ON SPLIT EXACT SEQUENCES AND PROJECTIVE SEMIMODULES

S. K. BHAMBRI AND MANISH KANT DUBEY

Abstract. In this paper the notion of split exact sequences of semimodules is introduced. We also study some results on projective semimodules that are analogous to module theory.

1. Introduction and preliminaries

A semiring is a commutative monoid \((S, +)\) having additive identity zero \(0_S\) and a semigroup \((S, \cdot)\) which are connected by ring like distributivity. Let \(S\) be a semiring. A left \(S\)-semimodule \(M\) is a commutative monoid \((M, +)\) which has a zero element 0\(_M\), together with an operation \(S \times M \rightarrow M\); defined by \((a, x) \mapsto ax\) such that for all \(a, b \in S\) and \(x, y \in M\),

(i) \(a(x + y) = ax + ay\),
(ii) \((a + b)x = ax + bx\),
(iii) \((ab)x = a(bx)\),
(iv) \(0_Sx = 0_M = a0_M\).

A right \(S\)-semimodule is defined in an analogous manner. A non empty subset \(A\) of \(S\)-semimodule \(M\) is a subsemimodule of \(M\) if \(A\) is closed under addition and scalar multiplication. Let \(M\) and \(N\) be left \(S\)-semimodules. A homomorphism from \(M\) to \(N\) is a map \(f : M \rightarrow N\) such that,

(i) \(f(m_1 + m_2) = f(m_1) + f(m_2)\),
(ii) \(f(am) = af(m)\), for all \(m, m_1, m_2 \in M\) and for all \(a \in S\).

Definition 1.1 ([6]). Let \(A\) and \(B\) be \(S\)-semimodules and \(f : A \rightarrow B\) be \(S\)-semimodule homomorphism. Define

\[K_f = \{(a, b) \in A \times A \mid f(a) + x = f(b) + x \text{ for some } x \in B\} \]
\[I_f = \{(c, d) \in B \times B \mid c + f(a) = d + f(b) \text{ for some } a, b \in A\} \]
\[\bar{I}_f = \{(c, d) \in B \times B \mid c + f(a) + x = d + f(b) + x \text{ for some } a, b \in A, \text{ some } x \in B\}. \]

2000 Mathematics Subject Classification. 16Y60.
Let A be a monic if $K_f = \bar{\Delta}_A$, where $\Delta_A = \{(a, a) | a \in A\}$ and $\bar{\Delta}_A = \{(a, b) \in A \times A | a + x = b + x$ for some $x \in A\}$

and f is said to be an epic if for any $b \in B$ there exist some $a_i \in A$, $i = 1, 2$ and $x \in B$ such that $b + f(a_1) + x = f(a_2) + x$.

Definition 1.2 ([6]). Let A, B be S-semimodules. Then an S-semimodules homomorphism $f : A \rightarrow B$ is said to be a Z-homomorphism if for each $a \in A$ there exists $x \in B$ such that $f(a) + x = x$.

Definition 1.3 ([6]). A sequence of S-semimodules and S-semimodule homomorphism is a diagram of the form,

$$\ldots \rightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_{i+1}} M_{i+1} \rightarrow \ldots$$

Such a sequence is said to be exact if $I_{f_{i-1}} = K_{f_i}$ for all i.

Definition 1.4. Let A and B be S-semimodules and $f : A \rightarrow B$ be S-semimodules homomorphism. Then f is said to be i-regular if for each $b \in B$ there exist $a_1, a_2 \in A$ such that $b + f(a_1) = f(a_2)$ and f is said to be k-regular if $f(a_1) + x = f(a_2) + x$ where $a_1, a_2 \in A$ and $x \in B$ implies $f(a_1) = f(a_2)$.

Result 1.5 ([6]). Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be S-semimodule homomorphisms. Then $gf : A \rightarrow C$ is a Z-homomorphism if and only if $I_f \subseteq K_g$.

Definition 1.6 (Projective Semimodule). A S-semimodule P is called projective if it satisfies the following two properties.

(i) If a S-homomorphism $f : A \rightarrow B$ is an epic and $g : P \rightarrow B$ is S-semimodule homomorphism then there exists a S-homomorphism $\phi : P \rightarrow A$ such that $f \circ \phi = g$.

(ii) To every k-regular S-homomorphism $f : A \rightarrow B$ and to every S-homomorphisms $\psi_1, \psi_2 : P \rightarrow A$ with $f \circ \psi_1 = f \circ \psi_2$ there exist S-homomorphisms $k_1, k_2 : P \rightarrow A$ such that $f \circ k_1$ and $f \circ k_2$ are Z-homomorphisms and $\psi_1 + k_1 = \psi_2 + k_2$.

Definition 1.7 ([7]). Let $\{M_i\}_{i \in I}$ be a family of S-semimodules. The cartesian product $\prod_{i \in I} M_i$ forms a S-semimodule under usual operations called the direct product of $\{M_i\}$.

In the direct product $\prod_{i} M_i$, the set of all elements whose components x_i are equal to 0 except for a finite number of i is denoted by $\bigoplus_{i \in I} M_i$ and is called the external direct sum of $\{M_i\}$. Then $\bigoplus_{i \in I} M_i$ is a subsemimodule of $\prod_{i} M_i$.

Definition 1.8 ([8]). Let M be a S-semimodule. Then M is called cancellative if whenever $m + x = m' + x$ for $m, m', x \in M$, we have $m = m'$.
2. Split exact sequences

In this section, we define split exact sequences of S-semimodules and prove some theorems that are analogous to module theory.

Definition 2.1. An exact sequence of S-semimodules of the form
\[\ldots M_n \xrightarrow{f_n} M_{n-1} \xrightarrow{f_{n-1}} \ldots \xrightarrow{f_1} M_0 \longrightarrow 0 \]
is said to split if there exist S-semimodule homomorphisms \(g_i : M_i \longrightarrow M_{i+1} \) such that
\begin{enumerate}
 \item \(f_1 \circ g_0 = I_{M_0} \)
 \item \(g_{i-1}f_i + f_{i+1}g_i = I_{M_i} \) for all \(i \geq 1 \)
\end{enumerate}
where addition of S-semimodule homomorphisms is defined in the usual manner.

Theorem 2.2. If the sequences of S-semimodules
\[0 \xrightarrow{u} M' \xrightarrow{q} M \xrightarrow{p} M'' \xrightarrow{v} 0 \]
are such that \(qu = I_{M''}, pv = I_{M''}, uq + vp = I_M \) then each of the above sequences are split exact.

Proof. We need only to show that the given sequences are exact. To show \(u \) is a monic let \((a, b) \in K_u \). Then \(u(a) + m = u(b) + m \) for some \(m \in M \) implies \(qu(a) + q(m) = qu(b) + q(m) \) or, \(a + q(m) = b + q(m) \) implies \((a, b) \in \Delta_{M''} \).

So, \(K_u \subseteq \Delta_{M''} \). Hence \(u \) is a monic.

To show \(K_p = I_u \), let \((m_1, m_2) \in K_p \). Then \(p(m_1) + m'' = p(m_2) + m'' \) for some \(m'' \in M'' \) implies \(vp(m_1) + v(m'') = vp(m_2) + v(m'') \) and \(vp(m_1) + uq(m_1) + v(m'') = vp(m_2) + uq(m_1) + v(m'') \) or, \(m_1 + u(q(m_2)) + v(m'') = m_2 + u(q(m_1)) + v(m'') \) as \(vp + uq = I_M \) implies \((m_1, m_2) \in I_u \). So, \(K_p \subseteq I_u \).

Again, let \((m_1, m_2) \in I_u \). Then
\[m_1 + u(m_1') + m = m_2 + u(m_2') + m \]
for some \(m_1', m_2' \in M' \), and \(m \in M \) implies
\[p(m_1) + pu(m_1') + p(m) = p(m_2) + pu(m_2') + p(m). \]

Again, from (1) we have \(q(m_1) + qu(m_1') + q(m) = q(m_2) + qu(m_2') + q(m) \) or, \(m_1' + q(m) = m_2' + q(m) \) (as \(qu = I_{M''} \) which implies \(uq(m_1) + u(m_1') + uq(m) = uq(m_2) + u(m_2') + uq(m) \).

Adding \(vp(m_1) + vp(m_2) \) on both sides, we get \(m_1 + vp(m_2) + m_2 + vp(m_1) + uq(m) = m_2 + vp(m_1) + uq(m) + u(m_2') \) which implies \(p(m_1) + p(m_2) + \)
pu(m'1) + puq(m) = p(m_2) + p(m_1) + puq(m) + pu(m'2) \text{ or implies } p(m_2) + p(m_1) + pu(m'1) + p(m) + puq(m) = p(m_2) + p(m_1) + puq(m) + pu(m'2) + p(m).

Using (2), we get

\[p(m_2) + p(m_1) + pu(m'1) + p(m) + puq(m) = p(m_2) + p(m_1) + pu(m'2) + puq(m) + p(m) \]

which implies \((m_1, m_2) \in K_p\). So, \(\bar{I}_u \subseteq K_p\).

Hence \(K_p = \bar{I}_u\).

Finally, \(p\) is an epic, because \(pv(m'') = m''\) implies

\[m'' + p(0) + 0 = pv(m'') + 0. \]

Hence the given sequence is split exact. Similarly we can show that the other sequence is also split exact. □

Theorem 2.3. Consider a commutative diagram of \(S\)-semimodules

\[
\begin{array}{ccc}
A & \xrightarrow{\eta} & A' \\
\gamma & & \\
0 & \xrightarrow{\alpha} & M' \xrightarrow{\beta} A' & \xrightarrow{\beta'} & A'' & 0 \\
\theta & & \\
M & \xrightarrow{\delta} & M' & \xrightarrow{\delta'} & A'' & 0 \\
\phi & & \\
M'' & & \\
0 & & \\
\end{array}
\]

and suppose that all columns are exact and the row is split exact (i.e. there exists a \(S\)-homomorphism \(\beta' : A'' \rightarrow M'\) such that \(\beta' = I_{A''}\) and a \(S\)-homomorphism \(\alpha' : M' \rightarrow A'\) such that \(\alpha' + \beta' \beta = I_{M'}\)), then \(\bar{I}_{\eta} = K_{\phi\delta\delta'}\).

Proof. Let \((x, y) \in K_{\phi\delta\delta'}\). Then

\[\phi\delta\delta'(x) + m'' = \phi\delta\delta'(y) + m'' \text{ for some } m'' \in M'' \]
implies \((\delta\delta'(x), \delta\delta'(y)) \in K_{\phi} = \bar{I}_{\theta}\) (by exactness).

Therefore \(\delta\delta'(x) + \theta(q_1) + m = \delta\delta'(y) + \theta(q_2) + m\) for some \(q_1, q_2 \in A'\) and \(m \in M\) or, \(\delta\delta'(x) + \delta\alpha(q_1) + m = \delta\delta'(y) + \delta\alpha(q_2) + m\) (as \(\theta = \delta\alpha\)) implies \((\beta'(x) + \alpha(q_1), \beta'(y) + \alpha(q_2)) \in K_{\delta} = \bar{I}_{\gamma}\) (by exactness).
Therefore $\beta(x) + \alpha(q_1) + \gamma(a_1) + r = \beta'(y) + \alpha(q_2) + \gamma(a_2) + r$ for some $a_1, a_2 \in A$ and $r \in M'$ implies $\beta\beta'(x) + \beta\alpha(q_1) + \beta\gamma(a_1) + \beta(r) = \beta\beta'(y) + \beta\alpha(q_2) + \beta\gamma(a_2) + \beta(r)$.

Since $\beta\alpha$ is a Z-homomorphism we have $\beta\alpha(q_1) + a''_1 = a'_1$ and $\beta\alpha(q_2) + a''_2 = a'_2$ for some $a''_1, a''_2 \in A''$.

Since $\beta\beta' = I$ and $\beta\gamma = \eta$ we obtain

$$x + \eta(a_1) + a''_1 + a''_2 + \beta(r) = y + \eta(a_2) + a''_1 + a''_2 + \beta(r)$$

which implies $(x, y) \in I_\eta$. Therefore $K_{\phi\delta\beta'} \subseteq I_\eta$.

Again, since the given row splits we have $\alpha\alpha' + \beta\beta' = I_{M'}$.

Let $a \in A$. Then $\gamma(a) \in M'$. Therefore

$$\alpha\alpha'\gamma(a) + \beta\beta'\gamma(a) = \gamma(a)$$

which implies $\phi\delta\alpha'\gamma(a) + \phi\delta\beta'\eta(a) = \phi\delta\gamma(a)$ (as $\beta\gamma = \eta$) or,

$$\phi\theta\alpha'\gamma(a) + \phi\delta\beta'\eta(a) = \phi\delta\gamma(a)$$ (as $\delta\alpha = \theta$). (3)

Since $\delta\gamma$ and $\phi\theta$ are Z-homomorphisms, we get $\phi\theta(\alpha'\gamma(a)) + u = u$ for some $u \in M''$ and $\delta\gamma(\alpha) + m = m$ for some $m \in M$, which implies $\phi\delta\gamma(a) + \phi(m) = \phi(m)$.

From (3), $\phi\delta\beta'\eta(a) + u + \phi(m) = u + \phi(m)$ which implies $\phi\delta\beta'\eta$ is a Z-homomorphism, therefore by Result 1.5, $I_\eta \subseteq K_{\phi\delta\beta'}$. Hence $K_{\phi\delta\beta'} = I_\eta$. □

3. Projective semimodule

In this section we study some results on projective semimodule which are analogous to module theory.

Definition 3.1. Let A and B be S-semimodules and $f : A \rightarrow B$ be an S-homomorphism. Define

$$\tilde{f} = \{b \in B | b + f(a_1) + x = f(a_2) + x \text{ for some } a_1, a_2 \in A, x \in B\}$$

Clearly, \tilde{f} is a subsemimodule of B.

Theorem 3.2. Let P be projective S-semimodule. If $A \xrightarrow{f} B \xrightarrow{g} C$ is an exact sequence of S-semimodules, then for every S-homomorphism $\phi : P \rightarrow B$ such that $g \circ \phi$ is a Z-homomorphism there exists a S-homomorphism $\phi' : P \rightarrow A$ with $f \circ \phi' = \phi$.
Proof. Let \(b \in \bar{J}_\phi \). Then
\[
\phi(p_1) + u = \phi(p_2) + u,
\]
for some \(p_1, p_2 \in P \) and \(u \in B \). Since \(g \circ \phi \) is a \(Z \)-homomorphism, for some \(c_1, c_2 \in C \).

From (4), \(g(b) + c_1 = c_2 \) implies \(b \in \bar{J}_f \).

Hence, \(\bar{J}_\phi \subseteq \bar{J}_f \).

Consider the diagram
\[
\begin{array}{ccc}
P & \xrightarrow{\phi} & A \\
\downarrow{\phi'} & & \downarrow{f} \\
A & \rightarrow & \bar{J}_f & \rightarrow & 0
\end{array}
\]

Clearly \(f \) is an epic. Since \(P \) is projective there exists an \(S \)-homomorphism \(\phi' : P \rightarrow A \) such that \(f \circ \phi' = \phi \).

Theorem 3.3. Consider the diagram
\[
\begin{array}{ccc}
P & \xrightarrow{g} & B \\
\downarrow{f} & & \downarrow{A} \\
B & \rightarrow & A
\end{array}
\]
of \(S \)-semimodules and \(S \)-homomorphisms. If \(P \) is projective \(S \)-semimodule then the following are equivalent:

\(\text{(i)} \) there is an \(S \)-homomorphism \(h : P \rightarrow B \) such that \(f \circ h = g \),

\(\text{(ii)} \) \(\bar{J}_g \subseteq \bar{J}_f \).

Proof. (i)\(\Rightarrow \) (ii). Let \(y \in \bar{J}_g \). Then
\[
y + g(p_1) + b = g(p_2) + b,
\]
for some \(p_1, p_2 \in P \) and \(b \in A \).

which implies \(y + f \circ h(p_1) + b = f \circ h(p_2) + b \) (by (i)), hence \(y \in \bar{J}_f \).

Therefore \(\bar{J}_g \subseteq \bar{J}_f \).

Conversely, let \(\bar{J}_g \subseteq \bar{J}_f \). Consider
Since P is projective, there exists an S-homomorphism $h : P \rightarrow B$ such that $f \circ h = g$. \hfill \Box

Theorem 3.4. Suppose that

\[P \xrightarrow{f} L \xrightarrow{g} M \]

\[A \xrightarrow{h} B \xrightarrow{k} C \]

is a commutative diagram of S-semimodules and S-homomorphisms, that P is projective, $g \circ f$ is a Z-homomorphism and the lower row is exact then there exists an S-homomorphism $P \rightarrow A$ which makes the diagram commutative.

Proof. Let $p \in P$. Since $g \circ f$ is a Z-homomorphism then there exists an $m \in M$ such that $g \circ f(p) + m = m$ which implies $\gamma \circ (g \circ f(p)) + \gamma(m) = \gamma(m)$ or, $k \circ \beta(f(p)) + \gamma(m) = \gamma(m)$, hence $(\beta f(p), 0) \in K_k = J_h$ (as lower row is exact) which implies $\beta f(p) + h(a_1) + x = h(a_2) + x$ for some $a_1, a_2 \in A$ and $x \in B$. So, $\beta f(p) \in J_h$, for all $p \in P$.

Define $\theta : P \rightarrow J_h$ such that $\theta(p) = \beta f(p)$. Clearly, θ is a S-homomorphism. Let $a \in A$. Then $h(a) \in J_h$ therefore $h : A \rightarrow J_h$. By the definition of J_h, $h : A \rightarrow J_h$ is an epic. Since P is projective there exists an S-homomorphism $\alpha : P \rightarrow A$ such that $h\alpha = \theta = \beta f$. Hence the diagram commutes. \hfill \Box

Theorem 3.5. Consider the diagram of S-semimodules and S-homomorphisms

\[\begin{array}{cccccc}
K_1 & \xrightarrow{\alpha_1} & P_1 & \xrightarrow{\beta_1} & B_1 \\
\downarrow{\gamma_1} & & \downarrow{\gamma_2} & & \downarrow{\gamma_3} \\
K_2 & \xrightarrow{\alpha_2} & P_2 & \xrightarrow{\beta_2} & B_2 & \rightarrow 0
\end{array} \]
in which the rows are exact, \(P_1 \) is projective and \(\alpha_1 \) is \(i \)-regular. Then there are \(S \)-homomorphisms \(\gamma_2 : P_1 \to P_2 \) and \(\gamma_1 : K_1 \to K_2 \) such that the completed diagram is commutative.

Proof. Consider the diagram

\[
\begin{array}{ccc}
P_1 & \xrightarrow{\beta_1} & P_2 \\
\gamma_2 & & \beta_2 \\
\downarrow & & \downarrow \\
B_1 & \xrightarrow{\gamma_3} & B_2 \\
\end{array}
\]

Since \(\beta_2 \) is an epic therefore by the projectivity of \(P_1 \) there exists an \(S \)-homomorphism \(\gamma_2 : P_1 \to P_2 \) such that \(\beta_2 \gamma_2 = \gamma_3 \beta_1 \), i.e. the diagram commutes.

Again, let \(y \in \bar{J}_{\gamma_2} \). Then

\[y + \gamma_2(p_1) + p_2 = \gamma_2(p_1') + p_2 \quad \text{for some} \quad p_1, p_1' \in P_1 \quad \text{and} \quad p_2 \in P_2 \]

implies \(\beta_2(y) + \beta_2 \gamma_2(p_1) + \beta_2(p_2) = \beta_2 \gamma_2(p_1') + \beta_2(p_2) \) or,

\[\beta_2(y) + \gamma_3 \beta_1(p_1) + \beta_2(p_2) = \gamma_3 \beta_1(p_1') + \beta_2(p_2) \] (5)

Since \(\alpha_1 \) is \(i \)-regular, we have

\[p_1 + \alpha_1(k_1) = \alpha_1(k_2) \text{and} \alpha_1(k_3) = \alpha_1(k_4), \quad \text{for some} \quad k_1, k_2, k_3, k_4 \in K_1 \]

which implies \(p_1 + \alpha_1(k_1 + k_4) = p_1' + \alpha_1(k_2 + k_3) \) or,

\[\gamma_3 \beta_1(p_1) + \gamma_3 \beta_1 \alpha_1(k_5) = \gamma_3 \beta_1(p_1') + \gamma_3 \beta_1 \alpha_1(k_6) \] (6)

where \(k_5 = k_1 + k_4 \) and \(k_6 = k_2 + k_3 \).

Adding \(\gamma_1 \beta_1 \alpha_1(k_5) \) on both sides of (5) and using (6), we get

\[\beta_2(y) + \gamma_3 \beta_1(p_1') + \gamma_3 \beta_1 \alpha_1(k_6) + \beta_2(p_2) = \gamma_3 \beta_1(p_1') + \beta_2(p_2) + \gamma_3 \beta_1 \alpha_1(k_5). \]

Since \(\beta_1 \alpha_1 \) is a \(Z \)-homomorphism we have

\[\beta_1 \alpha_1(k_5) + u_1 = u_1, \quad u_1 \in B_1 \quad \text{implies} \quad \gamma_3 \beta_1 \alpha_1(k_5) + \gamma_3(u_1) = \gamma_3(u_1) \]

\[\beta_1 \alpha_1(k_6) + u_2 = u_2, \quad u_2 \in B_1 \quad \text{implies} \quad \gamma_3 \beta_1 \alpha_1(k_6) + \gamma_3(u_2) = \gamma_3(u_2) \]

So, \(\beta_2(y) + \gamma_3 \beta_1(p_1') + \gamma_3(u_1 + u_2) + \beta_2(p_2) = \gamma_3 \beta_1(p_1') + \gamma_3(u_1 + u_2) + \beta_2(p_2) \) which implies \((y, 0) \in K_{\beta_2} = \bar{I}_{\alpha_2} \).

Therefore \(y + \alpha_2(k') + x = \alpha_2(k'') + x \), for some \(k', k'' \in K_2 \) and \(x \in P_2 \). This implies \(y \in \bar{J}_{\alpha_2} \). Therefore \(\bar{J}_{\gamma_2} \subseteq \bar{J}_{\alpha_2} \).

Consider the following diagram
By the projectivity of P_1 there exists an S-homomorphism $\theta: P_1 \rightarrow K_2$ such that $\gamma_2 = \alpha_2 \theta$.

Define a map $\gamma_1 : K_1 \rightarrow K_2$ such that $\gamma_1(k_1) = \theta \alpha_1(k_1)$, $k_1 \in K_1$.

Clearly γ_1 is an S-homomorphism.

Now $\alpha_2 \gamma_1(k_1) = \alpha_2 \theta \alpha_1(k_1) = \gamma_2 \alpha_1(k_1)$ or, $\alpha_2 \gamma_1 = \gamma_2 \alpha_1$. Hence the completed diagram is commutative.

Proposition 3.6. Suppose $\{P_i : i \in I\}$ is a family of projective S-semimodules. Then their direct sum $P = \bigoplus P_i$ is also projective.

Proof. Let $f : A \rightarrow B$ be an epic S-homomorphism of S-semimodules. Let $g : P \rightarrow B$ be a S-homomorphism. Let $\pi_i : P \rightarrow P_i$ be the canonical projection and $q_i : P_i \rightarrow P$ be the canonical injection. Define $g_i : P_i \rightarrow B$ such that $g_i = g q_i$ for each $i \in I$. Since P_i is projective, there exists an S-homomorphism $h_i : P_i \rightarrow A$ such that $f h_i = g_i$ for each $i \in I$.

Define $h : P \rightarrow A$ by $h = \sum h_i \pi_i$. Then

$$fh = f \left(\sum h_i \pi_i \right) = \sum_i f h_i \pi_i = \sum_i g_i \pi_i = \sum_i g q_i \pi_i = g \sum_i q_i \pi_i = g.$$

So, P satisfies the property (i) of projective S-semimodule.

Let $f : A \rightarrow B$ be k-regular S-homomorphism. Let $\psi_1, \psi_2 : P \rightarrow A$ be S-homomorphisms with $f \circ \psi_1 = f \circ \psi_2$.

Define $\psi_i, \psi_i' : P_i \rightarrow A$ by $\psi_i = \psi_1 \circ q_i$ and $\psi_i' = \psi_2 \circ q_i$ for all $i \in I$.

Then

$$f \circ \psi_i = f \circ \psi_1 \circ q_i = f \circ \psi_2 \circ q_i = f \circ \psi_i'$$

$$\psi_1 = \psi_1 \circ \left(\sum_i q_i \pi_i \right) = \sum_i \psi_1 \circ q_i \circ \pi_i = \sum_i \psi_i \pi_i.$$

Similarly, $\psi_2 = \sum_i \psi_i' \circ \pi_i$.

Since each P_i is projective, there exists an S-homomorphism $k_i, k_i' : P_i \rightarrow A$ for each $i \in I$, such that $f \circ k_i$ and $f \circ k_i'$ are Z-homomorphisms. Also $\psi_i + k_i = \psi_i' + k_i'$.
Since f is k-regular, $f \circ k_i$ and $f \circ k'_i$ are Z-homomorphisms implies
\[f \circ k_i = 0 = f \circ k'_i \text{ for all } i \in I. \]

Define $k_1 : P \to A$ by $k_1 = \sum_i k_i \circ \pi_i$ and $k_2 : P \to A$ by $k_2 = \sum_i k'_i \circ \pi_i$.
Then $f \circ k_1 = 0 = f \circ k_2$ implies $f \circ k_1$ and $f \circ k_2$ are Z-homomorphisms and
\[\psi_1 + k_1 = \psi_2 + k_2. \]

So, P satisfies the property (ii) of projective S-semimodule. □

Theorem 3.7. Every diagram of S-semimodules and S-homomorphism of the form

\[
\begin{array}{ccccccccc}
0 & \rightarrow & P_1 & \rightarrow & A & \rightarrow & B & \rightarrow & C & \rightarrow & 0 \\
& & \downarrow{\beta_1} & \downarrow{f} & \downarrow{g} & \downarrow{} & & \downarrow{} & & \downarrow{} \\
& & 0 & \rightarrow & A & \rightarrow & B & \rightarrow & C & \rightarrow & 0 \\
& & & & & & & & & \\
& & & & & & & & & \\
\end{array}
\]

in which the row and the columns are exact, P_1 and P_3 are projective, g is k-regular can be extended to a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & P_1 & \rightarrow & P_2 & \rightarrow & P_3 & \rightarrow & 0 \\
& & \downarrow{\beta_1} & \downarrow{i} & \downarrow{\beta_2} & \downarrow{\pi} & \downarrow{\beta_3} & & \downarrow{} & & \downarrow{} \\
0 & \rightarrow & A & \rightarrow & B & \rightarrow & C & \rightarrow & 0 \\
& & & & & & & & & & \\
& & & & & & & & & & \\
\end{array}
\]

in which the top row and the second column are exact and P_2 is also projective.

Proof. Let $P_2 = P_1 \oplus P_3$. By Proposition 3.6, P_2 is also projective. Since g is an epic and $\beta_3 : P_3 \to C$ is an S-homomorphism then by projectivity of P_3, there exists an S-homomorphism $\lambda : P_3 \to B$ such that $\beta_3 = g\lambda$.
Consider the diagram

\[
\begin{array}{ccccccc}
0 & \to & P_1 & \xrightarrow{i} & P_2 & \xrightarrow{\pi} & P_3 & \to & 0 \\
\downarrow{\beta_1} & & \downarrow{\beta_2} & & \downarrow{\beta_3} & & & \\
0 & \to & A & \xrightarrow{f} & B & \xrightarrow{g} & C & \to & 0
\end{array}
\]

where \(\pi : P_2 \to P_3 \) is given by \(\pi(p_2) = \pi(p_1, p_3) = p_3 \) is an \(S \)-homomorphism and \(i : P_1 \to P_2 \) such that \(i(p_1) = (p_1, 0) \) is an \(S \)-homomorphism.

Define a map \(\beta_2 : P_2 \to B \) such that

\[
\beta_2(p_2) = f\beta_1(p_1) + \lambda(p_3)
\]

where \(p_1 \in P_1 \) and \(p_3 \in P_3 \).

Now,

\[
g\beta_2(p_2) = gf\beta_1(p_1) + g\lambda(p_3)
\]

\[
= g\lambda(p_3) \quad \text{(as \(g \) is \(k \)-regular and \(g \circ f \) is a \(Z \)-homomorphism)}
\]

\[
= \beta_3(p_3) = \beta_3\pi(p_2).
\]

Therefore, \(g\beta_2 = \beta_3\pi \).

Now, \(\beta_2 i(p_1) = i(p_1, 0) = f\beta_1(p_1) + \lambda(0) = f\beta_1(p_1) \). Therefore, \(\beta_2 i = f\beta_1 \). Hence the diagram commutes.

To show \(\beta_2 \) is an epic let \(b \in B \). Then \(g(b) \in C \). Since \(\beta_3 \) is an epic there exist \(p_3, p_3' \in P_3 \) such that \(g(b) + \beta_3(p_3) = \beta_3(p_3') + x \), for some \(x \in C \) or, \(g(b) + g\lambda(p_3) + x = g\lambda(p_3') + x \) (as \(\beta_3 = g\lambda \) or, \((b + \lambda(p_3), \lambda(p_3')) \in K_3 = \bar{1} \)).

Therefore there exist \(a_1, a_2 \in A \) and some \(b_1 \in B \) such that

\[
b + \lambda(p_3) + f(a_1) + b_1 = \lambda(p_3') + f(a_2) + b_1
\]

which implies

\[
b + \beta_2(p_2) + f(a_1) + b_1 = \beta_2(p_2') + f(a_2) + b_1 \quad (7)
\]

where \(p_2 = (0, p_3) \) and \(p_2' = (0, p_3') \).

Since \(\beta_1 \) is an epic there exist \(p_1', p_1'', p_1''' \in P_1 \) such that \(a_1 + \beta_1(p_1') + a = \beta_1(p_1'') + a \) and \(a_2 + \beta_1(p_1''') + a' = \beta_1(p_1''') + a' \) for some \(a, a' \in A \).

Adding the above, we get \(a_1 + \beta_1(q_1) + a'' = a_2 + \beta_1(q_2) + a'' \) where \(q_1 = p_1' + p_1'', q_2 = p_1'' + p_1''' \) and \(a'' = a + a' \), which implies \(f(a_1) + f\beta_1(q_1) + f(a'') = f(a_2) + f\beta_1(q_2) + f(a'') \) or,

\[
f(a_1) + \beta_2 i(q_1) + f(a'') = f(a_2) + \beta_2 i(q_2) + f(a'') \quad (8)
\]
Adding $\beta_2i(q_1) + f(a'')$ on both sides of (7) we obtain
\[b + \beta_2(p_2) + f(a_1) + \beta_2i(q_1) + f(a'') + b_1 = \beta_2(p_2') + f(a_2) + \beta_2i(q_1) + b_1 + f(a''). \]
Using (8), we have $b + \beta_2(p_2) + f(a_2) + \beta_2i(q_2) + f(a'') + b_1 = \beta_2(p_2) + f(a_2) + \beta_2i(q_1) + f(a'') + b_1$ or, $b + \beta_2(p_2 + i(q_2)) + f(a_2) + f(a'') + b_1 = \beta_2(p_2 + i(q_1)) + f(a'') + f(a_2) + b_1$ which implies that β_2 is an epic.

To show that top row is exact, we first show i is a monic. Let $(x, y) \in K_i$. Then $i(x) + (p_1, p_3) = i(y) + (p_1, p_3)$ for some $(p_1, p_3) \in P_2$ or, $(x, 0) + (p_1, p_3) = (y, 0) + (p_1, p_3)$ which implies $x + p_1 = y + p_1$, for some $p_1 \in P_1$. Therefore $(x, y) \in \Delta P_i$. So, $K_i \subseteq \Delta P_i$.

Hence i is a monic. Clearly, π is an epic as π is surjective.

Finally, we will show $K_\pi = \bar{I_i}$. Since $\pi \circ i(p_1) = \pi(i(p_1)) = \pi(p_1, 0) = 0$ for all $p_1 \in P_1$, $\pi \circ i$ is a Z-homomorphism. Therefore by Result 1.5, $\bar{I_i} \subseteq K_\pi$.

Again, let $(x, y) \in K_\pi$ where $x = (p_1, p_3)$ and $y = (p_1', p_3')$. Then $\pi(x) + u = \pi(y) + u$ for some $u \in P_3$ or,
\[p_3 + u = p_3' + u. \]
From equation (9) we have $(p_1, p_3) + (p_1', 0) + (0, u) = (p_1', p_3') + (p_1, 0) + (0, u)$ or, $(p_1, p_3) + i(q_1) + z = (p_1', p_3') + i(q_2) + z$, where $q_1 = (p_1, 0)$, $q_2 = (p_1, 0)$ and $z = (0, u)$, or, $x + i(q_1) + z = y + i(q_2) + z$, which implies that $(x, y) \in \bar{I_i}$.

Therefore $K_\pi \subseteq \bar{I_i}$. So, $K_\pi = \bar{I_i}$. □

Theorem 3.8. Consider an exact sequence of S-semimodules
\[0 \longrightarrow P_2 \overset{f_2}{\longrightarrow} P_1 \overset{f_1}{\longrightarrow} P_0 \longrightarrow 0 \]
such that P_0 and P_1 are projective S-semimodules and P_2 is cancellative and every element in P_1 has an additive inverse. Then the above sequence splits.

Proof. Consider the diagram
\[
\begin{array}{ccc}
& & P_0 \\
& g_0 \swarrow & \\
P_1 & \overset{f_1}{\longrightarrow} & P_0 \\
\downarrow & & \downarrow \\
I_{P_0} & & \\
\end{array}
\]
Since f_1 is an epic then there exists $g_0 : P_0 \longrightarrow P_1$ such that
\[f_1g_0 = I_{P_0}. \]
\[(10) \]
Let $f = (I_{P_0} - g_0f_1) : P_1 \longrightarrow P_1$ be an S-homomorphism.
Then $f + g_0f_1 = I_{P_0}$ implies $f_1f + f_1g_0f_1 = f_1$ or,
\[f_1f = f_1. \]
\[(11) \]
Let $y \in \mathcal{J}_f$. Then $y + f(p_1) + z = f(p_1') + z$, for some $p_1, p_1' \in P_1$ and $z \in P_1$ implies $f_1(y) + f_1f(p_1) + f_1(z) = f_1f(p_1') + f_1(z)$.

Adding $f_1(p_1) + f(p_1')$ on both sides, we get $f_1(y) + f_1f(p_1) + f_1(p_1) + f_1(p_1') + f_1(z) = f_1f(p_1') + f_1(p_1) + f_1(z)$. Using (11), we have $f_1(y) + f_1(p_1) + f_1(z) + f_1(p_1') = f_1(p_1') + f_1(p_1) + f'(z)$ which implies $(y, 0) \in K_{f_1} = P_{f_2}$ (By exactness).

Therefore, $y + f_2(p_2) + u = f_2(p_2') + u$, for some $p_2, p_2' \in P_2$ and $u \in P_1$ which implies $y \in \mathcal{J}_{f_2}$. Hence $\mathcal{J}_f \subseteq \mathcal{J}_{f_2}$.

Consider

\[
\begin{array}{ccc}
P_1 & \xrightarrow{f} & \mathcal{J}_{f_2} \\
\downarrow & & \downarrow \\
P_2 & \xrightarrow{f_2} & 0
\end{array}
\]

Since f_2 is an epic then by projectivity of P_1, there exists S-homomorphism $g_1 : P_1 \rightarrow P_2$ such that $f_2g_1 = f$, which implies $f + g_0f_1 = f_2g_1 + g_0f_1$ or,

\[
I_{P_1} = f_2g_1 + g_0f_1. \tag{12}
\]

From (12), $f_2 = f_2g_1f_2 + g_0f_1f_2$ implies

\[
f_2(p_2) = f_2g_1f_2(p_2) + g_0f_1f_2(p_2), \quad p_2 \in P_2 \tag{13}
\]

Since f_1f_2 is a Z-homomorphism, we have $f_1f_2(p_2) + u = u$, for some $u \in P_0$ which implies $g_0f_1f_2(p_2) + g_0(u) = g_0(u)$.

From (13), we have $g_0(u) + f_2(p_2) = f_2g_1f_2(p_2) + g_0f_1f_2(p_2) + g_0(u)$ or, $f_2(p_2) + g_0(u) = f_2g_1f_2(p_2) + g_0(u)$, which implies $(p_2, g_1f_2(p_2)) \in K_{f_2} = \Delta_{p_2}$ (as f_2 is a monic), or $g_1f_2(p_2) + v = p_2 + v$, for some $v \in P_2$, or $g_1f_2(p_2) = p_2$ for all $p_2 \in P_2$ (as P_2 is cancellative). Therefore

\[
g_1f_2 = I_{P_2} \tag{14}
\]

Hence (10), (12) and (14) implies that the given sequence splits. \square

References

(Received: July 5, 2006) S. K. Bhambri
(Revised: November 23, 2006) Department of Mathematics
Kiororimal College
University of Delhi
Delhi 110007, India
E-mail: skbhabmri@rediffmail.com

M. K. Dubey
Department of Mathematics
University of Delhi
Delhi 110 007, India
E-mail: kantmanish@yahoo.com