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SOLUTIONS OF NEUMANN BOUNDARY VALUE
PROBLEMS FOR HIGHER ORDER NONLINEAR
FUNCTIONAL DIFFERENCE EQUATIONS WITH

p–LAPLACIAN

YUJI LIU

Abstract. Sufficient conditions for the existence of at least one solu-
tion of Neumann boundary value problems for higher order nonlinear
functional difference equations with p–Laplacian are established. We
allow f to be at most linear, superlinear or sublinear in the obtained
results.

1. Introduction

Solvability of boundary value problems for functional difference equations
were studied by many authors, one may see the text books [1, 2] for general
theory, papers [4, 7, 11, 13, 14, 15, 20-26] for boundary value problems of
second order difference equations, papers [5, 6, 8, 9, 10, 12] for boundary
value problems of higher order difference equations, and papers [16-19] for
periodic boundary value problems of difference equations.

In this paper, we study the boundary value problems for the higher order
nonlinear functional difference equation with p-Laplacian, i.e. the equation

∆[φ(∆x(n))] = f(n, x(n+1), x(n− τ1(n)), . . . , x(n− τm(n)), n ∈ [0, T − 1],
(1)

subject to the Neumann type boundary value conditions{
∆x(0) = 0, x(i) = γ(i), i ∈ [−τ, . . . ,−1],

∆x(T ) = 0, x(i) = ψ(i), i ∈ [T + 2, . . . , T + δ],
(2)

where φ : R → R is a homeomorphism with its inverse defined by φ−1, φ
satisfies the condition φ(x)x ≥ 0 for all x ∈ R, T ≥ 1, Z is the set of integers,
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τi : [0, T − 1] → Z, i = 1, · · · ,m,

τ = max{0, max
n∈[0,T−1]

{τi(n)} : i = 1, . . . , m},

δ = −min{0, min
n∈[0,T−1]

{τi(n)} : i = 1, . . . , m},

f : [0, T − 1] × Rm+1 → R is continuous, γ : [−τ,−1] → R, and ψ :
[T + 2, T + δ] → R. We suppose that

p = min{ min
n∈[0,T−1]

{n− τi(n)} : i = 1, . . . ,m} ≤ T − 1,

q = max{ max
n∈[0,T−1]

{n− τi(n)} : i = 1, . . . ,m} ≥ 1.

Then the set E = {n ∈ [0, T−1] : 1 ≤ n−τi(n) ≤ T−1, i = 1, · · · ,m} 6= ∅.
The motivation of this paper is mainly due to papers [4-7, 11, 13, 24].
In [24], Cabada and Otero-Espinar studied a class of boundary value

problems consisting of the second order difference equation and Neumann
boundary conditions

{
uk+2 = f(k, uk+1, uk), k ∈ [0, N − 1],
∆u0 = A, ∆uN = B.

Assuming the existence of of a pair of ordered lower and upper solutions γ
and β, existence results for solutions of the above problems were established.

Henderson and Thompson [4], using lower and upper solutions methods,
and Avery and Peterson [11], using fixed point theorem, proved the results
on existence of at least three solutions of the problem

{
∆2x(k − 1) + f(k, x(k), x(k)− x(k − 1)), k = 1, . . . , n− 1,
x(0) = x(n) = 0.

In [13], the authors studied the existence of positive solutions of the prob-
lem {

∆2x(k) + g(x(k)), k = 0, . . . , N,
x(0) = ∆x(N + 1) = 0

by using fixed point theorems in cones in Banach spaces. Liu and Ge in [7]
studied the problem

{
∆2x(k) + a(k)f(k, x(k)), k = 0, . . . , N,
∆x(N + 1) = 0, x(0)− α∆x(0) = 0.

Agarwal and Henderson in [6] established the existence results for positive
solutions of boundary value problem for the third order difference equation

{
∆3x(k) + a(k)f(x(k)) = 0, k = 0, . . . , T,
x(0) = x(1) = 0, x(T + 3) = 0.
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In [5], Kong, Kong and Zhang studied the existence of positive solutions of
the boundary value problems for third order functional difference equations





∆3x(k) + a(k)a(k)f(k, x(ω(k))) = 0, k = 0, . . . , T,
x(i) = φ(i), i ∈ [n1, 0], x(1) = 0,
x(i) = ψ(i), i ∈ [T + 3, n2],
φ(0) = ψ(T + 3) = 0.

Another motivation of this paper is due to the papers [27, 28] and the
references therein. In [27], Cabada and Otero-Espinar established the ex-
istence and comparison results for difference φ–Laplacian boundary value
problems consisting of the equation

−∆[φ(∆x(k))] = f(k, x(k + 1)), k ∈ {0, 1, . . . , N − 1}, (3)

and one of the following boundary conditions

∆x(0) = N0, ∆x(N) = N1, (4)

and
x(0)− x(N) = C0, ∆x(0)−∆x(N) = C1. (5)

The methods used in papers [27, 28] and the references cited there are
lower and upper solutions methods and monotone iterative technique and
comparison principles. In [27], the following assumptions are used.

(H1). φ : R → R is a strictly increasing homeomorphism and φ−1 is a
H–Lipschitzian function on R; i.e.,

|φ−1(x)− φ−1(y)| ≤ H|x− y|, x, y ∈ R.

(H∗
1 ). φ : R → R is a strictly increasing homeomorphism and φ−1 is a

locally H–Lipschitzian function on R; i.e., for every compact interval [h1, h2]
there exists H > 0 such that for all x, y ∈ [h1, h2]

|φ−1(x)− φ−1(y)| ≤ H|x− y|.
(H3). There exists M < 0 for which

f(k, x)−f(k, y) ≤ M(y−x), β(k) ≤ y ≤ x ≤ α(k), k ∈ I = [0, . . . , N −1].

Boundary value problem (1) and (2) is called Neumann type boundary
value conditions since Neumann boundary value problem for the second
order difference equation

{
∆2x(k) + g(k, x(k + 1), x(k)), k = 0, . . . , T − 1,
∆x(0) = ∆x(T ) = 0 (6)

is a special case of the boundary value problem (1) and (2). We know of no
other paper concerned with the solvability of problem (1) and (2).
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The purposes of this paper are to establish sufficient conditions for the ex-
istence of at least one solutions of BVP (1) and (2) by a different method. It
is interesting that we allow that f be sublinear, at most linear or superlinear.

This paper is organized as follows. In Section 2, we give the main results,
and in Section 3, the examples to illustrate the main results will be presented.

2. Main Results

To get existence results for solutions of BVP (1) and (2), we need the
following fixed point theorem, which was used to solve multi-point boundary
value problems for differential equations in many papers.

Let X and Y be Banach spaces, L : Dom L ⊂ X → Y be a Fredholm
operator of index zero, P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕ Im Q.

It follows that

L|Dom L∩Ker P : Dom L ∩Ker P → Im L

is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X, Dom L∩Ω 6= ∅, the map N : X → Y

will be called L−compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω →
X is compact.

Theorem GM. [3] Let L be a Fredholm operator of index zero and let N
be L–compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(DomL \KerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(iii) deg(∧QN |KerL , Ω∩KerL, 0) 6= 0, where ∧ : KerL → Y/ImL is the

isomorphism.

Then the equation Lx = Nx has at least one solution in DomL ∩ Ω.

Let X = RT+τ+δ+1 ×RT+1 be endowed with the norm

||(x, y)||X = max
{

max
n∈[0,T ]

|y(n)|, max
n∈[−τ,T+δ]

|x(n)|
}

,

Y = RT+1 ×RT be endowed with the norm

||(u, v)||Y = max
{

max
n∈[0,T ]

|u(n)|, max
n∈[0,T−1]

|v(n)|
}

.
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It is easy to see that X and Y are Banach spaces. Choose

DomL =





x ∈ X :

x(i) = 0, i ∈ [−τ, . . . ,−1],

x(i) ∈ R, i ∈ [0, T + 1],

x(i) = 0, i ∈ [T + 2, . . . , T + δ],





× {
y ∈ RT+1 : y(0) = y(T ) = 0

}
.

Let

L : DomL ∩X → Y, L •
(

x(n)
y(n)

)
=

(
∆x(n)
∆y(n)

)
, (x, y) ∈ DomL,

and N : X → Y by

N •
(

x(n)
y(n)

)
=

(
φ−1(y(n))

f
(
n,w(n + 1), w(n− τ1(n)), . . . , w(n− τm(n))

)
)

where w(n) = x(n) + x0(n), for all (x, y) ∈ X, where

x0(n) =





γ(n), n ∈ [−τ,−1],

0, n ∈ [0, T + 1],

ψ(n), n ∈ [T + 2, T + δ],

and y0(n) = 0 for all n ∈ [0, T ]. It is easy to show that

L •
(

x0(n)
y0(n)

)
= 0

and that (x, y) ∈ DomL is a solution of L • (x, y) = N • (x, y) imply that
x + x0 is a solution of problem (1) and (2).

It is easy to check the following results.

(i). KerL=





x ∈ RT+δ+τ+1 : xc(n)=





0, n ∈ [−τ, . . . ,−1],

c, n ∈ [0, T + 1],

0, n ∈ [T + 2, . . . , T + δ],
c ∈ R





× {(0, . . . , 0) ∈ RT+1}.
(ii). ImL =

{
(u, v) ∈ RT+1 ×RT :

∑T−1
n=0 v(n) = 0

}
.

(iii). L is a Fredholm operator of index zero.
(iv). There are projectors P : X → X and Q : Y → Y such that

KerL = ImP , KerQ = ImL. Furthermore, let Ω ⊂ X be an open bounded
subset with Ω ∩DomL 6= ∅, then N is L–compact on Ω.
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The projectors P : X → X and Q : Y → Y , the isomorphism ∧ : KerL →
Y/ImL and the generalized inverse Kp : ImL → DomL∩ ImP are as follows:

P •
(

x(n)
y(n)

)
=

(
x0(n)
y0(n)

)
,

x0(n) =





0, n ∈ [−τ,−1],
x(0), n ∈ [0, T + 1],
0, n ∈ [T + 2, T + δ],

y0(n) = 0, for n ∈ [0, T ],

Q •
(

u(n)
v(n)

)
=

(
u0(n)
v0(n)

)
,

u0(n) = 0, n ∈ [0, T ], v0(n) =
1
T

T−1∑

n=0

y(n), n ∈ [0, T − 1],

∧
(

xc

0

)
=

(
u0

v0

)
,

(xc, 0) = (
τ︷ ︸︸ ︷

0, . . . , 0,

T+2︷ ︸︸ ︷
c, . . . , c,

δ−1︷ ︸︸ ︷
0, . . . , 0,

T+1︷ ︸︸ ︷
0, . . . , 0) ∈ KerL,

u0(n) = 0, n ∈ [0, T ], v0(n) = c, n ∈ [0, T − 1],

Kp •
(

u(n)
v(n)

)
=

(
x(n)
y(n)

)
,

x(n) =





0, n ∈ [−τ,−1],∑n−1
j=0 u(j), n ∈ [0, T + 1],

0, n ∈ [T + 2, T + δ],

y(n) =
n−1∑

j=0

v(j), n ∈ [0, T − 1].

Suppose
(B). Let

xτi,c,0(n) =





γ(n− τi(n)), n− τi(n) ∈ [−τ,−1],
ψ(n− τi(n)), n− τi(n) ∈ [T + 2, T + δ],
c, n− τi(n) ∈ [0, T + 1].

There is a constant M > 0 such that

c

[
T−1∑

n=0

f(n, c, xτ1,c,0(n), . . . , xτm,c,0(n))

]
> 0
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for all |c| > M or

c

[
T−1∑

n=0

f(n, c, xτ1,c,0(n), . . . , xτm,c,0(n))

]
< 0

for all |c| > M .

Theorem L. Suppose that (B) holds and that there exist numbers β > 0,
θ > 1, nonnegative sequences pi(n), r(n)(i = 0, . . . , m), functions g(n, x0,
. . . , xm), h(n, x0, . . . , xm) such that f(n, x0, . . . , xm) = g(n, x0, . . . , xm) +
h(n, x0, . . . , xm) and

g(n, x0, x1, . . . , xm)x0 ≥ β|x0|θ+1,

and

|h(n, x0, . . . , xm)| ≤
m∑

s=0

pi(n)|xi|θ + r(n),

for all n ∈ {1, . . . , T}, (x0, x1, . . . , xm) ∈ Rm+1. Then problems (1) and (2)
have at least one solution if

||p0||+ T
θ

θ+1

m∑

i=1

||pi|| < β. (7)

Proof. To apply Theorem GM, we want to define an open bounded subset
Ω of X such that (i), (ii) and (iii) of Theorem GM hold.

Step 1. Let Ω1 = {(x, y) : L(x, y) = λN(x, y), ((x, y), λ) ∈ [(DomL \
KerL)]× (0, 1)}. For x ∈ Ω1, we have L • (x, y) = λN • (x, y), λ ∈ (0, 1), so

{
∆x(n) = λφ−1(y(n))
∆y(n) = λf(n,w(n + 1), w(n− τ1(n)), . . . , w(n− τm(n))). (8)

So

∆[φ(∆w(n))]w(n + 1) = λφ(λ)f(n,w(n + 1), w(n− τ1(n)), . . . ,

w(n− τm(n))w(n + 1).
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It is easy to see from (2) and the definition of w(n) = x(n) + x0(n) that

T−1∑

n=0

∆[φ(∆w(n))]w(n + 1)

=
T−1∑

n=0

[φ(∆w(n + 1))− φ(∆w(n))][w(n + 2)−∆w(n + 1)]

=
T−1∑

n=0

[φ(∆w(n + 1))w(n + 2)− φ(∆w(n))w(n + 1)]

T−1∑

n=0

φ(∆w(n + 1))∆w(n + 1)

= φ(∆w(T ))w(T + 1)− φ(∆w(0))w(1)−
T−1∑

n=0

φ(∆w(n + 1))∆w(n + 1)

= −
T−1∑

n=0

φ(∆w(n + 1))∆w(n + 1) ≤ 0.

So, we get

T−1∑

n=0

f(n,w(n + 1), w(n− τ1(n)), . . . , w(n− τm(n))w(n + 1) ≤ 0.

It follows that

β
T−1∑

n=0

|w(n + 1)|θ+1

≤
T−1∑

n=0

g(n,w(n + 1), w(n− τ1(n)), . . . , w(n− τm(n))w(n + 1)

≤ −
T−1∑

n=0

h(n,w(n + 1), w(n− τ1(n)), . . . , w(n− τm(n))w(n + 1)

≤
T−1∑

n=0

|h(n,w(n + 1), w(n− τ1(n)), . . . , w(n− τm(n))| |w(n + 1)|

≤
T−1∑

n=0

p0(n)|w(n + 1)|θ+1 +
m∑

i=1

T−1∑

n=0

pi(n)|w(n− τi(n))|θ|w(n + 1)|
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+
T−1∑

n=0

r(n)|w(n + 1)|

≤ ||p0||
T−1∑

n=0

|w(n + 1)|θ+1 +
m∑

i=1

||pi||
T−1∑

n=0

|w(n− τi(n))|θ|w(n + 1)|

+ ||r||
T−1∑

n=0

|w(n + 1)|.

For xi ≥ 0, yi ≥ 0, the Holder’s inequality implies
s∑

i=1

xiyi ≤
(

s∑

i=1

xp
i

)1/p (
s∑

i=1

yq
i

)1/q

, 1/p + 1/q = 1, q > 0, p > 0.

It follows that

β
T−1∑

n=0

|w(n + 1)|θ+1

≤ ||p0||
T−1∑

n=0

|w(n + 1)|θ+1 + ||r||T θ
θ+1

(
T−1∑

n=0

|w(n + 1)|θ+1

) 1
θ+1

+
m∑

i=1

||pi||
(

T−1∑

n=0

|w(n− τi(n))|θ+1

) θ
θ+1

(
T−1∑

n=0

|w(n + 1)|θ+1

) 1
θ+1

= ||p0||
T−1∑

n=0

|w(n + 1)|θ+1 + ||r||T θ
θ+1

(
T−1∑

n=0

|w(n + 1)|θ+1

) 1
θ+1

+
m∑

i=1

||pi||




∑

u∈{n−τi(n)−1:
n=0,...,T−1}

|w(u + 1)|θ+1




θ
θ+1 (

T−1∑

n=0

|w(n + 1)|θ+1

) 1
θ+1

≤ ||p0||
T−1∑

n=0

|w(n+1)|θ+1+||r||T θ
θ+1

(
T−1∑

n=0

|w(n+1)|θ+1

) 1
θ+1

+T
θ

θ+1

m∑

i=1

||pi||

×
(

T−1∑

n=0

|w(n + 1)|θ+1 +
T+δ∑

n=T

|ψ(n + 1)|θ+1 +
−1∑

n=−τ

|γ(n + 1)|θ+1

) θ
θ+1

×
(

T−1∑

n=0

|w(n + 1)|θ+1

) 1
θ+1
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= ||p0||
T−1∑

n=0

|w(n+1)|θ+1+||r||T θ
θ+1

(
T−1∑

n=0

|w(n+1)|θ+1

) 1
θ+1

+T
θ

θ+1

m∑

i=1

||pi||

×
(

1 +
∑T+δ

n=T |ψ(n + 1)|θ+1 +
∑−1

n=−τ |γ(n + 1)|θ+1

∑T−1
n=0 |w(n + 1)|θ+1

) θ
θ+1 T−1∑

n=0

|w(n+1)|θ+1.

It follows from (4) that there is M1 > 0 such that
∑T−1

u=0 |w(u+1)|θ+1 ≤ M1.
Hence |w(n+1)| ≤ (M1/T )1/(θ+1) for all n ∈ {0, . . . , T − 1}. Thus we get

|x(n+1)| ≤ |w(n+1)|+|x0(n+1)| ≤ (M1/T )1/(θ+1)+||x0||, n ∈ [0, . . . , T−1].

Hence ||x|| ≤ (M1/T )1/(θ+1) + ||x0||. Then

|y(n)| =
∣∣∣∣∣
n−1∑

s=0

∆y(s)

∣∣∣∣∣ ≤
n−1∑

s=0

|∆y(s)| ≤ T max
n∈[0,T−1],

|wi|≤(M1/T )1/(θ+1),
i=0,...,m

|f(n,w0, . . . , wm)|.

It follows that

||y|| ≤
n−1∑

s=0

|∆y(s)| ≤ T max
n∈[0,T−1],|wi|≤(M1/T )1/(θ+1),

i=0,...,m

|f(n, x0, . . . , xm)|.

So Ω1 is bounded. This completes Step 1.

Step 2. Prove that the set Ω2 = {(x, y) ∈ KerL : N(x, y) ∈ ImL} is
bounded.

For (x, y) ∈ KerL, we have x(n) = (
τ︷ ︸︸ ︷

0, . . . , 0,

T+2︷ ︸︸ ︷
c, . . . , c,

δ−1︷ ︸︸ ︷
0, . . . , 0) and y(n) =

0 for n ∈ [0, T ]. Thus we have

N

(
x(n)
y(n)

)
=

(
φ−1(y(n))
f(n,w(n + 1), w(n− τ1(n)), . . . , w(n− τm(n))))

)

=
(

0
f(n, c, xτ1,c,0, . . . , xτm,c,0)

)
,

where

xτi,c,0 =





γ(n− τi(n)), n− τi(n) ∈ [−τ,−1],
ψ(n− τi(n)), n− τi(n) ∈ [T + 2, T + δ],
c, n− τi(n) ∈ [0, T + 1].

N(x, y) ∈ ImL implies that
T−1∑

n=0

f(n, c, xτ1,c,0, . . . , xτm,c,0) = 0.
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It follows from condition (B) that |c| ≤ M . Thus Ω2 is bounded.

Step 3. Prove that the set Ω3 = {(x, y) ∈ KerL : ±λ ∧ (x, y) + (1 −
λ)QN(x, y) = 0, λ ∈ [0, 1]} is bounded.

If the first inequality of (B) holds, let

Ω3 = {(x, y) ∈ KerL : λ ∧ (x, y) + (1− λ)QN(x, y) = 0, λ ∈ [0, 1]}.

We will prove that Ω3 is bounded. For x(n) = (
τ︷ ︸︸ ︷

0, . . . , 0,

T+2︷ ︸︸ ︷
c, . . . , c,

δ−1︷ ︸︸ ︷
0, . . . , 0)

and y(n) = 0 for n ∈ [0, T ] such that (x, y) ∈ Ω3, and λ ∈ [0, 1], we have

−(1− λ)
T−1∑

n=0

f(n, c, xτ1,c,0, . . . , xτm,c,0) = λcT.

If λ = 1, then c = 0. If λ 6= 1, then

0 ≥ −(1− λ)c
T−1∑

n=0

f(n, c, xτ1,c,0, . . . , xτm,c,0) = λc2T > 0,

is a contradiction.
If the second inequality of (B) holds, let

Ω3 = {(x, y) ∈ KerL : −λ ∧ (x, y) + (1− λ)QN(x, y) = 0, λ ∈ [0, 1]},
Similarly, we can get a contradiction. So Ω3 is bounded.

Step 4. Obtain an open bounded set Ω such that (i), (ii) and (iii) in
Theorem GM hold.

In the following, we shall show that all conditions of Theorem GM are
satisfied. Set Ω be an open bounded subset of X such that Ω ⊃ ∪3

i=1Ωi.
We know that L is a Fredholm operator of index zero and N is L–compact
on Ω. By the definition of Ω, we have Ω ⊃ Ω1 and Ω ⊃ Ω2, thus L(x, y) 6=
λN(x, y) for x ∈ (DomL) \ KerL) ∩ ∂Ω and λ ∈ (0, 1); N(x, y) /∈ ImL for
(x, y) ∈ KerL ∩ ∂Ω.

In fact, let H(x, λ) = ±λ ∧ (x, y) + (1 − λ)QN(x, y). According the
definition of Ω, we know that Ω ⊃ Ω3, thus H((x, y), λ) 6= 0 for x ∈ ∂Ω ∩
KerL, thus by the homotopy property of degree,

deg(QN |KerL, Ω ∩KerL, 0) = deg(H(·, 0), Ω ∩KerL, 0)

= deg(H(·, 1),Ω ∩KerL, 0) = deg(±∧, Ω ∩KerL, 0) 6= 0

since 0 ∈ Ω. Thus by Theorem GM, L(x, y) = N(x, y) has at least one
solution in DomL∩Ω, which is a solution of problem (1) and (2). The proof
is completed. ¤
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3. An Example

In this section, we present an example to illustrate the main results in
Section 2.

Example 3.1. Consider the following problem




∆[(∆x(n))3] = β[x(n + 1)]2k+1 +
∑m

i=1 pi(n)[x(n− i)]2k+1 + r(n), for
n ∈ [0, T − 1],
∆x(0) = ∆x(T ) = 0,
x(i) = i, i ∈ [−m,−1],

(9)
where k is a nonnegative integer, β > 0, pi(n), r(n) are sequences.

Corresponding to the assumptions of Theorem L, we set φ(x) = |x|2x,
g(n, x0, . . . , xm) = β[x0]2k+1, h(, x0, . . . , xm) =

∑m
i=1 pi(n)x2k+1

i + r(n) with
θ = 2k + 1. It is easy to see that assumptions in Theorem L hold, and

f(n, c, xτ1,c,0, . . . , xτm,c,0) = c2k+1β +
m∑

i=1

pi(n)(n− i)2k+1 + r(n)

implies that there is M > 0 such that c
∑T−1

n=0 f(n, c, xτ1,c,0, . . . , xτm,c,0) > 0
for all n ∈ Z and |c| > M .

It follows from Theorem L that (9) has at least one solution if

||p0||+ T
2k+1
2k+2

m∑

i=1

||pi|| < β.
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