subset A \cap \text{cl}^*(\text{int}(\text{cl}(A))) \). Therefore \(ws\mathcal{I} \text{Int}(A) = A \cap \text{cl}^*(\text{int}(\text{cl}(A))) \).

(b) Now \(\text{int}^*(\text{cl}(\text{int}(A) \cap \text{int}(\text{cl}(A)))) \subset \text{int}^*(\text{cl}(\text{int}(A) \cup \text{cl}(\text{int}(A)))) = \text{int}^*(\text{cl}(\text{int}(A))) \subset A \cup \text{int}^*(\text{cl}(\text{int}(A))) \). Hence \(A \cup \text{int}^*(\text{cl}(\text{int}(A))) \) is a weakly \(\mathcal{I} \)-closed set containing \(A \) and so \(ws\mathcal{I} \text{Cl}(A) \subset A \cup \text{int}^*(\text{cl}(\text{int}(A))) \).

Since \(ws\mathcal{I} \text{Cl}(A) \) is weakly \(\mathcal{I} \)-closed, we have \(\text{int}^*(\text{cl}(\text{int}(A))) \subset \text{int}^*(\text{cl}(ws\mathcal{I} \text{Cl}(A))) \subset \text{wsI} \text{Cl}(A) \).

Therefore, \(A \cup \text{int}^*(\text{cl}(\text{int}(A))) \subset A \cup ws\mathcal{I} \text{Cl}(A) = ws\mathcal{I} \text{Cl}(A) \).

Hence \(ws\mathcal{I} \text{Cl}(A) = A \cup \text{int}^*(\text{cl}(\text{int}(A))) \). \(\square \)
The following Theorem 3.2 characterizes completely codense ideals. We will denote the family of all weakly semi-\mathcal{I}-open sets in any ideal space (X, τ, \mathcal{I}) by $WSIO(X)$.

Theorem 3.2. If (X, τ, \mathcal{I}) is an ideal space, then the following are equivalent.
(a) \mathcal{I} is completely codense.
(b) $WSIO(X) \cap \mathcal{I} = \{\emptyset\}$.
(c) $A \subset A^*$ for every $A \in WSIO(X)$.
(d) $ws\operatorname{Int}(A) \subset ws\operatorname{Int}(A^*)$ for every subset A of X.
(e) $ws\operatorname{Int}(A) = \emptyset$ for every $A \in \mathcal{I}$.

Proof. (a)\Rightarrow(b). Suppose $A \in WSIO(X) \cap \mathcal{I}$. $A \in \mathcal{I}$ implies that $A \in \mathcal{N}$ by Lemma 1.3 and so $\operatorname{int}(\operatorname{cl}(A)) = \emptyset$. Since $A \in WSIO(X)$, $A \subset \operatorname{cl}^*(\operatorname{int}(\operatorname{cl}(A))) = \operatorname{cl}^*(\emptyset) = \emptyset$ and so $A = \emptyset$. Therefore, $WSIO(X) \cap \mathcal{I} = \{\emptyset\}$.
(b)\Rightarrow(c). Let $A \in WSIO(X)$. Suppose that $x \notin A^*$. Then there exists an open set G containing x such that $G \cap A \in \mathcal{I}$. Since $A \in WSIO(X)$, by Theorem 2.1(2) of [7], $G \cap A \in WSIO(X)$ and so by hypothesis, $G \cap A = \emptyset$ which implies that $x \notin A$. Hence $A \subset A^*$.
(c)\Rightarrow(d). For any subset A of X, $ws\operatorname{Int}(A) \in WSIO(X)$ and so $ws\operatorname{Int}(A) \subset (ws\operatorname{Int}(A))^* \subset A^*$. Therefore, $ws\operatorname{Int}(A) \subset ws\operatorname{Int}(A^*)$.
(d)\Rightarrow(e). If $A \in \mathcal{I}$, then $A^* = \emptyset$ and so by (d), $ws\operatorname{Int}(A) \subset ws\operatorname{Int}(\emptyset) = \emptyset$. Therefore, $ws\operatorname{Int}(A) = \emptyset$.
(e)\Rightarrow(a). Suppose $A \in PO(X) \cap \mathcal{I}$. $A \in PO(X)$ implies that $A \subset \operatorname{int}(\operatorname{cl}(A))$. $A \in \mathcal{I}$ implies that $ws\operatorname{Int}(A) = \emptyset$. By Theorem 3.1(a), $A \cap \operatorname{cl}^*(\operatorname{int}(\operatorname{cl}(A))) = \emptyset$ which implies that $A \cap \operatorname{int}(\operatorname{cl}(A)) = \emptyset$. Since $A \subset \operatorname{int}(\operatorname{cl}(A))$, we have $A = \emptyset$. Therefore, $PO(X) \cap \mathcal{I} = \{\emptyset\}$ which implies that \mathcal{I} is completely codense. □

Corollary 3.3. If (X, τ, \mathcal{I}) is an ideal space and $A \in WSIO(X)$, then the following holds.
(a) $\operatorname{cl}(A)$ is regular closed and $\operatorname{cl}(A) = \operatorname{cl}^*(\operatorname{int}(\operatorname{cl}(A))) = A^*(\mathcal{N})$.
(b) If \mathcal{I} is completely codense, then $A^*(\mathcal{I}) = A^*(\mathcal{N})$.

Proof. (a) If $A \in WSIO(X)$, then $A \subset \operatorname{cl}^*(\operatorname{int}(\operatorname{cl}(A))) \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \subset \operatorname{cl}(A)$ and so, it follows that $\operatorname{cl}(A) = \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$. Since $A^*(\mathcal{N}) = \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$, [17] (a) follows.
(b) If \mathcal{I} is completely codense, by Theorem 3.2(c), $A \subset A^*$. By Lemma 1.1, $\operatorname{cl}(A) = A^*$. Therefore, the proof follows from (a). □

The following Theorem 3.4 gives another characterization of completely codense ideals where $AIO(X)$ is the family of all almost \mathcal{I}-open sets in (X, τ, \mathcal{I}).

Theorem 3.4. Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is completely codense if and only if $WSIO(X) = AIO(X)$.

V. RENUKA DEVI AND D. SIVARAJ
Proof. Suppose I is completely codense. If $A \in WSIO(X)$, then $A \subset cl^*(int(cl(A)))$ and by Theorem 3.2(c), $A \subset A^*$. Since every completely codense ideal is codense, by Lemma 1.3, $cl^*(int(cl(A))) = cl(int(cl(A))) \subset cl(int(cl(A^*))) = cl(int(A^*))$, since A^* is closed. Therefore, $A \subset cl((int(A^*)))$ which implies that $A \in AZO(X)$. If $A \in AZO(X)$, then $A \subset cl((int(A^*)))$ and so $A \subset cl(int(cl(A))) = cl^*(int(cl(A)))$ which implies that $A \in WSIO(X)$. Conversely, suppose $WSIO(X) = AZO(X)$. If $A \in WSIO(X)$, then $A \in AZO(X)$ and so $A \subset cl(int(A^*)) \subset cl(A^*) = A^*$. By Theorem 3.2, I is completely codense. □

References

(Received: November 8, 2006) V. Renuka Devi
School of Science and Humanities
VIT University
Vellore - 632 014, Tamil Nadu, India
E–mail: renu_siva2003@yahoo.com

D. Sivaraj
Department of Computer Applications
D.J.Academy for Managerial Excellence
Coimbatore - 641 032, Tamil Nadu, India
E–mail: ttn_sivaraj@yahoo.co.in