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ON A FUNCTIONAL EQUATION RELATED TO THE
DETERMINANT OF SYMMETRIC TWO-BY-TWO
MATRICES

KELLY B. HOUSTON AND PRASANNA K. SAHOO

ABSTRACT. The present work aims to find the solutions f,g,h,¢,m :
R? — R of the functional equation f(ux — vy, uy — vz) = g(z,y) +
h(u,v) + (x,y) m(u,v) for all z,y,u,v € R without any regularity as-
sumptions on the unknown functions. This equation is a generalization
of a functional equation which arises from the characterization of the
determinant of symmetric matrices.

1. INTRODUCTION
Let us define f : R? — R by

o =det (7 1)

for all z,y € R. Then, since

dd(ux—vy uy—vx>:d€t<x y> det(u U>’
uYy —vr Uur — VY Yy T vou

we have the functional equation

fuz — vy, uy —vz) = f(z,y) f(u,0) (1)

for all z,y,u,v € R. Obviously, f(z,y) = 22 — y? is a solution of the

functional equation (1). A functional equation similar to (1) was studied in
[2]. In the solved and unsolved problems column of the News Letter of the
European Mathematical Society, the second author [6] posed the following
problem: Determine the general solutions f : R?> — R of the functional
equation

fluz — vy, uwy —vz) = f(z,y) + f(u,0) + f(2,y) f(u,0) (2)
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for all z,y,u,v € R. In [4], among others we gave the general solution of
the functional equation (2) without any regularity assumptions on f. A
generalization of the functional equations (1) and (2) is the following:

flux — vy, uy —vz) = g(z,y) + h(u,v) + (z,y) m(u,v) (3)

for all z,y,u,v € R. Here f,g,h,¢,m : R?> — R are unknown functions to
be determined. For an account on the subject of functional equations the
interested reader should refer to [1], [3], [5], [7], [8], and [9].

In this paper, we determine the general solution of the functional equation
(3) without any regularity assumptions on the unknown functions f,g,h, ¢,m :
R? — R. Our method of solution is elementary and direct.

2. PRELIMINARY RESULTS

A function M : R — R is said to be a multiplicative function if and only
if it satisfies M (xy) = M(x) M(y) for all z,y € R. An identically constant
multiplicative function M is either M =0 or M = 1.

Let D be an interval in R such that whenever z,y € D, then zy € D.
A function L : D — R is said to be a logarithmic function if and only if
L(zy) = L(x) + L(y) for all z,y € D. Note that if 0 € D, then L = 0.

Lemma 1. Let D C R be an interval such that if x,y € D, then xy € D.
The general solution f: D?> — R of the functional equation

f(x1y2, z2y1) = f(@1,91) + f(y2, 22) (4)
holding for all x1,x2,y1,y2 € D is given by
f(z,y) = Li(z) + La2(y), (5)

where Ly, Ly : D — R are logarithmic functions. If D =R, then f(x,y) =0
is the only solution to functional equation (4).

Proof. Tt is easy to check that the solution enumerated in (5) satisfies func-
tional equation (4). Next, we show that (5) is the only solution of (4).
Suppose f is identically a constant, say f = ¢. Then from (4) we have
¢ = 0. Hence the identically constant solution of (4) is f(z,y) = 0 for all
x,y € D, which is a solution included in (5).
From now on we assume that f is not identically constant. Let a € D be
a fixed element and f : D? — R be such that it satisfies (4). Then

f(@,y) = f(z,y) + f(a,a) + f(a,a) — 2f(a,a)
= f(zaa,aay) — 2f(a,a)
((za)a, (ya)a) — 2f(a,a)
(za,a) + f(a,ya) — 2f(a,a)
(

)_f(ava)+f(a’ya)_f(a7a)
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= Li(z) + L2(y)
where
Ll(‘/E) = f(a:a, CL) - f(a7a)
and
L2(y) = f(a7ya) - f(av CL).
Now we show that L, and Ly are logarithmic functions in D. Consider
Ll(l'y) = f(xya, CL) - f((l,(l)
= f(xya, (I) + f(a,a) - 2f(CL, CL)
f(zyaa,aa) — 2f(a,a)
f(za,a) + f(ya,a) —2f(a,a)
f(xa,a) - f(CL, CL) + f(yava’) - f(a7 CL)
= Li(z) + L1(y)-
Hence L, is logarithmic. Similarly, one can show that
Ly(xy) = La(x) + La(y)
and hence L is logarithmic. Thus
f(z,y) = Li(x) + La(y)
where Ly and Lo are logarithmic functions. O

Lemma 2. Let D C R be an interval such that if x,y € D, then xy € D.
The general solution f : D?> — R of the functional equation

f(@1y2, zay1) = f(x1,01) fy2, v2) (6)
holding for all x1,x2,y1,y2 € D is given by
fz,y) = Mi(z) Ma(y), (7)

where My, My : D — R are multiplicative functions.

Proof. Tt is easy to check that the solution enumerated in (7) satisfies func-
tional equation (6). Next, we will show that (7) is the only solution of (6).

Suppose f is identically a constant, say f = ¢. Then from (6) we have
2 —c=0forall z,y € D. Hence ¢ = 1 or ¢ = 0. Thus the only identically
constant solutions of (6) are f(z,y) = 1 and f(z,y) = 0 for all z,y € D,
which are solutions included in (7).

From now on we assume that f is not identically constant. Let a € D be
a fixed element and f : D? — R be such that it satisfies (6) with f(a, a) # 0.

Then
f(x7 y) = f(li) y) f(aa a) f(av a) f(a’ (1)72
= f(zaa,aay) f(a,a)72
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f((za)a, (ya)a) f(a,a)~>
f(wa,a) f(a,ya) f(a,a)™

= f(za,a) f(a,a)~" f(a,ya) f(a,a)”"
= Mi(z )M( )

where
Mi () := f(za,a) f(a,a)""

and

Ma(y) == f(a,ya) fla,a)”".

Now we show that M; and M, are multiplicative functions in D. Consider
Ml(ajy) = f zrya, a‘) f(a’a a)_l

Hence M is multiplicative. Similarly, one can show that
My(zy) = Ma(x) Ma(y)
and hence My is multiplicative. Thus

f(z,y) = Mi(x) Ma(y)

where M7 and M, are multiplicative functions. O

Remark 1. Note that if we replace D by a commutative semigroup in
Lemma 1 and Lemma 2, then both of the lemmas are still valid.

Lemma 3. The general solution f,g:R? — R of the functional equation

f(@ry2, mayr) = flzr,p1) + f(y2, 22) + 9(z1,91) 9(@2, y2) (8)
holding for all x1,x2,y1,y2 € R is given by
{ fz,y) = 6* [M(xy) — 1] (9)
g9(x,y) = 6 [M(zy) — 1],

where M : R — R is a multiplicative function and d is an arbitrary constant.

Proof. Tt is easy to check that the solution enumerated in (9) satisfies func-
tional equation (8). Next, we will show that (9) is the only solution of (8).

Suppose g is identically constant, say ¢ = —J. Then from (8) we have
that

flaryz, way) = f(z1,11) + f(y2, x2) + 6° (10)
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for all x1,z2,y1,y2 € R. Now we define a function F : R? — R by

F(z,y) = f(z,y) + & (11)
for all z,y € R. Then (10) becomes
F(z1y2, xay1) = F(z1,y1) + F(y2, 22) (12)
for all x1,x2,y1,y2 € R. From Lemma 1, we see that the solution of (12) is
F(z,y) =0 (13)
for all x,y € R. Hence
fla,y) = = (14)

for all z,y € R, which is a solution included in (9).

From now on we assume that g is not identically constant. Interchanging
x1 with yo and xo with y; in (8) and comparing the resulting equations with
(8) we see that

9(z1,y1) 9(x2, y2) = 9(y1, 21) 9(y2, v2) (15)
for all 1, z2,y1,y2 € R. Since g is non-constant, there exists xg, yo € R such
that g(yo, o) # 0. Letting zo = z¢ and y2 = yo in (15) we obtain

9(y,z) = ag(z,y) (16)
for all x,y € R where « is a constant and « # 0 (since otherwise g = 0).

Setting z2 = y2 = 0 in (8) we obtain

for all x1,y; € R. Thus,
flz,y) = a0 g(z,y) (18)

for all z,y € R. Again note that ag # 0 since otherwise f = 0 and hence
g =0 by (8). Therefore,

9(z,y) =k f(z,y) (19)
for all z,y € R where the constant k # 0.
Now, using (19) in (8) we see that
f@rya, wayn) = f(@1,01) + fy2, 22) + K f(z1,51) f (2, 2) (20)
for all z1,x2,y1,y2 € R. Using (16) and (19) we see that
kf(zy) =g(z,y) = agly,z) = ak f(y,z)
which gives us
fla,y) = a fly,x) (21)
for all z,y € R.
Next, using (20) and (21) we have

flya, xan) = flz1, 1) + fy2, v2) + o k® f(z1,m1) fy2, 22) (22)
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for all x1,2,91,y2 € R. Define F': R? — R by

F(z,y) == ak® f(z,y) +1 (23)
for all z,y € R. Then using (22) and (23) we have
F(x1y2, 2y1) = F(21,91) F(y2, 72) (24)

for all z1,x9,y1,y2 € R.
From Lemma 2 we obtain

F(z,y) = Mi(z) Ma2(y) (25)
for all z,y € R. Thus from (19) and (23) we have
{ [z, y) = 2= [Mi(z) Ma(y) — 1]
9(x,y) = 3 [Mi(z) Ma(y) — 1]
for all z,y € R.

Substituting (26) back into (8) we see that a = 1 and M; = My = M for
all x € R. Thus if we write 6 = 1/ k, (26) becomes

{ f(z,y) = 6 [M(zy) — 1]
9(z,y) =6 [M(zy) — 1]

for all z,y € R, which is a solution to (8). This completes the proof of the
lemma. O

(27)

Lemma 4. The general solutions f,¢,m : R — R of the functional equation

f(xryz, zoy1) = fz1,91) + f(y2, 22) + €21, 91) m(z2, y2) (28)
holding for all x1,x2,y1,y2 € R are given by
o) =0 )
and
f(z,y) = 74 [Mi(x) Ma(y) — 1]
Ux,y) = & [Mi(z) Ma(y) — 1] (30)
m(z,y) = 7= [Mi(y) Ma(z) — 1],
where My, Ms : R — R are multiplicative functions and k1 and ko are arbi-

trary nonzero constants.

Proof. Tt is easy to check that the solutions enumerated in (29)-(30) satisfy
functional equation (28). Next, we will show that (29)-(30) are the only
solutions of (28).

Suppose £(z,y) m(u,v) = 0. Then (28) becomes

f(z1y2, way1) = f(x1,91) + f(y2, 22) (31)
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for all x1,x2,y1,y2 € R. From (31) and Lemma 1 we see that

flz,y) =0 (32)

for all z,y € R, which is a solution to (28).
Now, suppose {(z,y) = m(z,y) for all x,y € R. Then, (28) becomes

f(x1y2, way1) = f(x1,y1) + f(y2, 72) + (w1, 91) £(72, Y2) (33)

for all x1,x2,y1,y2 € R. From (33) and Lemma 3 we see that

fla,y) = 0% [M(xy) — 1]
U(z,y) = 0 [M (zy) — 1] (34)
m(z,y) = 0 [M(zy) — 1]

for all z,y € R where M : R — R is a multiplicative function, which is a
solution to (28) and a special case of (30).

Finally, suppose ¢(z,y) # m(z,y) and neither is identically zero. Setting
y2 = x2 = 0 in (28) we see that

f(Ov 0) = f(xlayl) + f(07 O) + g(xla yl) m(ov O) (35)
for all x1,y; € R. Thus,

for all z,y € R where k1 # 0 (since otherwise ¢ = 0).
Similarly, setting y; = x1 = 0 in (28) we see that

£(0,0) = £(0,0) + f(y2,z2) + £(0,0) m(z2, ya) (37)
for all x2,y2 € R. Thus,
m(z,y) = ka f(y, ) (38)

for all z,y € R where k2 # 0 (since otherwise m = 0).
Now using (28), (36), and (38) we have

f(xryz, xoy1) = flar,y1) + f(y2, x2) + ku ke f(zr, 1) fy2,22)  (39)
for all 21, 22,y1,y2 € R. Define a function H : R> — R by

H(z,y) :==kiks f(z,y) +1 (40)
for all x,y € R. Then (39) becomes
H(z1y2, zoy1) = H(z1,31) H(y2, 22) (41)

for all 1, x2,y1,y2 € R.
From Lemma 2 we get

H(z,y) = Mi(z) M2(y) (42)
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for all z,y € R. Thus using (36), (38), (40), and (42) we see that
flx,y) = 5 [Mi(z) Ma(y) — 1]
U(z,y) = 5 [My(z) Ma(y) — 1] (43)
m(z,y) = 1= [Mi(y) Ma(z) - 1],
for all x,y € R where My, M> : R — R are multiplicative functions, which
is a solution to (28). O
3. MAIN RESULT
Now we are ready to prove our main result.

Theorem 1. The general solutions f,g,h,¢,m : R> — R of the functional
equation

fuz — vy, uy —vx) = g(z,y) + h(u,v) + £(z,y) m(u,v) (44)
holding for all x,y,u,v € R are given by

flz,y) =100 — 1 — [

9(z,y) = a1 l(z,y) — B2+ a1z

h(z,y) = = (45)
U(x,y) isarbitrary

m('rvy) =1

flz,y) =100 — 1 — [

g(.f,y) = _62

h(z,y) = aam(z,y) — f1 + a1 a2 (46)
K(IL‘, y) = —Q2

m(x,y)is arbitrary

and

f(x,y) = g IMa(z +y)Ma(z —y) — 1) + a1 az = B1 — fo

9(x,y) = 5 [Mi(z + y) Ma(z —y) — 1]
+ % [Mi(z +y)Ma(z —y) — 1] = B2

W, y) = 5 [Mi(z + y) Ma(z — ) — 1] (47)
+ 2 [Mi(z—y) Moz +y) - 1] - p

Uz, y) = 15 [Mi(z +y)Ma(z —y) — 1] — oz
m(z,y) = 1= [Mi(z — y)Ma(z +y) — 1] — ay,

where My, Ms : R — R are multiplicative functions, aq, s, Bs and (31 are
arbitrary constants, and k1 and ko are nonzero arbitrary constants.
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Proof. 1t is easy to check that the solutions enumerated in (45)-(47) satisfy
functional equation (44). Next, we will show that (45)-(47) are the only
solutions of (44).

First, we define functions F, G, H, L, N : R> — R by

F(z,y) = f (3% %5Y)
G(z,y) =g (52, 5Y)

L($ay) _E(%’_y’%)

for all z,y € R. Using (48) in (44) we see that

F((z+y)(u—v), (z —y)(u+twv))
=Glz+y,z—y)+Hu+v,u—v)+ Lx+y,z—y) Nu+v,u—"v)
(49)

for all z,y,u,v € R. Letting x1 =z 4y, y1 =x —y, o =u—+ v, and yo =
u — v we have

F(z1y2, v2y1) = G(z1,y1) + H(22,y2) + L(z1,y1) N(z2,92)  (50)

for all z1,x2,y1,y2 € R.
Setting x9 = yo = 1 in (50) we have

F(z1,y1) = G(z1,91) + H(1,1) + L(z1,91) N(1,1) (51)
for all z1,y1 € R. Simplifying we get
F(x1,y1) = G(z1,y1) — a1 L(z1,y1) — A1 (52)

for all x1,y1 € R where o and (1 are arbitrary constants.
Similarly, setting 21 = y1 = 1 in (50) we have

F(y2,x2) = G(1,1) + H(z2,y2) + L(1,1) N(z2,y2) (53)
for all xo,y2 € R. Simplifying we get
F(ya2,x2) = H(x2,y2) — az N(w2,2) — B2 (54)

for all x2,y2 € R where ao and (2 are arbitrary constants.
Then using (50), (52), and (54) we have

F(x1y2,2x2y1) — B = F(x1,y1) + F(y2, x2) + o1 L(z1,51)
+ o N(x2,y2) + L(x1,y1) N(z2,92) (55)
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for all z1,22,y1,y2 € R where 8 = 31 + (2. Next, we define functions
F1,L1,N; : R? - R by

Fi(xz,y) :=F
):=1L

Li(z,y) == ) + o (56)

for all z,y € R. Thus using (55) and (56) we see that

Fi(z1y2, xoy1) = Fi(z1,y1) + F1(y2, x2) + Li(x1, y1) Ni(x2,92) (57)

for all 1, x2,y1,y2 € R.
By Lemma 4, (48), (52), (54), and (56) we see that

f(@,y) =ar1as =

g(x,y) = arl(z,y) + 1 +ar1a0 — 3

hw,y) = B - 5 (59)
(z,y) is arbitrary

m x,y) =—m

flz,y)=aras—

9(1773/) = 61 - 6

h(z,y) = aam(x,y) — B+ [2 + a1 a (59)
E(.I,y) = -2

m(x,y)is arbitrary

and

f(@,y) = 74 [Mi(z +y) Ma(z —y) — 1]+ 12 — 3

9(2,y) = 555 [Mi(z +y) Ma(z — y) — 1]
+ 5 [Mi(z +y) Ma(z —y) = 1]+ 51— 5

Wz, y) = 5 [Mi(z +y) Ma(z — y) — 1] (60)
+ 2 [Mi(z —y) Ma(z +y) — 1] = B+ B2

U(z,y) = 15 [Mi(z +y) Ma(z —y) — 1] — az
m(z,y) = 15 [Mi(z —y) Ma(z +y) — 1] — e

for all z,y € R where M;, M> : R — R are multiplicative functions. Note
that 8 = 1 + B2. Hence (58) - (60) yield the asserted solutions (45) - (47).
The proof of the theorem is now complete. O
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