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ON TRIANGLES WITH FIBONACCI AND LUCAS
NUMBERS AS COORDINATES

ZVONKO ČERIN

Abstract. We consider triangles in the plane with coordinates of points
from the Fibonacci and Lucas sequences.

The Fibonacci and Lucas sequences Fn and Ln are defined by the recur-
rence relations

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for n > 3,

and
L1 = 1, L2 = 3, Ln = Ln−1 + Ln−2 for n > 3.

Let k be a positive integer. Let ∆k and Γk denote the triangles with
vertices Ak = (Fk, Fk+1), Bk = (Fk+1, Fk+2), Ck = (Fk+2, Fk+3) and Pk =
(Lk, Lk+1), Qk = (Lk+1, Lk+2), Rk = (Lk+2, Lk+3), respectively.

Our goal in this paper is to explore some common properties of the tri-
angles ∆k and Γk. We begin with the following theorem which shows that
these triangles share the property of orthology.

Recall that the triangles ABC and XY Z are orthologic when the per-
pendiculars at vertices of ABC onto the corresponding sides of XY Z are
concurrent. The point of concurrence is [ABC, XY Z]. It is well-known that
the relation of orthology for triangles is reflexive and symmetric. Hence, the
perpendiculars at vertices of XY Z onto the corresponding sides of ABC are
concurrent at the point [XY Z, ABC].

By replacing in the above definition perpendiculars with parallels we get
the analogous notion of paralogic triangles and of two points 〈ABC, XY Z〉
and 〈XY Z, ABC〉.

The triangle ABC is paralogic to its first Brocard triangle AbBbCb which
has the orthogonal projections of the symmedian point K onto the perpen-
dicular bisectors of sides as vertices (see [4] and [5]).

Theorem 1. For all positive integers m and n, the following are pairs of
orthologic triangles: (∆m, ∆n), (∆m, Γn), and (Γm, Γn).
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Proof. It is well-known (see [1]) that the triangles ABC and XY Z with
coordinates of points (a1, a2), (b1, b2), (c1, c2), (x1, x2), (y1, y2), and (z1, z2)
are orthologic if and only if

a1(y1 − z1) + b1(z1 − x1) + c1(x1 − y1)+

a2(y2 − z2) + b2(z2 − x2) + c2(x2 − y2) = 0.

Let α = 1+
√

5
2 and β = 1−√5

2 . By the Binet formula Fk is equal to αk−βk

α−β and
Lk is equal to αk + βk (see [3] and [6]). When we substitute the coordinates
of the vertices of ∆m and Γn into the left hand side of the above criterion we
get (1− α)(β − 1)(α β + 1)(αm βn + αn βm). For the pairs ∆m, ∆n and Γm,
Γn we get (1−α)(β−1)(α β+1)(αm βn+αn βm)

β−α and (β − α)(1− α)(β − 1)(α β + 1)
(αm βn−αn βm). From this the conclusion of the theorem is obvious because
α β + 1 = 0. ¤
Theorem 2. For all positive integers m the orthocenters H(∆m) and H(Γm)
of the triangles ∆m and Γm and the orthology centers [∆m, Γm] and [Γm, ∆m]
satisfy

|H(∆m)[∆m, Γm]|
|H(Γm)[Γm, ∆m]| =

√
5

5
.

Proof. Let us use θa
b as a short notation for the expression a + b

√
5. Let

A = αm and B = βm.
Using the Binet formula for Fibonacci and Lucas numbers it is easy to

check that H(∆m) has the coordinates θ3
−1(θ7

3 A3+θ8
4 A2 B−θ2

2 A B2+2 B3)
20 A B and

θ1
−1(θ3

1 A3−θ8
4 A2 B−θ2

−2 A B2−2 B3)
20 A B . The coordinates of the orthocenter H(Γm)

are θ5
−3(θ7

3 A3−θ8
4 A2 B−θ2

2 A B2−2 B3)
20 A B and θ1

−1(θ3
1 A3+θ8

4 A2 B+θ2
−2 A B2+2 B3)

20 A B .

The same method for [∆m, Γm] gives θ−3
1 (θ7

3 A3−θ8
4 A2 B+θ2

2 A B2+2 B3)
20 A B and

θ−1
1 (θ3

1 A3+θ8
4 A2 B−θ2

−2AB2−2 B3)
20 A B . Finally, the second orthology center [Γm, ∆m]

has θ−5
3 (θ7

3 A3+θ8
4 A2 B+θ2

2 A B2−2 B3)
20 A B and θ−5

1 (θ3
1 A3−θ8

4 A2 B−θ2
−2 A B2+2 B3)

20 A B as co-
ordinates. The square of the distance between H(Γm) and [Γm, ∆m] is

θ5
−2

(
θ7
3 A4 − θ3

1 A2 B2 + 2 B4
) (

θ3
1 A2 + 2 B2

)

5A2 B2

while the square of the distance between the points H(∆m) and [∆m, Γm] is
exactly one fifth of this value. ¤
Theorem 3. For all positive integers m the oriented areas |∆m| and |Γm|
of the triangles ∆m and Γm are as follows:

|∆m| = (−1)m

2
and |Γm| = 5 |∆m+1| = 5 (−1)m+1

2
.
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Proof. Let us again assume that αm = A and B = βm. Note that α β = −1
so that AB = (−1)m. Recall that the triangle with the vertices whose co-
ordinates are (x1, x2), (y1, y2), and (z1, z2) has the oriented area equal to
(z1−y1)x2+(x1−z1)y2+(y1−x1)z2

2 . By direct substitution and simplification we get
that |∆m| = AB

2 = (−1)m

2 . On the other hand, for Γm we get |Γm| = −5 A B
2 =

5 |∆m+1| = 5 (−1)m+1

2 . ¤
At this point we can go back and keep coordinates of vertices according to

their original definition and discover that the first claim in the above theorem
is equivalent to the identity

Fm+1 (Fm+4 − Fm) = F 2
m+1 + F 2

m+2 + (−1)m,

while the second claim in the above theorem is equivalent to the identity

Lm+1 (Lm+4 − Lm) = L2
m+1 + L2

m+2 + 5 (−1)m+1.

Theorem 4. For all positive integers m the centroids G(∆m) and G(Γm)
of the triangles ∆m and Γm are at the distance 4

3

√
F2m+3.

Proof. With the notation from the proof of Theorem 2 we get that the cen-

troids G(∆m) and G(Γm) have as coordinates
(

θ5
−3(2 B−θ7

3 A)
30 ,

θ10
−4(B+θ9

4 A)
15

)

and
(

θ3
−1(B+θ7

3 A)
6 ,

θ4
−2(B−θ9

4 A)
3

)
. The square of their distance is θ80

−32(θ9
4 A2+B2)
45

which in turn is precisely 16
9 F2m+3. ¤

Theorem 5. For all positive integers m the de Longchamps points L(∆m)
and L(Γm) of the triangles ∆m and Γm are at the distance 4F2m+2

√
F2m+1.

Proof. With the notation from the proof of Theorem 2 we get that the de
Longchamps points L(∆m) and L(Γm) have(

θ3
−1 (B −A)

(
θ14
6 A2 − 4B2

)

20AB
,

θ1
−1

(
θ3
−1 A + 2 B

) (
θ14
6 A2 − 4B2

)

40 AB

)

and(
θ−5
3 (B + A)

(
θ14
6 A2 − 4B2

)

20 AB
,

θ−5
1

(
θ3
−1 A− 2B

) (
θ14
6 A2 − 4B2

)

40AB

)

as coordinates. The square of their distance is
θ800
352 A6 + θ0

64 A2 B2 (A2 −B2) + θ800
−352 B6

100
which is equal to 16F 2

2m+2 F2m+1. ¤
In an analogous fashion one can show also the following.
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Theorem 6. For all positive integers m the de Longchamps point L(∆m)
of the triangle ∆m and the centroid G(Γm) of the triangle Γm are at the
distance 2

3

√
F2m+1(9F 2

2m+1 + 1).

Theorem 7. For every positive integer m, the triangles Γm and ∆m are
reversely similar and the sides of Γm are

√
5 times longer than the corre-

sponding sides of ∆m.

Proof. It is well-known that two triangles are reversely similar if and only
if they are ortologic and paralogic (see [2]). Since, by Theorem 1, we know
that triangles Γm and ∆m are orthologic, it remains to see that they are
paralogic.

Recall that triangles ABC and XY Z with coordinates of points (a1, a2),
(b1, b2), (c1, c2), (x1, x2), (y1, y2) and (z1, z2) are paralogic if and only if
the expression U + V is equal to zero where

U = (z2 − y2) a1 + (x2 − z2) b1 + (y2 − x2) c1

and V = (y1 − z1) a2 + (z1 − x1) b2 + (x1 − y1) c2. In our situation when we
represent coordinates of vertices of triangles ∆m and Γm by Binet formula
in terms of α and β by substitution and easy simplification we get that
U + V = 0 so that these triangles are indeed paralogic. In a similar way one
can easily show that |PmQm|2

|AmBm|2 = 5. ¤
Theorem 8. For every positive integer m, the triangles Γm and ∆m are both
orthologic and paralogic. The centers [∆m, Γm] and 〈∆m, Γm〉 are antipodal
points on the circumcircle of ∆m. The centers [Γm, ∆m] and 〈Γm, ∆m〉 are
antipodal points on the circumcircle of Γm.

Proof. The first claim has been established in the previous theorem. In order
to prove the second claim we shall prove that the orthology center [∆m, Γm]
lies on the circumcircle of ∆m by showing that it has the same distance
from its circumcenter O(∆m) as the vertex Am and that the reflection of the
point 〈∆m, Γm〉 in the circumcenter O(∆m) agrees with the point [∆m, Γm]
(because their distance is equal to zero!).

The point O(∆m) has coordinates θ−3
1 (θ7

3 A3−θ22
10 A2 B−θ2

−2 A B2+2 B3)
40 A B and

θ−1
1 (θ3

1 A3+θ22
10 A2 B−θ8

−4 A B2−2 B3)
40 A B . The coordinates of the center [∆m, Γm]

are θ3
−1 (θ7

3 A+2 B)
10 and 2 θ−2

1 (θ9
4 A−B)
5 while θ−3

1 (θ7
3 A3−θ8

4 A2 B+θ2
2 A B2+2 B3)

20 A B and
θ−1
1 (θ3

1 A3+θ8
4 A2 B−θ2

−2 A B2−2 B3)
20 A B are coordinates of the center 〈∆m, Γm〉. Now

it is easy to establish that |[∆m, Γm]O(∆m)|2 − |O(∆m) Am|2 = 0. On the
other hand, if W denotes the reflection of the point 〈∆m, Γm〉 in the circum-
center O(∆m) (i. e., W divides the segment 〈∆m, Γm〉O(∆m) with the ratio
−2), then |W [∆m, Γm]|2 = 0.
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The third claim has a similar proof. ¤
Theorem 9. The square of the diameter of the circumcircle of the triangle
∆m is equal to F2m+3 F2m+1 F2m−1.

Proof. In the proof of the previous theorem we found the coordinates of the
circumcenter O(∆m). Hence, the square of its distance from the vertex Am

is
θ5
−2

(
θ9
4 A2 + B2

) (
θ3
1 A2 + 2 B2

) (
θ3
−1 A2 + 2 B2

)

400
.

However, this expression is in fact F2m+3 F2m+1 F2m−1

4 . ¤
In a similar way one can show the following result.

Theorem 10. The cotangent of the Brocard angle of the triangle ∆m is equal
to (−1)m

2 F2m+1
.
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