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ON SPLIT EXACT SEQUENCES AND PROJECTIVE
SEMIMODULES

S. K. BHAMBRI AND MANISH KANT DUBEY

Abstract. In this paper the notion of split exact sequences of semi-
modules is introduced. We also study some results on projective semi-
modules that are analogous to module theory.

1. Introduction and preliminaries

A semiring is a commutative monoid (S, +) having additive identity zero
0S and a semigroup (S, ·) which are connected by ring like distributivity. Let
S be a semiring. A left S-semimodule M is a commutative monoid (M, +)
which has a zero element 0M , together with an operation S × M −→ M ;
defined by (a, x) −→ ax such that for all a, b ∈ S and x, y ∈ M ,

(i) a(x + y) = ax + ay,
(ii) (a + b)x = ax + bx,
(iii) (ab)x = a(bx),
(iv) 0Sx = 0M = a0M .

A right S-semimodule is defined in an analogous manner. A non empty
subset A of S-semimodule M is a subsemimodule of M if A is closed under
addition and scalar multiplication. Let M and N be left S-semimodules. A
homomorphism from M to N is a map f : M −→ N such that,

(i) f(m1 + m2) = f(m1) + f(m2),
(ii) f(am) = af(m), for all m,m1,m2 ∈ M and for all a ∈ S.

Definition 1.1 ([6]). Let A and B be S-semimodules and f : A −→ B be
S-semimodule homomorphism. Define

Kf = {(a, b) ∈ A×A | f(a) + x = f(b) + x for some x ∈ B}
If = {(c, d) ∈ B ×B | c + f(a) = d + f(b) for some a, b ∈ A}
Īf = {(c, d) ∈ B ×B | c + f(a) + x = d + f(b) + x

for some a, b ∈ A, some x ∈ B}.
2000 Mathematics Subject Classification. 16Y60.
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Then f is said to be a monic if Kf = ∆̄A, where ∆A = {(a, a)|a ∈ A} and

∆̄A = {(a, b) ∈ A×A|a + x = b + x for some x ∈ A}
and f is said to be an epic if for any b ∈ B there exist some ai ∈ A, i = 1, 2
and x ∈ B such that b + f(a1) + x = f(a2) + x.

Definition 1.2 ([6]). Let A,B be S-semimodules. Then an S-semimodules
homomorphism f : A −→ B is said to be a Z-homomorphism if for each
a ∈ A there exists x ∈ B such that f(a) + x = x .

Definition 1.3 ([6]). A sequence of S-semimodules and S-semimodule ho-
momorphism is a diagram of the form,

. . . −→ Mi−1
fi−1−→ Mi

fi−→ Mi+1 −→ . . .

Such a sequence is said to be exact if Īfi−1 = Kfi for all i .

Definition 1.4. Let A and B be S-semimodules and f : A −→ B be S-
semimodules homomorphism. Then f is said to be i-regular if for each b ∈ B
there exist a1, a2 ∈ A such that b+f(a1) = f(a2) and f is said to be k-regular
if f(a1) + x = f(a2) + x where a1, a2 ∈ A and x ∈ B implies f(a1) = f(a2).

Result 1.5 ([6]). Let f : A −→ B and g : B −→ C be S-semimodule
homomorphisms. Then gf : A −→ C is a Z-homomorphism if and only if
Īf ⊆ Kg.

Definition 1.6 (Projective Semimodule). A S-semimodule P is called pro-
jective if it satisfies the following two properties.

(i) If a S-homomorphism f : A −→ B is an epic and g : P −→ B is
S-semimodule homomorphism then there exists a S-homomorphism
φ : P −→ A such that f ◦ φ = g.

(ii) To every k-regular S-homomorphism f : A −→ B and to every S-
homomorphisms ψ1, ψ2 : P −→ A with f ◦ ψ1 = f ◦ ψ2 there exist
S-homomorphisms k1, k2 : P −→ A such that f ◦ k1 and f ◦ k2 are
Z-homomorphisms and ψ1 + k1 = ψ2 + k2.

Definition 1.7 ([7]). Let {Mi}i∈I be a family of S-semimodules. The carte-
sian product

∏
i∈I Mi forms a S-semimodule under usual operations called

the direct product of {Mi}.
In the direct product

∏
i Mi, the set of all elements whose components xi

are equal to 0 except for a finite number of i is denoted by
⊕

i∈I Mi and is
called the external direct sum of {Mi}. Then

⊕
i∈I Mi is a subsemimodule

of
∏

i Mi.

Definition 1.8 ([8]). Let M be a S-semimodule. Then M is called can-
cellative if whenever m + x = m′ + x for m,m′, x ∈ M , we have m = m′.
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2. Split exact sequences

In this section, we define split exact sequences of S-semimodules and
prove some theorems that are analogous to module theory.

Definition 2.1. An exact sequence of S-semimodules of the form

. . .Mn
fn−→ Mn−1

fn−1−→ . . .
f1−→ M0 −→ 0

is said to split if there exist S-semimodule homomorphisms gi : Mi −→ Mi+1

such that
(i) f1 ◦ g0 = IM0

(ii) gi−1fi + fi+1gi = IMi for all i ≥ 1
where addition of S-semimodule homomorphisms is defined in the usual
manner.

Theorem 2.2. If the sequences of S-semimodules

are such that qu = IM ′, pv = IM ′′, uq + vp = IM then each of the above
sequences are split exact.

Proof. We need only to show that the given sequences are exact. To show u
is a monic let (a, b) ∈ Ku. Then u(a)+m = u(b)+m for some m ∈ M implies
qu(a) + q(m) = qu(b) + q(m) or, a + q(m) = b + q(m) implies (a, b) ∈ ∆̄M ′ .

So, Ku ⊆ ∆̄M ′ . Hence u is a monic.
To show Kp = Īu, let (m1,m2) ∈ Kp. Then p(m1) + m′′ = p(m2) +

m′′ for some m′′ ∈ M ′′ implies vp(m1) + v(m′′) = vp(m2) + v(m′′) and
vp(m1)+uq(m1)+uq(m2)+v(m′′) = vp(m2)+uq(m1)+uq(m2)+v(m′′) or,
m1 + u(q(m2)) + v(m′′) = m2 + u(q(m1)) + v(m′′) as vp + uq = IM implies
(m1,m2) ∈ Īu. So, Kp ⊆ Īu.

Again, let (m1,m2) ∈ Īu. Then

m1 + u(m′
1) + m = m2 + u(m′

2) + m

for some m′
1,m

′
2 ∈ M ′, and m ∈ M (1)

implies
p(m1) + pu(m′

1) + p(m) = p(m2) + pu(m′
2) + p(m). (2)

Again, from (1) we have q(m1)+qu(m′
1)+q(m) = q(m2)+qu(m′

2)+q(m)
or, q(m1) + m′

1 + q(m) = q(m2) + m′
2 + q(m) (as qu = IM ′) which implies

uq(m1) + u(m′
1) + uq(m) = uq(m2) + u(m′

2) + uq(m).
Adding vp(m1) + vp(m2) on both sides, we get m1 + vp(m2) + u(m′

1) +
uq(m) = m2 + vp(m1) + uq(m) + u(m′

2) which implies p(m1) + p(m2) +
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pu(m′
1) + puq(m) = p(m2) + p(m1) + puq(m) + pu(m′

2) or implies p(m2) +
p(m1)+pu(m′

1)+p(m)+puq(m) = p(m2)+p(m1)+puq(m)+pu(m′
2)+p(m).

Using (2), we get p(m2) + p(m2) + pu(m′
2) + p(m) + puq(m) = p(m2) +

p(m1)+pu(m′
2)+puq(m)+p(m) which implies (m1, m2) ∈ Kp. So, Īu ⊆ Kp.

Hence Kp = Īu.
Finally, p is an epic, because pv(m′′) = m′′ implies

m′′ + p(0) + 0 = pv(m′′) + 0.

Hence the given sequence is split exact. Similarly we can show that the
other sequence is also split exact. ¤
Theorem 2.3. Consider a commutative diagram of S-semimodules

and suppose that all columns are exact and the row is split exact (i.e. there
exists a S-homomorphism β′ : A′′ −→ M ′ such that ββ′ = IA′′ and a S-
homomorphism α′ : M ′ −→ A′ such that αα′+β′β = IM ′), then Īη = Kφδβ′.

Proof. Let (x, y) ∈ Kφδβ′ . Then

φδβ′(x) + m′′ = φδβ′(y) + m′′ for some m′′ ∈ M ′′

implies (δβ′(x), δβ′(y)) ∈ Kφ = Īθ (by exactness).
Therefore δβ′(x)+θ(q1)+m = δβ′(y)+θ(q2)+m for some q1, q2 ∈ A′ and

m ∈ M or, δβ′(x) + δα(q1) + m = δβ′(y) + δα(q2) + m (as θ = δα) implies
(β′(x) + α(q1), β′(y) + α(q2)) ∈ Kδ = Īγ (by exactness).
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Therefore β′(x) + α(q1) + γ(a1) + r = β′(y) + α(q2) + γ(a2) + r for some
a1, a2 ∈ A and r ∈ M ′ implies ββ′(x) + βα(q1) + βγ(a1) + β(r) = ββ′(y) +
βα(q2) + βγ(a2) + β(r).

Since βα is a Z-homomorphism we have βα(q1) + a′′1 = a′′1 and βα(q2) +
a′′2 = a′′2 for some a′′1, a

′′
2 ∈ A′′.

Since ββ′ = I and βγ = η we obtain

x + η(a1) + a′′1 + a′′2 + β(r) = y + η(a2) + a′′1 + a′′2 + β(r)

which implies (x, y) ∈ Īη. Therefore Kφδβ′ ⊆ Īη.
Again, since the given row splits we have αα′ + β′β = IM ′ .
Let a ∈ A. Then γ(a) ∈ M ′. Therefore

αα′γ(a) + β′βγ(a) = γ(a)

which implies φδαα′γ(a) + φδβ′η(a) = φδγ(a) (as βγ = η) or,

φθα′γ(a) + φδβ′η(a) = φδγ(a) (as δα = θ). (3)

Since δγ and φθ are Z-homomorphisms, we get φθ(α′γ(a))+u = u for some
u ∈ M ′′ and δγ(a)+m = m for some m ∈ M, which implies φδγ(a)+φ(m) =
φ(m).

From (3), φδβ′η(a) + u + φ(m) = u + φ(m) which implies φδβ′η is a Z-
homomorphism, therefore by Result 1.5, Īη ⊆ Kφδβ′ . Hence Kφδβ′ = Īη. ¤

3. Projective semimodule

In this section we study some results on projective semimodule which are
analogous to module theory.

Definition 3.1. Let A and B be S-semimodules and f : A −→ B be an
S-homomorphism. Define

J̄f = {b ∈ B|b + f(a1) + x = f(a2) + x for some a1, a2 ∈ A, x ∈ B}
Clearly, J̄f is a subsemimodule of B.

Theorem 3.2. Let P be projective S-semimodule. If A
f−→ B

g−→ C is an
exact sequence of S-semimodules, then for every S-homomorphism φ : P −→
B such that g ◦ φ is a Z-homomorphism there exists a S-homomorphism
φ′ : P −→ A with f ◦ φ′ = φ.
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Proof. Let b ∈ J̄φ. Then

b + φ(p1) + u = φ(p2) + u, for some p1, p2 ∈ P and u ∈ B

implies
g(b) + g ◦ φ(p1) + g(u) = g ◦ φ(p2) + g(u). (4)

Since g ◦ φ is a Z-homomorphism therefore

g ◦ φ(p1) + c1 = c1andg ◦ φ(p2) + c2 = c2, for some c1, c2 ∈ C .

From (4), g(b) + c1 + c2 + g(u) = c1 + c2 + g(u) implies (b, 0) ∈ Kg = Īf ,
which implies b ∈ J̄f .

Hence, J̄φ ⊆ J̄f .
Consider the diagram

Clearly f is an epic. Since P is projective there exists an S-homomorphism
φ′ : P −→ A such that f ◦ φ′ = φ. ¤

Theorem 3.3. Consider the diagram

of S-semimodules and S-homomorphisms. If P is projective S-semimodule
then the following are equivalent:

(i) there is an S-homomorphism h : P −→ B such that f ◦ h = g,
(ii) J̄g ⊆ J̄f .

Proof. (i)⇒(ii). Let y ∈ J̄g. Then

y + g(p1) + b = g(p2) + b, for some p1, p2 ∈ P and b ∈ A

which implies y + f ◦ h(p1) + b = f ◦ h(p2) + b (by (i)), hence y ∈ J̄f .
Therefore J̄g ⊆ J̄f .

Conversely, let J̄g ⊆ J̄f . Consider
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Since P is projective, there exists an S-homomorphism h : P −→ B such
that f ◦ h = g. ¤

Theorem 3.4. Suppose that

is a commutative diagram of S-semimodules and S-homomorphisms, that
P is projective, g ◦ f is a Z-homomorphism and the lower row is exact
then there exists an S-homomorphism P −→ A which makes the diagram
commutative.

Proof. Let p ∈ P . Since g ◦ f is a Z-homomorphism then there exists an
m ∈ M such that g ◦f(p)+m = m which implies γ ◦g ◦f(p)+γ(m) = γ(m)
or, k ◦ β(f(p)) + γ(m) = γ(m), hence (βf(p), 0) ∈ Kk = Īh (as lower row is
exact) which implies βf(p) + h(a1) + x = h(a2) + x for some a1, a2 ∈ A and
x ∈ B. So, βf(p) ∈ J̄h, for all p ∈ P.

Define θ : P −→ J̄h such that θ(p) = βf(p). Clearly, θ is a S-homomor-
phism. Let a ∈ A. Then h(a) ∈ J̄h therefore h : A −→ J̄h. By the definition
of J̄h, h : A −→ J̄h is an epic. Since P is projective there exists an S-
homomorphism α : P −→ A such that hα = θ = βf . Hence the diagram
commutes. ¤

Theorem 3.5. Consider the diagram of S-semimodules and S-homomor-
phisms
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in which the rows are exact, P1 is projective and α1 is i-regular. Then there
are S-homomorphisms γ2 : P1 −→ P2 and γ1 : K1 −→ K2 such that the
completed diagram is commutative.

Proof. Consider the diagram

Since β2 is an epic therefore by the projectivity of P1 there exists an S-
homomorphism γ2 : P1 −→ P2 such that β2γ2 = γ3β1, i.e. the diagram
commutes.

Again, let y ∈ J̄γ2 . Then

y + γ2(p1) + p2 = γ2(p′1) + p2 for some p1, p
′
1 ∈ P1 and p2 ∈ P2

implies β2(y) + β2γ2(p1) + β2(p2) = β2γ2(p′1) + β2(p2) or,

β2(y) + γ3β1(p1) + β2(p2) = γ3β1(p′1) + β2(p2) (5)

Since α1 is i-regular, we have

p1 + α1(k1) = α1(k2)andp′1 + α1(k3) = α1(k4), for some k1, k2, k3, k4 ∈ K1

which implies p1 + α1(k1 + k4) = p′1 + α1(k2 + k3) or,

γ3β1(p1) + γ3β1α1(k5) = γ3β1(p′1) + γ3β1α1(k6) (6)

where k5 = k1 + k4 and k6 = k2 + k3.
Adding γ1β1α1(k5) on both sides of (5) and using (6), we get

β2(y) + γ3β1(p′1) + γ3β1α1(k6) + β2(p2) = γ3β1(p′1) + β2(p2) + γ3β1α1(k5).

Since β1α1 is a Z-homomorphism we have

β1α1(k5) + u1 = u1, u1 ∈ B1 implies γ3β1α1(k5) + γ3(u1) = γ3(u1)

β1α1(k6) + u2 = u2, u2 ∈ B1 implies γ3β1α1(k6) + γ3(u2) = γ3(u2)

So, β2(y)+γ3β1(p′1)+γ3(u1 +u2)+β2(p2) = γ3β1(p′1)+γ3(u1 +u2)+β2(p2)
which implies (y, 0) ∈ Kβ2 = Īα2 .

Therefore y + α2(k′2) + x = α2(k′′2) + x, for some k′2, k
′′
2 ∈ K2 and x ∈ P2.

This implies y ∈ J̄α2 . Therefore J̄γ2 ⊆ J̄α2 .
Consider the following diagram
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By the projectivity of P1 there exists an S-homomorphism θ : P1 −→ K2

such that γ2 = α2θ.
Define a map γ1 : K1 −→ K2 such that γ1(k1) = θα1(k1), k1 ∈ K1.

Clearly γ1 is a S-homomorphism.
Now α2γ1(k1) = α2θα1(k1) = γ2α1(k1) or, α2γ1 = γ2α1. Hence the

completed diagram is commutative. ¤
Proposition 3.6. Suppose {Pi : i ∈ I} is a family of projective S-semimo-
dules. Then their direct sum P =

⊕
i Pi is also projective.

Proof. Let f : A −→ B be an epic S-homomorphism of S-semimodules.
Letg : P −→ B be a S-homomorphism. Let πi : P −→ Pi be the canonical
projection and qi : Pi −→ P be the canonical injection. Define gi : Pi −→ B
such that gi = gqi for each i ∈ I. Since Pi is projective, there exists an
S-homomorphism hi : Pi −→ A such that fhi = gi for each i ∈ I.

Define h : P −→ A by h =
∑
i

hiπi. Then

fh = f

(∑

i

hiπi

)
=

∑

i

fhiπi =
∑

i

giπi =
∑

i

gqiπi

= g
∑

i

qiπi = g.

So, P satisfies the property (i) of projective S-semimodule.
Let f : A −→ B be k-regular S-homomorphism. Let ψ1, ψ2 : P −→ A be

S-homomorphisms with f ◦ ψ1 = f ◦ ψ2.
Define ψi, ψ

′
i : Pi −→ A by ψi = ψ1 ◦ qi and ψ′i = ψ2 ◦ qi for all i ∈ I.

Then

f ◦ ψi = f ◦ ψ1 ◦ qi = f ◦ ψ2 ◦ qi = f ◦ ψ′i

ψ1 = ψ1 ◦
(∑

i

qiπi

)
=

∑

i

ψ1 ◦ qi ◦ πi =
∑

i

ψiπi.

Similarly, ψ2 =
∑
i

ψ′i ◦ πi.

Since each Pi is projective, there exists an S-homomorphism ki, k
′
i : Pi −→

A for each i ∈ I, such that f ◦ ki and f ◦ k′i are Z-homomorphisms. Also
ψi + ki = ψ′i + k′i.
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Since f is k-regular, f ◦ ki and f ◦ k′i are Z-homomorphisms implies

f ◦ ki = 0 = f ◦ k′i for all i ∈ I.

Define k1 : P −→ A by k1 =
∑
i

ki ◦πi and k2 : P −→ A by k2 =
∑
i

k′i ◦πi.

Then f ◦ k1 = 0 = f ◦ k2 implies f ◦ k1 and f ◦ k2 are Z-homomorphisms
and ψ1 + k1 = ψ2 + k2.

So, P satisfies the property (ii) of projective S-semimodule. ¤

Theorem 3.7. Every diagram of S-semimodules and S-homomorphism of
the form

in which the row and the columns are exact, P1 and P3 are projective, g is
k-regular can be extended to a commutative diagram

in which the top row and the second column are exact and P2 is also projec-
tive.

Proof. Let P2 = P1 ⊕ P3. By Proposition 3.6, P2 is also projective. Since g
is an epic and β3 : P3 −→ C is an S-homomorphism then by projectivity of
P3, there exists an S-homomorphism λ : P3 −→ B such that β3 = gλ.
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Consider the diagram

where π : P2 −→ P3 is given by π(p2) = π(p1, p3) = p3 is an S-homomor-
phism and i : P1 −→ P2 such that i(p1) = (p1, 0) is an S-homomorphism.

Define a map β2 : P2 −→ B such that

β2(p2) = fβ1(p1) + λ(p3) where p1 ∈ P1 and p3 ∈ P3.

Now,

gβ2(p2) = gfβ1(p1) + gλ(p3)

= gλ(p3) (as g is k-regular and g ◦ f is a Z-homomorphism)

= β3(p3) = β3π(p2).

Therefore, gβ2 = β3π.
Now, β2i(p1) = β2(p1, 0) = fβ1(p1) + λ(0) = fβ1(p1). Therefore, β2i =

fβ1. Hence the diagram commutes.
To show β2 is an epic let b ∈ B. Then g(b) ∈ C. Since β3 is an epic there

exist p3, p
′
3 ∈ P3 such that g(b)+β3(p3)+x = β3(p′3)+x, for some x ∈ C or,

g(b)+ gλ(p3)+x = gλ(p′3)+x (as β3 = gλ) or, (b+λ(p3), λ(p′3)) ∈ Kg = Īf .
Therefore there exist a1, a2 ∈ A and some b1 ∈ B such that

b + λ(p3) + f(a1) + b1 = λ(p′3) + f(a2) + b1

which implies

b + β2(p2) + f(a1) + b1 = β2(p′2) + f(a2) + b1 (7)

where p2 = (0, p3) and p′2 = (0, p′3).
Since β1 is an epic there exist p′1, p

′′
1, p

′′′
1 , p′′′′1 ∈ P1 such that a1 + β1(p′1) +

a = β1(p′′1) + a and a2 + β1(p′′′1 ) + a′ = β1(p′′′′1 ) + a′ for some a, a′ ∈ A.
Adding the above, we get a1 + β1(q1) + a′′ = a2 + β1(q2) + a′′ where

q1 = p′1 + p′′′′1 , q2 = p′′1 + p′′′1 and a′′ = a+a′, which implies f(a1)+ fβ1(q1)+
f(a′′) = f(a2) + fβ1(q2) + f(a′′) or,

f(a1) + β2i(q1) + f(a′′) = f(a2) + β2i(q2) + f(a′′) (8)
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Adding β2i(q1) + f(a′′) on both sides of (7) we obtain

b+β2(p2)+f(a1)+β2i(q1)+f(a′′)+b1 = β2(p′2)+f(a2)+β2i(q1)+b1+f(a′′).

Using (8), we have b + β2(p2) + f(a2) + β2i(q2) + f(a′′) + b1 = β2(p′2) +
f(a2) + β2i(q1) + f(a′′) + b1 or, b + β2(p2 + i(q2)) + f(a2) + f(a′′) + b1 =
β2(p′2 + i(q1)) + f(a′′) + f(a2) + b1 which implies that β2 is an epic.

To show that top row is exact, we first show i is a monic. Let (x, y) ∈ Ki.
Then i(x) + (p1, p3) = i(y) + (p1, p3) for some (p1, p3) ∈ P2 or, (x, 0) +
(p1, p3) = (y, 0) + (p1, p3) which implies x + p1 = y + p1, for some p1 ∈ P1.
Therefore (x, y) ∈ ∆̄P1 . So, Ki ⊆ ∆̄P1 .

Hence i is a monic. Clearly, π is an epic as π is surjective.
Finally, we will show Kπ = Īi. Since π ◦ i(p1) = π(i(p1)) = π(p1, 0) =

0 for all p1 ∈ P1, π ◦ i is a Z-homomorphism. Therefore by Result 1.5,
Īi ⊆ Kπ.

Again, let (x, y) ∈ Kπ where x = (p1, p3) and y = (p′1, p
′
3). Then π(x) +

u = π(y) + u for some u ∈ P3 or,

p3 + u = p′3 + u. (9)

From equation (9) we have (p1, p3)+(p′1, 0)+(0, u) = (p′1, p
′
3)+(p1, 0)+(0, u)

or, (p1, p3) + i(q1) + z = (p′1, p
′
3) + i(q2) + z, where q1 = (p′1, 0), q2 = (p1, 0)

and z = (0, u), or, x+ i(q1)+z = y+ i(q2)+z, which implies that (x, y) ∈ Īi.
Therefore Kπ ⊆ Īi. So, Kπ = Īi. ¤

Theorem 3.8. Consider an exact sequence of S-semimodules

0 −→ P2
f2−→ P1

f1−→ P0 −→ 0

such that P0 and P1 are projective S-semimodules and P2 is cancellative and
every element in P1 has an additive inverse. Then the above sequence splits.

Proof. Consider the diagram

Since f1 is an epic then there exists g0 : P0 −→ P1 such that

f1g0 = IP0 . (10)

Let f = (IP1 − g0f1) : P1 −→ P1 be an S-homomorphism.
Then f + g0f1 = IP1 implies f1f + f1g0f1 = f1 or,

f1f + f1 = f1. (11)
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Let y ∈ J̄f . Then y + f(p1) + z = f(p′1) + z, for some p1, p
′
1 ∈ P1 and

z ∈ P1 implies f1(y) + f1f(p1) + f1(z) = f1f(p′1) + f1(z).
Adding f1(p1) + f(p′1) on both sides, we get f1(y) + f1f(p1) + f1(p1) +

f1(p′1) + f1(z) = f1f(p′1) + f1(p′1) + f1(p1) + f1(z). Using (11), we have
f1(y)+f1(p1)+f1(z)+f1(p′1) = f1(p′1)+f1(p1)+f ′(z) which implies (y, 0) ∈
Kf1 = Īf2 (By exactness).

Therefore, y + f2(p2) + u = f2(p′2) + u, for some p2, p
′
2 ∈ P2 and u ∈ P1

which implies y ∈ J̄f2 . Hence J̄f ⊆ J̄f2 .
Consider

Since f2 is an epic then by projectivity of P1, there exists S-homomorphism
g1 : P1 −→ P2 such that f2g1 = f, which implies f + g0f1 = f2g1 + g0f1 or,

IP1 = f2g1 + g0f1. (12)

From (12), f2 = f2g1f2 + g0f1f2 implies

f2(p2) = f2g1f2(p2) + g0f1f2(p2), p2 ∈ P2 (13)

Since f1f2 is a Z-homomorphism, we have f1f2(p2)+u = u, for some u ∈ P0

which implies g0f1f2(p2) + g0(u) = g0(u).
From (13), we have g0(u) + f2(p2) = f2g1f2(p2) + g0f1f2(p2) + g0(u) or,

f2(p2) + g0(u) = f2g1f2(p2) + g0(u), which implies (p2, g1f2(p2)) ∈ Kf2 =
∆̄P2 (as f2 is a monic), or g1f2(p2) + v = p2 + v, for some v ∈ P2, or
g1f2(p2) = p2 for all p2 ∈ P2 (as P2 is cancellative). Therefore

g1f2 = IP2 (14)

Hence (10), (12) and (14) implies that the given sequence splits. ¤
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