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A NOTE ON VERY WEAK SOLUTIONS FOR A CLASS OF
NONLINEAR ELLIPTIC EQUATIONS

LI JULING AND GAO HONGYA

Abstract. We prove a new a priori estimate for very weak solutions
of a class of nonlinear elliptic equations.

1. Introduction

Let Ω be a bounded regular domain in Rn. We consider very weak solu-
tions w ∈ W 1,r

0 (Ω, Rm) with r > max{1, p− 1} of the nonlinear system

−div
(
|g +∇w|p−2(g +∇w)

)
+ b(x) = 0 (1)

where g ∈ Lr(Ω, Rm×n), b(x) ∈ L
r

p−1 (Ω, Rm), the natural exponent p > 1
throughout in this paper. Equation (1) is understood in the weak sense,
that is ∫

Ω

|g +∇w|p−2(g +∇w) · ∇ϕdx +
∫

Ω

b(x)ϕ(x)dx = 0 (2)

for every ϕ ∈ W
1, r

r−p+1

0 (Ω, Rn).
Iwaniec and Sbordone studied the p–harmonic system in [2]

div(|∇u|p−2∇u) = 0. (3)

They have shown that there exist r1 = r1(p,m,Ω) and r2 = r2(p,m, Ω),
satisfying

1 < r1 < p < r2 < ∞
such that every very weak p–harmonic mapping u ∈ W 1,r1

loc (Ω, Rm) belongs
to W 1,r2

loc (Ω, Rm). They conjectured (Conjecture 1 in [2]) that every r1 >
max{1, p− 1} would do for the regularity result for the p–harmonic system,
but their estimate for r1 was very close to p.
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Juha Kinnunen and Shulin Zhou studied the following nonhomogeneous
system in [3]

div
(
|g +∇w|p−2(g +∇w)

)
= div h (4)

where g ∈ Lr(Ω, Rm×n) and h ∈ L
r

p−1 (Ω, Rm×n) are matrix fields. They
have shown that if w(x) ∈ W 1,r

0 (Ω, Rm) with r > max{1, p− 1} is the very
weak solution of (4), r can be chosen arbitrarily close to one when p is close
to two.

The objective of our note is to study equation (1) and we get a result
similar to the one of [3].

2. Main results

For the convenience of the reader we recall the formulation of the Hodge
decomposition (Theorem 3 in [2]).

Lemma 1. Let Ω be a regular domain in Rn and w ∈ W 1,r
0 (Ω, Rm) with

r > 1 and let −1 < ε < r − 1. Then there exist φ ∈ W
1, r

1+ε

0 (Ω, Rm) and a
divergence free matrix field H ∈ L

r
1+ε (Ω, Rm×n) such that

|∇w|ε∇w = ∇φ + H (5)

and
‖H‖ r

1+ε
,Ω ≤ Cr(Ω,m)|ε|‖∇w‖1+ε

r,Ω . (6)

Remark. Fot the definition of a regular domain see [2], and there we notice
that balls and cubes are regular domains in Rn.

The following Lemma comes from ([4] Theorem 2.3).

Lemma 2. (Poincare theorem) Let Ω be a bounded domain in Rn. Then
there exists a constant C = C(p, n, Ω) < ∞ such that for every u ∈ W 1,p

0 (Ω)

‖u‖p,Ω ≤ C‖∇u‖p,Ω. (7)

Theorem 1. Let r > max{1, p−1} and suppose that w ∈ W 1,r
0 (Ω, Rm), with

r satisfying (1). Then there exists δ = δ(m,Ω) > 0 such that if max{|p −
2|, |r − 1|} < δ, then∫

Ω

|∇w|rdx ≤ C(p,m, r,Ω)
∫

Ω

(|g|r + |b(x)| r
p−1 )dx. (8)

Proof. Using Lemma 1 with ε = r − p, we obtain functions φ1 ∈ W
1, r

r−p+1

0

(Ω, Rm) and H1 ∈ L
r

r−p+1 (Ω, Rm×n) such that

|∇w|r−p∇w = ∇φ1 + H1 (9)
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∫

Ω

H1 · ∇ϕdx = 0, for every ϕ ∈ W
1, r

p−1

0 (Ω, Rm) (10)

and
‖H1‖ r

r−p+1
,Ω ≤ C1|r − p|‖∇w‖r−p+1

r,Ω , C1 = Cr(Ω,m). (11)

In particular, we have

‖∇φ1‖ r
r−p+1

,Ω ≤ (C1 + 1)|r − p|‖∇w‖r−p+1
r,Ω . (12)

Since φ1 can be used as a test function in (2), we obtain∫

Ω

|g +∇w|p−2(g +∇w) · ∇φ1dx +
∫

Ω

b(x)φ1(x)dx = 0.

Inserting (9) we arrive at∫

Ω

|∇w|rdx =
∫

Ω

|∇w|p−2∇w ·H1dx−
∫

Ω

b(x)φ1(x)dx

+
∫

Ω

(|∇w|p−2∇w − |g +∇w|p−2(g +∇w)) · ∇φ1dx

= I1 + I2 + I3. (13)

We begin with estimating I1. By using Lemma 1 again with ε = p − 2,

we obtain φ2 ∈ W
1, r

p−1

0 (Ω, Rm) and H2 ∈ L
r

p−1 (Ω, Rm×n) such that

|∇w|p−2∇w = ∇φ2 + H2 (14)
∫

Ω

H2 · ∇ϕdx = 0, for every ϕ ∈ W
1, r

r−p+1

0 (Ω, Rm) (15)

and
‖H2‖ r

p−1
,Ω ≤ C1|p− 2|‖∇w‖p−1

r,Ω , C1 = Cr(Ω,m). (16)

Using (14), (15), (9), (10) and (16), we have

I1 =
∫

Ω

(∇φ2 + H2) ·H1dx =
∫

Ω

H1 ·H2

=
∫

Ω

(|∇w|r−p∇w −∇φ1) ·H2dx

=
∫

Ω

|∇w|r−p∇w ·H2dx

≤ C1|p− 2|‖∇w‖r
r,Ω.
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The same reasoning shows that

I1 ≤ C1|r − p|‖∇w‖r
r,Ω

and hence
I1 ≤ C1 min{|p− 2|, |r − p|}‖∇w‖r

r,Ω. (17)
Then we estimate I2, by Hölder inequality, we have

I2 = −
∫

Ω

b(x) · φ1dx ≤
(∫

Ω

|b(x)| r
p−1 dx

) p−1
r

·
(∫

Ω

|φ1|
r

r−p+1 dx

) r−p+1
r

.

Since φ1 ∈ W
1, r

r−p+1

0 (Ω, Rm), using Lemma 2

‖φ1‖ r
r−p+1

,Ω ≤ C‖∇φ1‖ r
r−p+1

,Ω

and hence

I2 ≤ C‖b(x)‖ r
p−1

,Ω‖∇φ1‖ r
r−p+1

,Ω ≤ C‖b(x)‖ r
p−1

,Ω‖∇w‖r−p+1
r,Ω . (18)

By virtue of (12), we may estimate I3 in the same way as in [2], by using
the Lipschitz property of |∇w|p−2∇w and we have

I3 ≤ C

∫

Ω

|g|(|∇w|+ |g|)p−2|∇φ1|dx

≤ C
(
‖g‖r,Ω‖|g|+ |∇w|‖p−2

r,Ω ‖∇φ1‖ r
r−p+1

,Ω

)

≤ C
(
‖g‖r,Ω‖|g|+ |∇w|‖p−2

r,Ω ‖∇w‖r−p+1
r,Ω

)

≤ C
(
‖g‖p−1

r,Ω ‖∇w‖r−p+1
r,Ω + ‖g‖r,Ω‖∇w‖r−1

r,Ω

)
. (19)

Using (13), (17), (18) and (19) we get
(
1− C1 min{|p− 2|, |r − p|}

)
‖∇w‖r

r,Ω

≤ C
(
‖b(x)‖ r

p−1
,Ω‖∇w‖r−p+1

r,Ω + ‖g‖p−1
r,Ω ‖∇w‖r−p+1

r,Ω + ‖g‖r,Ω‖∇w‖r−1
r,Ω

)
.

The only point remaining is to separate ‖∇w‖r from the terms in the right
hand side. This can be done routinely with the aid of Young’s inequality.
We continue in this fashion obtaining the estimate, for every θ > 0

(
1− C1 min{|p− 2|, |r − p|} − θ

)
‖∇w‖r

r,Ω ≤ Cθ

(
‖g‖r

r,Ω + ‖b‖
r

p−1
r

p−1
,Ω

)
.

In particular, if C1|p − 2| < 1, then (2) holds. Estimates for the constant
C1 = Cr(Ω,m) can be found in [1] and formula (11) in [2]. Using these
estimates it is easy to see that we may choose C1 = C(m, p, r,Ω). This
completes the proof of the theorem. ¤
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