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ON WEAKLY W2-SYMMETRIC MANIFOLDS

A. A. SHAIKH, SANJIB KUMAR JANA AND S. EYASMIN

Abstract. In the present paper we introduce a type of non-flat Rie-
mannian manifold called weakly W2-symmetric manifolds and study
their geometric properties. The existence of such manifolds is shown
by several non-trivial examples.

1. Introduction

The notions of weakly symmetric and weakly projective symmetric man-
ifolds were introduced by L. Tamássy and T. Q. Binh [8]. A non-flat Rie-
mannian manifold (Mn, g) (n > 2) is called a weakly symmetric manifold if
its curvature tensor R of type (0, 4) satisfies the condition

(∇XR)(Y, Z, U, V ) = α(X)R(Y, Z, U, V ) + β(Y )R(X,Z, U, V )

+ γ(Z)R(Y, X,U, V ) + δ(U)R(Y, Z,X, V )

+ σ(V )R(Y, Z, U,X) (1.1)

for all vector fields X, Y, Z, U, V ∈ χ(Mn), where α, β, γ, δ and σ are 1-
forms (not simultaneously zero) and ∇ denotes the operator of covariant
differentiation with respect to the Riemannian metric g. The 1-forms are
called the associated 1-forms of the manifold and an n-dimensional manifold
of this kind is denoted by (WS)n. Recently U. C. De and S. Bandyopadhyay
[2] established the existence of a (WS)n by an example and proved that in
a (WS)n, the associated 1-forms β = γ and δ = σ. Hence (1.1) reduces to
the following form:

(∇XR)(Y,Z, U, V ) = α(X)R(Y, Z, U, V ) + β(Y )R(X, Z, U, V )

+ β(Z)R(Y,X, U, V ) + δ(U)R(Y,Z, X, V )

+ δ(V )R(Y, Z, U,X) (1.2)
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Also De and Bandyopadhyay [3] studied weakly conformally symmetric man-
ifolds. Then the first author and his co-author [7] introduced the notion of
weakly quasi-conformally symmetric manifold with several examples. In this
connection it may be mentioned that although the definition of a (WS)n is
similar to that of a generalized pseudo-symmetric manifold introduced by
Chaki [1], the defining condition of a (WS)n is little weaker than that of a
generalized pseudo-symmetric manifold. That is, if in (1.1) the 1-form α is
replaced by 2α and σ is replaced by α then the manifold will be a generalized
pseudo-symmetric manifold [1].

In 1970 G. P. Pokhariyal and R. S. Mishra [5] introduced the notion of a
new curvature tensor, denoted by W2 and studied its relativistic significance.
The W2-curvature tensor of type (0, 4) is defined by

W2(X, Y, Z, U) = R(X, Y, Z, U) +
1

n− 1
[g(X, Z)S(Y, U)− g(Y, Z)S(X, U)]

(1.3)
where S is the Ricci tensor of type (0, 2) and r is the scalar curvature of
the manifold.

The present paper deals with a Riemannian manifold (Mn, g)(n > 2) (the
condition (n > 2) is assumed throughout this paper) whose W2-curvature
tensor is not identically zero and satisfies the condition

(∇XW2)(Y, Z, U, V ) = α(X)W2(Y, Z, U, V ) + β(Y )W2(X,Z, U, V )

+ γ(Z)W2(Y, X, U, V ) + δ(U)W2(Y, Z,X, V )

+ σ(V )W2(Y,Z, U,X), (1.4)

where α, β, γ, δ and σ are 1-forms (not simultaneously zero). Such a manifold
will be called a “weakly W2-symmetric manifold” and denoted by (WW2S)n;
where the first ‘W ’ stands for ‘ weakly’ and ‘W ′

2 stands for the ‘W2-curvature
tensor’.

Section 2 is concerned with preliminaries. It is shown that in a (WW2S)n

the associated 1-forms β = γ but δ 6= σ and hence the defining condition
(1.4) of a (WW2S)n takes the following form:

(∇XW2)(Y, Z, U, V ) = α(X)W2(Y, Z, U, V ) + β(Y )W2(X, Z,U, V )

+ β(Z)W2(Y, X,U, V ) + δ(U)W2(Y, Z, X, V )

+ σ(V )W2(Y, Z, U,X) (1.5)

where α, β, δ and σ are 1-forms (not simultaneously zero).
In Section 3 we investigate the nature of scalar curvature of a (WW2S)n.

It is proved that if in a (WW2S)n the Ricci tensor is of Codazzi type then
r
n is an eigenvalue of the Ricci tensor S corresponding to the eigenvector L
defined by g(X,L) = λ(X). Also it is shown that in a (WW2S)n, r

n is an
eigenvalue of the Ricci tensor S corresponding to the eigenvector associated
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with the 1-form β. Every (WS)n is a (WW2S)n but not conversely. However
we obtain a sufficient condition for a (WW2S)n to be a (WS)n.

Section 4 deals with an Einstein (WW2S)n and it is proved that if such a
manifold is (WS)n then the scalar curvature vanishes provided that α+β+δ
is non-vanishing everywhere. Also a sufficient condition for an Einstein
(WW2S)n to be a (WS)n is obtained. Finally it is shown that if the vector
field L defined by g(X, L) = λ(X) is a concurrent vector field in an Einstein
(WW2S)n then it reduces to a (WS)n. The last section provides the ex-
istence of a (WW2S)n with several non-trivial examples of both vanishing
and non-vanishing scalar curvature.

2. Preliminaries

In this section we derive some formulas which will be needed to the study
of a (WW2S)n. Let {ei : i = 1, 2, . . . , n} be an orthonormal basis of the
tangent space at any point of the manifold. Then from (1.3) we have the
following:

n∑

i=1

W2(ei, Y, Z, ei) =
n

n− 1
[S(Y, Z)− r

n
g(Y,Z)] =

n

n− 1
P (Y, Z), (2.1)

where P (Y, Z) = S(Y, Z)− r
ng(Y, Z),

n∑

i=1

W2(X,Y, ei, ei) = 0 =
n∑

i=1

W (ei, ei, Z, U), (2.2)

n∑

i=1

W2(X, ei, ei, U) = 0. (2.3)

Also from (1.3) it follows that

(i) W2(X, Y, Z, U) = −W2(Y, X, Z, U),

(ii) W2(X, Y, Z, U) 6= −W2(X,Y, U, Z),

(iii) W2(X, Y, Z, U) 6= W2(Z,U,X, Y ),

(iv) W2(X, Y, Z, U) + W2(Y, Z,X, U) + W2(Z,X, Y, U) = 0. (2.4)

In view of (1.3) we obtain by virtue of Bianchi identity that

(∇XW2)(Y, Z, U, V ) + (∇Y W2)(Z,X, U, V ) + (∇ZW2)(X, Y, U, V )

=
1

n− 1
[g(Y, U)(∇XS)(Z, V )− g(Z,U)(∇XS)(Y, V )

+ g(Z,U)(∇Y S)(X, V )− g(X,U)(∇Y S)(Z, V )

+ g(X,U)(∇ZS)(Y, V )− g(Y, U)(∇ZS)(X, V )]. (2.5)
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We now suppose that in a Riemannian manifold the Ricci tensor is of
Codazzi type [4]. Then we have

(∇XS)(Y, Z) = (∇Y S)(X, Z) = (∇ZS)(X,Y )

for all vector fields X, Y , Z on the manifold. Hence (2.5) yields

(∇XW2)(Y, Z, U, V ) + (∇Y W2)(Z, X, U, V ) + (∇ZW2)(X, Y, U, V ) = 0.
(2.6)

Conversely, if a Riemannian manifold satisfies the relation (2.6), then (2.5)
yields

g(Y,U)(∇XS)(Z, V )− g(Z, U)(∇XS)(Y, V ) + g(Z, U)(∇Y S)(X,V )

− g(X, U)(∇Y S)(Z, V ) + g(X, U)(∇ZS)(Y, V )− g(Y,U)(∇ZS)(X, V ) = 0.

Setting Y = V = ei in the above relation and then taking summation over
i, 1 ≤ i ≤ n we get

[(∇XS)(Z,U)− (∇ZS)(X,U)]− 1
2
[dr(X)g(Z,U)− dr(Z)g(X, U)] = 0,

which yields on contraction over Z and U that dr(X) = 0 for all X and
consequently the last relation reduces to

(∇XS)(Z,U) = (∇ZS)(X,U)

for all X,Z, U ∈ χ(M). Hence the Ricci tensor is of Codazzi type. Thus we
can state the following:

Proposition 2.1. In a Riemannian manifold (Mn, g) (n > 2), the Ricci
tensor is of Codazzi type if and only if the relation (2.6) holds.

Proposition 2.2. The defining condition of a (WW2S)n can always be
expressed in the form (1.5).

Proof. Interchanging Y and Z in (1.4) we get

(∇XW2)(Z, Y, U, V ) = α(X)W2(Z, Y, U, V ) + β(Z)W2(X, Y, U, V )

+ γ(Y )W2(Z, X, U, V ) + δ(U)W2(Z, Y, X, V )

+ σ(V )W2(Z, Y, U,X). (2.7)

Adding (1.4) and (2.7) we obtain by virtue of (2.4)(i) that

A(Y )W2(X, Z, U, V ) + A(Z)W2(X,Y, U, V ) = 0, (2.8)

where A(X) = β(X)− γ(X) for all X.
If we now choose a particular vector field ρ such that A(ρ) 6= 0 then putting
Y = Z = ρ in (2.8) we get W2(X, ρ, U, V ) = 0.
Again setting Z = ρ in (2.8) we obtain W2(X,Y, U, V ) = 0 for all vector
fields X, Y , U and V , which contradicts to our assumption that the manifold
is not W2-flat. Hence we must have A(X) = 0 for all X and consequently
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β(X) = γ(X) for all X.
But in view of (2.4)(ii) it follows that the relation δ = σ does not hold in

a (WW2S)n. Hence the defining condition of a (WW2S)n can be written as
(1.5). This proves the proposition. ¤

3. Nature of scalar curvature of a (WW2S)n

Let Q be the symmetric endomorphism of the tangent space at any
point of the manifold corresponding to the Ricci tensor S i.e., g(QX, Y ) =
S(X, Y ).
In view of (1.5), the relation (2.6) reduces to the following:

λ(X)W2(Y, Z, U, V ) + λ(Y )W2(Z,X, U, V ) + λ(Z)W2(X, Y, U, V )

+ σ(V )[W2(Y,Z, U,X) + W2(Z,X, U, Y ) + W2(X, Y, U, Z)] = 0 (3.1)

where λ(X) = α(X)− 2β(X) for all X.
Setting Y = V = ei in (3.1) and taking summation over i, 1 ≤ i ≤ n, we get
by virtue of (2.1) and (2.4) that

n

n− 1
[λ(X)P (Z, U)− λ(Z)P (X, U)] + λ(W2(Z, X)U) = 0. (3.2)

Again putting X = U = ei in (3.2) and taking summation over i, 1 ≤ i ≤ n,
we get

λ(QZ) =
r

n
λ(Z). (3.3)

That is,
S(Z,L) =

r

n
g(Z, L).

This leads to the following:

Theorem 3.1. If in a (WW2S)n the Ricci tensor is of Codazzi type then
r
n is an eigenvalue of the Ricci tensor S corresponding to the eigenvector L
defined by g(X, L) = λ(X) for all X.

Next by virtue of (1.5), the relation (2.5) takes the form

λ(X)W2(Y, Z, U, V ) + λ(Y )W2(Z,X, U, V ) + λ(Z)W2(X, Y, U, V )

+ σ(V )[W2(Y,Z, U,X) + W2(Z,X, U, Y ) + W2(X,Y, U, Z)]

=
1

n− 1
[{(∇Y S)(X,V )− (∇XS)(Y, V )}g(Z,U) + {(∇ZS)(Y, V )

− (∇Y S)(Z, V )}g(X, U) + {(∇XS)(Z, V )− (∇ZS)(X, V )}g(Y,U)]. (3.4)

Setting Y = V = ei in (3.4) and taking summation over i, 1 ≤ i ≤ n, we
obtain

n

n− 1
[λ(X)P (Z, U)− λ(Z)P (X, U)] + λ(W2(Z, X)U)
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=
1

n− 1
[(∇XS)(Z, U)− (∇ZS)(X,U)

+
1
2
{dr(Z)g(X,U)− dr(X)g(Z, U)}]. (3.5)

Putting X = U = ei in (3.5) and taking summation over i, 1 ≤ i ≤ n, we
get

n− 2
2n

dr(Z) = λ(QZ)− r

n
λ(Z). (3.6)

If the manifold is of constant scalar curvature then (3.6) reduces to (3.3).
Hence we can state the following:

Theorem 3.2. If a (WW2S)n is of constant scalar curvature then r
n is an

eigenvalue of the Ricci tensor S corresponding to the eigenvector L defined
by g(X, L) = λ(X) for all X.

Using (1.3) in the left hand side of (1.5) yields

(∇XR)(Y, Z, U, V ) +
1

n− 1
[(∇XS)(Z, V )g(Y, U)− (∇XS)(Y, V )g(Z, U)]

= α(X)W2(Y,Z, U, V ) + β(Y )W2(X, Z, U, V ) + β(Z)W2(Y, X,U, V )

+ δ(U)W2(Y, Z, X, V ) + σ(V )W2(Y,Z, U,X). (3.7)

Setting X = V = ei in (3.7) and taking summation over i, 1 ≤ i ≤ n, we
have

(divR)(Y,Z)U +
1

2(n− 1)
[dr(Z)g(Y,U)− dr(Y )g(Z, U)]

= α(W2(Y,Z)U) + σ(W2(Y, Z)U) +
1

n− 1
β(Y )[nS(Z,U)

− rg(Z,U)]− 1
n− 1

β(Z)[nS(Y, U)− rg(Y,U)], (3.8)

where ‘div ’ denotes the divergence.
Again replacing Z and U by ei in (3.8) and taking summation over i, 1 ≤
i ≤ n, we get by virtue of (2.2) and (2.3) that

β(QY ) =
r

n
β(Y ),

which can be written as

S(Y, ρ2) =
r

n
g(Y, ρ2), (3.9)

where S(Y, ρ2) = β(QY ) and g(Y, ρ2) = β(Y ). This leads to the following:

Theorem 3.3. In a (WW2S)n, r
n is an eigenvalue of the Ricci tensor S

corresponding to the eigenvector ρ2 defined by g(X, ρ2) = β(X) for all X.
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We now obtain a sufficient condition for a (WW2S)n to be a (WS)n. Let
us consider a (WW2S)n such that the Ricci tensor vanishes i.e., S(X, Y ) = 0
for all X and Y . Then from (1.3) it follows that

W2(X,Y, Z, U) = R(X, Y, Z, U). (3.10)

By virtue of (1.5) and (3.10) it can be easily seen that the relation (1.2)
holds. Thus we have the following:

Theorem 3.4. If in a (WW2S)n the Ricci tensor vanishes then it is a
(WS)n.

4. Einstein (WW2S)n

This section deals with a (WW2S)n which is an Einstein manifold. So we
have

S(X, Y ) =
r

n
g(X, Y ) (4.1)

from which it follows that

dr(X) = 0 and (∇ZS)(X,Y ) = 0 for all X, Y, Z. (4.2)

Using (4.1) and (4.2) in (1.3) we have

(∇XW2)(Y, Z, U, V ) = (∇XR)(Y, Z, U, V ). (4.3)

In view of (1.5), the relation (4.3) takes the form

(∇XR)(Y,Z, U, V ) = α(X)R(Y, Z, U, V ) + β(Y )R(X, Z, U, V )

+ β(Z)R(Y, X, U, V ) + δ(U)R(Y, Z,X, V )

+ σ(V )R(Y, Z, U,X) +
1

n− 1
[α(X){g(Y, U)S(Z, V )

− g(Z, U)S(Y, V )}+ β(Y ){g(X,U)S(Z, V )

− g(Z, U)S(X, V )}+ β(Z){g(Y, U)S(X, V )

− g(X, U)S(Y, V )}+ δ(U){g(X, Y )S(Z, V )

− g(Z, X)S(Y, V )}+ σ(V ){g(Y,U)S(Z, X)

− g(Z, U)S(X, Y )}]. (4.4)

Now if the Einstein (WW2S)n is a (WS)n, then using (1.2) and (4.1) in
(4.4) we obtain

[δ(V )− σ(V )]R(Y, Z, U,X)

=
r

n(n− 1)
[α(X){g(Y,U)g(Z, V )− g(Z, U)g(Y, V )}

+ β(Y ){g(X, U)g(Z, V )− g(Z, U)g(X, V )}
+ β(Z){g(Y, U)g(X,V )− g(X, U)g(Y, V )}
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+ δ(U){g(X,Y )g(Z, V )− g(Z, X)g(Y, V )}
+ σ(V ){g(Y, U)g(Z,X)− g(Z, U)g(X,Y )}]. (4.5)

Setting X = U = ei in (4.5) and then taking summation over i, 1 ≤ i ≤ n
we get

r[α(Y )g(Z, V )− α(Z)g(Y, V ) + (n− 1){β(Y )g(Z, V )− β(Z)g(Y, V )}
+ δ(Y )g(Z, V )− δ(Z)g(Y, V )] = 0. (4.6)

Further putting Z = V = ei in (4.6) and taking summation over i, 1 ≤ i ≤ n,
we have

r[α(Y ) + (n− 1)β(Y ) + δ(Y )] = 0. (4.7)
Again contracting (4.5) over X and Y we obtain

r[α(U)g(Z, V )− α(V )g(Z, U) + β(U)g(Z, V )− β(V )g(Z, U)

+ (n− 1){δ(U)g(Z, V )− δ(V )g(Z,U)}] = 0, (4.8)

which yields, on further contraction with respect to Z and V ,

r[α(U) + β(U) + (n− 1)δ(U)] = 0 for all U.

Replacing U by Y in the above equation we have

r[α(Y ) + β(Y ) + (n− 1)δ(Y )] = 0. (4.9)

Also replacing Y and V by ei in (4.5) and taking summation over i, 1 ≤ i ≤
n, we obtain

σ(R(X, U)Z)−δ(R(X, U)Z) =
r

n(n− 1)
[(n−1)α(X)g(Z,U) + β(X)g(Z, U)

+ (n− 2)β(Z)g(X, U) + (n− 1)δ(U)g(Z, X)

− σ(U)g(Z, X) + σ(X)g(Z, U)],

which yields, on contraction with respect to Z and U , that

r[nα(X) + 2β(X) + 2δ(X)] = 0 for all X.

Interchanging X and Y in the above equation we have

r[nα(Y ) + 2β(Y ) + 2δ(Y )] = 0. (4.10)

Adding (4.7), (4.9) and (4.10) we obtain

r = 0, if α(Y ) + β(Y ) + δ(Y ) 6= 0.

This leads to the following:

Theorem 4.1. If an Einstein (WW2S)n is a (WS)n then the scalar curva-
ture of the manifold vanishes provided that α + β + δ is not zero everywhere
on the manifold.
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Again in an Einstein (WW2S)n if r = 0, then we have S(X, Y ) = 0 for
all X, Y and hence (4.4) yields

(∇XR)(Y,Z, U, V ) = α(X)R(Y, Z, U, V ) + β(Y )R(X, Z, U, V ) (4.11)

+ β(Z)R(Y, X,U, V ) + δ(U)R(Y, Z,X, V )

+ σ(V )R(Y, Z, U,X). (4.12)

Thus we can state the following:

Theorem 4.2. An Einstein (WW2S)n with vanishing scalar curvature is a
(WS)n.

Definition 4.1. In a Riemannian manifold a vector field P is said to be
parallel if it satisfies the following condition:

∇XP = 0 for all X.

Let us now consider an Einstein (WW2S)n in which the vector field L
defined by g(X, L) = α(X)− 2β(X) is a parallel vector field. Then we have

∇XL = 0 for all X. (4.13)

Therefore, using Ricci identity we get

R(X, Y, L, U) = 0, which yields

S(Y, L) = 0. (4.14)
From (4.14) and (3.9), it follows that r = 0 if ||L||2 6= 0.
Again, if r = 0 then (4.1) implies that S(X, Y ) = 0 and consequently
from (4.4), it follows that the manifold is a (WS)n. Thus we can state the
following:

Theorem 4.3. If in an Einstein (WW2S)n the vector field L defined by
g(X,L) = λ(X) is a parallel vector field , then it is a (WS)n provided that
||L||2 6= 0.

Definition 4.2. A vector field T on a Riemannian manifold is said to be
concurrent [6] if ∇XT = kX where k is a constant.

In particular, if k = 0 then T is said to be a parallel vector field.
Next we suppose that in an Einstein (WW2S)n the vector field L defined

by g(X, L) = λ(X) = α(X)− 2β(X) is a concurrent vector field.
Then we have

∇XL = kX where k is a constant. (4.15)

Making use of Ricci identity we have

R(X, Y, L, U) = 0 which implies that

S(Y, L) = 0 for all Y. (4.16)
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Now (4.16) yields r = 0 provided that ||L||2 6= 0.
Thus arguing as in the case of parallel vector field we obtain that the man-
ifold under consideration is a (WS)n. Hence we can state the following:

Theorem 4.4. If in an Einstein (WW2S)n the vector field L defined by
g(X,L) = λ(X) is a concurrent vector field, then it is a (WS)n provided
that ||L||2 6= 0.

5. Examples of (WW2S)n

This section deals with several examples of (WW2S)n. On the real num-
ber space Rn (with coordinates x1, x2, . . . , xn) we define suitable Riemannian
metric g such that Rn becomes a Riemannian manifold (Mn, g). We calcu-
late the components of the curvature tensor, the Ricci tensor, W2-curvature
tensor and its covariant derivatives and then we verify the defining relation
(1.5).

Example 1. We define a Riemannian metric on the 4-dimensional real
number space R4 by the formula

ds2 = gijdxidxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + (kx1)2v(x4)(dx4)2,

(i, j = 1, 2, 3, 4) (5.1)

where f = p0 + p1x
3 + p2(x3)2, p0, p1 and p2 are non-constant functions of

x1 only, v is a function of x4 and k is a non-zero arbitrary constant.
Then the only non-vanishing components of the Christoffel symbols, the

curvature tensor and the Ricci tensor are

Γ2
11 =

1
2
f·1, Γ2

13 = −Γ3
11 =

1
2
f·3, Γ4

14 =
1
x1

, Γ2
44 = −k2x1v,

Γ4
44 =

(v)·4
2v

, R1331 =
1
2
f·33, S11 =

1
2
f·33,

and the components which can be obtained from these by the symmetry
properties. Here ‘.’ denotes the partial differentiation with respect to the
coordinates. Using the above relations, it can be easily shown that the scalar
curvature of the manifold is zero. Therefore R4 with the considered metric
is a Riemannian manifold M4 whose scalar curvature is zero. In view of the
above relations the non-zero components of the W2-curvature tensor and
their covariant derivatives are obtained as follows:

(W2)1211 = −1
6
f·33 = −1

3
p2, (5.2)

(W2)1331 =
1
3
f·33 =

2
3
p2, (5.3)

(W2)1313 = −1
2
f·33 = −p2, (5.4)
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(W2)1441 = −1
3
(kx1)2v(x4)p2, (5.5)

(W2)1211,1 = −1
3
(p2).1, (5.6)

(W2)1331,1 =
2
3
(p2).1, (5.7)

(W2)1313,1 = −(p2).1, (5.8)

(W2)1441,1 = −1
3
(kx1)2v(x4)(p2).1, (5.9)

and the components which can be obtained from (5.2)-(5.9) by the symmetry
properties, where ’.’ denotes the covariant differentiation with respect to the
metric tensor g. Hence our (M4, g) is neither W2-flat nor W2-symmetric.

We shall now show that this M4 is a (WW2S)4, i.e., it satisfies (1.5). Let
us now consider the 1-forms




αi(x) = (p2).1

3p2
for i = 1,

= 0 otherwise,
βi(x) = 2(p2).1

3p2
for i = 1,

= 0 otherwise,
δi(x) = 0 for all i,

σi(x) = 0 for all i

(5.10)

at any point x ∈ M . In our M4, (1.5) reduces with these 1-forms to the
following equations

(i) (W2)1211,1 = α1(W2)1211 + β1(W2)1211 + β2(W2)1111 + δ1(W2)1211 +
σ1(W2)1211,

(ii) (W2)1331,1 = α1(W2)1331 + β1(W2)1331 + β3(W2)1131 + δ3(W2)1311 +
σ1(W2)1331,

(iii) (W2)1313,1 = α1(W2)1313 + β1(W2)1313 + β3(W2)1113 + δ1(W2)1313 +
σ3(W2)1311,

(iv) (W2)1441,1 = α1(W2)1441 + β1(W2)1441 + β4(W2)1141 + δ4(W2)1411 +
σ1(W2)1441,

since for the cases other than (i)-(iv) the components of each term of (1.5)
vanishes identically and the relation (1.5) holds trivially. Now from (5.2)
and (5.6) we get the following relations for the right hand side (R.H.S.) and
left hand side (L.H.S.) of (i):

R.H.S. of (i) = (α1 + β1 + δ1 + σ1)(W2)1211

= −1
3
(p2).1

= L.H.S. of (i).
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By a similar argument as in (i) it can be shown that the relations (ii)-(iv)
are true. Hence we can state the following:

Theorem 5.1. Let (M4, g) be a Riemannian manifold endowed with the
metric

ds2 = gijdxidxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + (kx1)2v(x4)(dx4)2,

(i, j = 1, 2, 3, 4)

where f = p0 + p1x
3 + p2(x3)2, p0, p1 and p2 are non-constant functions of

x1 only, v is a function of x4 and k is a non-zero arbitrary constant. Then
(M4, g) is a weakly W2-symmetric manifold with vanishing scalar curvature
which is neither W2-symmetric nor W2-recurrent.

In particular, if we take p2 = ex1
, then (5.2) to (5.9) are respectively

reduce to the following

(W2)1211 = −1
3
ex1

, (5.11)

(W2)1331 =
2
3
ex1

, (5.12)

(W2)1313 = −ex1
, (5.13)

(W2)1441 = −1
3
(kx1)2v(x4)ex1

, (5.14)

(W2)1211,1 = −1
3
ex1

, (5.15)

(W2)1331,1 =
2
3
ex1

, (5.16)

(W2)1313,1 = −ex1
, (5.17)

(W2)1441,1 = −1
3
(kx1)2v(x4)ex1

, (5.18)

and hence the manifold under consideration is neither W2-symmetric nor
W2-recurrent. If we consider the 1-forms





αi(x) = 1
3 for i = 1,

= 0 otherwise,
βi(x) = 2

3 for i = 1,

= 0 otherwise,
δi(x) = 0 for all i,

σi(x) = 0 for all i

(5.19)
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then proceeding similarly as the previous case it can be easily shown by
virtue of (5.11)-(5.19) that the manifold under consideration satisfies (i)-
(iv) and hence is a (WW2S)4. Thus we have the following:

Theorem 5.2. Let (M4, g) be a Riemannian manifold endowed with the
metric

ds2 = gijdxidxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + (kx1)2v(x4)(dx4)2,

(i, j = 1, 2, 3, 4)

where f = p0 +p1x
3 +ex1

(x3)2, p0, p1 are non-constant functions of x1 only,
v is a function of x4 and k is a non-zero arbitrary constant. Then (M4, g)
is a weakly W2-symmetric manifold with vanishing scalar curvature which is
neither W2-symmetric nor W2-recurrent.

Example 2. Let Mn = {(x1, x2, . . . , xn) ∈ Rn : 0 < x3 < 1} (n ≥ 4)
endowed with the metric

ds2 = gijdxidxj = f(dx1)2+2dx1dx2+
n∑

k=3

(dxk)2, (i, j = 1, 2, . . . , n) (5.20)

where f = a0 + a1x
3 + ex1[1

2(x3)2 + 1
6(x3)3 + · · ·+ 1

(n−2)(n−3)(x
3)n−2

]
, a0, a1

are functions of x1 only.
Then the only non-vanishing components of the Christoffel symbols, the

curvature tensor, the Ricci tensor, the W2-curvature tensor and their co-
variant derivatives are Γ2

11 = 1
2f·1, Γ2

13 = −Γ3
11 = 1

2f·3, R1331 = 1
2f·33,

S11 = 1
2f·33,

(W2)1211 = − 1
2(n−1)e

x1
[1−(x3)n−3

1−x3 ],

(W2)1331 = n−2
2(n−1)e

x1
[1−(x3)n−3

1−x3 ],

(W2)1313 = − n−2
2(n−1)e

x1
[1−(x3)n−3

1−x3 ],

(W2)1pp1 = − 1
2(n−1)e

x1
[1−(x3)n−3

1−x3 ] for 4 ≤ p ≤ n,

(W2)1211,1 = − 1
2(n−1)e

x1
[1−(x3)n−3

1−x3 ],

(W2)1211,3 = − 1
2(n−1)e

x1
[1−(n−3)(x3)n−4(1−x3)

(1−x3)2
],

(W2)1331,1 = n−2
2(n−1)e

x1
[1−(x3)n−3

1−x3 ],

(W2)1331,3 = n−2
2(n−1)e

x1
[1−(n−3)(x3)n−4(1−x3)

(1−x3)2
],

(W2)1313,1 = − n−2
2(n−1)e

x1
[1−(x3)n−3

1−x3 ],

(W2)1313,3 = − n−2
2(n−1)e

x1
[1−(n−3)(x3)n−4(1−x3)

(1−x3)2
],

(W2)1pp1,1 = − 1
2(n−1)e

x1
[1−(x3)n−3

1−x3 ],
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(W2)1pp1,3 = − 1
2(n−1)e

x1
[1−(n−3)(x3)n−4(1−x3)

(1−x3)2
], for 4 ≤ p ≤ n

and the components which can be obtained from these by the symmetry
properties, where ‘.’ denotes the partial differentiation with respect to the
coordinates, ‘,’ denotes the covariant differentiation and Sij denotes the
components of the Ricci tensor. Using the above relations, it can be eas-
ily shown that the scalar curvature of the manifold is zero. Therefore our
Mn with the considered metric is a Riemannian manifold which is neither
W2-symmetric nor W2-recurrent.

We shall now show that this Mn is a (WW2S)n, i.e., it satisfies (1.5). If
we consider the 1-forms

αi(x) =
7
8

for i = 1,

=
1− (n− 3)(x3)n−4(1− (x3)

(1− x3){1− (x3)n−3} for i = 3,

= 0 otherwise,

βi(x) =
1
8

for i = 1,

= −(n− 4)(x3)n−4

1− (x3)n−3
for i = 3,

= 0 otherwise,

δi(x) =
(n− 4)(x3)n−4

1− (x3)n−3
for i = 3,

= 0 otherwise,

σi(x) =
(n− 4)(x3)n−4

1− (x3)n−3
for i = 3,

= 0 otherwise,

at any point x ∈ M then proceeding similarly as in Example 1, it can be
easily shown that the manifold under consideration is a (WW2S)n. Hence
we can state the following:

Theorem 5.3. Let Mn(n ≥ 4) be a Riemannian manifold endowed with
the metric given in (5.20). Then (Mn, g) is a weakly W2-symmetric man-
ifold with vanishing scalar curvature which is neither W2-symmetric nor
W2-recurrent.

Example 3. Let M4 = {(x1, x2, x3, x4) ∈ R4 : ex1 6= K2

4 ,K 6= 0} endowed
with the metric

ds2 = gijdxidxj = (1 + 2γ)
[
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

]
,

(i, j = 1, 2, 3, 4) (5.21)



ON WEAKLY W2-SYMMETRIC MANIFOLDS 87

where γ = ex1

K2 and K is a non-zero constant.
Then the only non-vanishing components of the Christoffel symbols, the

curvature tensor, the Ricci tensor, the scalar curvature, the W2-curvature
tensor and their covariant derivatives are

Γ1
11 = Γ1

22 = Γ1
33 = Γ1

44 = − γ

1 + 2γ
, Γ2

12 = Γ3
13 = Γ4

14 =
γ

1 + 2γ
,

R1221 = R1331 = R1441 =
γ

1 + 2γ
,

S11 =
3γ

(1 + 2γ)2
, S22 = S33 = S44 =

γ

(1 + 2γ)2
, r =

6γ

(1 + 2γ)3
6= 0,

(W2)1212 = (W2)1313 = (W2)1414 = − 2γ

3(1 + 2γ)
, (5.22)

(W2)2332 = (W2)2442 = (W2)3443 = − γ

3(1 + 2γ)
, (5.23)

(W2)2323 = (W2)2424 = (W2)3434 =
γ

3(1 + 2γ)
, (5.24)

(W2)1212,1 = (W2)1313,1 = (W2)1414,1 = − 2γ

3(1 + 2γ)2
, (5.25)

(W2)2332,1 = (W2)2442,1 = (W2)3443,1 =
γ(4γ − 1)
3(1 + 2γ)2

, (5.26)

(W2)2323,1 = (W2)2424,1 = (W2)3434,1 = − γ(4γ − 1)
3(1 + 2γ)2

, (5.27)

and the components which can be obtained from these by the symmetry
properties, where ‘,’ denotes the covariant differentiation with respect to
the metric tensor g. Therefore our M4 with the considered metric is a
Riemannian manifold of non-vanishing scalar curvature and the manifold is
neither W2-symmetric nor W2-recurrent.
We shall now show that this M4 is a (WW2S)4, i.e., it satisfies (1.5). If we
consider the 1-forms

αi(x) = 1−4γ
1+2γ for i = 1,

= 0 otherwise,
βi(x) = γ

1+2γ for i = 1,

= 0 otherwise,
δi(x) = 3γ

1+2γ for i = 1,

= 0 otherwise,
σi(x) = 1

1+2γ for i = 1,

= 0 otherwise,
at any point x ∈ M . In our M4, (1.5) reduces with these 1-forms to the
following equations
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(i) (W2)1212,1 = α1(W2)1212 + β1(W2)1212 + β2(W2)1112 + δ1(W2)1212 +
σ2(W2)1211,

(ii) (W2)1313,1 = α1(W2)1313 + β1(W2)1313 + β3(W2)1113 + δ1(W2)1313 +
σ3(W2)1311,

(iii) (W2)1414,1 = α1(W2)1414 + β1(W2)1414 + β4(W2)1114 + δ1(W2)1414 +
σ4(W2)1411,

(iv) (W2)2332,1 = α1(W2)2332 + β2(W2)1332 + β3(W2)2132 + δ3(W2)2312 +
σ2(W2)2331,

(v) (W2)2442,1 = α1(W2)2442 + β2(W2)1442 + β4(W2)2142 + δ4(W2)2412 +
σ2(W2)2441,

(vi) (W2)3443,1 = α1(W2)3443 + β3(W2)1443 + β4(W2)3143 + δ4(W2)3413 +
σ3(W2)3441,

(vii) (W2)2323,1 = α1(W2)2323 + β2(W2)1323 + β3(W2)2123 + δ2(W2)2313 +
σ3(W2)2321,

(viii) (W2)2424,1 = α1(W2)2424 + β2(W2)1424 + β4(W2)2124 + δ2(W2)2414 +
σ4(W2)2421,

(ix) (W2)3434,1 = α1(W2)3434 + β3(W2)1434 + β4(W2)3134 + δ3(W2)3414 +
σ4(W2)3431,

since for the cases other than (i)-(ix) the components of each term of (1.5)
vanishes identically and the relation (1.5) holds trivially. Now from (5.22)
and (5.25) we get the following relations for the right hand side (R.H.S.)
and left hand side (L.H.S.) of (i):

R.H.S. of (i) = (α1 + β1 + δ1)(W2)1212

= − 2γ

3(1 + 2γ)2

= L.H.S. of (i).

By a similar argument as in (i) it can be shown that the relations (ii)-(ix)
are true. Hence we can state the following:

Theorem 5.4. Let M4 be a Riemannian manifold endowed with the metric
given in (5.21). Then (M4, g) is a weakly W2-symmetric manifold with non-
vanishing scalar curvature which is neither W2-symmetric nor W2-recurrent.

Example 4. Let M4 = {(x1, x2, x3, x4) ∈ R4 : 0 < x4 < 1} endowed with
the metric

ds2 = gijdxidxj = (x4)
4
3
[
(dx1)2 + (dx2)2 + (dx3)2

]
+ (dx4)2,

(i, j = 1, 2, 3, 4). (5.28)

Then the only non-vanishing components of the Christoffel symbols, the
curvature tensor, the Ricci tensor, the scalar curvature, the W2-curvature
tensor and their covariant derivatives are given by
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Γ1
14 = Γ2

24 = Γ3
34 = 2

3x4 , Γ4
11 = Γ4

22 = Γ4
33 = −2

3(x4)
1
3 , R1441 = R2442 =

R3443 = 2

9(x4)
2
3
,

S11 = S22 = S33 = 2

9(x4)
2
3
, S44 = 2

3(x4)2
, r = 4

3(x4)2
6= 0,

(W2)1221 = (W2)1331 = (W2)2332 = − 2
27(x4)

2
3 ,

(W2)1441 = (W2)2442 = (W2)3443 = 4

27(x4)
2
3
,

(W2)1212 = (W2)1313 = (W2)2323 = 2
27(x4)

2
3 ,

(W2)1221,4 = (W2)1331,4 = (W2)2332,4 = 4

27(x4)
1
3
,

(W2)1441,4 = (W2)2442,4 = (W2)3443,4 = − 8

27(x4)
5
3
,

(W2)1212,4 = (W2)1313,4 = (W2)2323,4 = − 4

27(x4)
1
3
,

and the components which can be obtained from these by the symmetry
properties, where ‘,’ denotes the covariant differentiation with respect to
the metric tensor g. Therefore our M4 with the considered metric is a
Riemannian manifold which is neither W2-symmetric nor W2-recurrent and
of non-vanishing and non-constant scalar curvature.

We shall now show that this M4 is a (WW2S)4, i.e., it satisfies (1.5). If
we consider the 1-forms

αi(x) = −1 for i = 1, 2, 3,
= − 2

x4 for i = 4,
βi(x) = 1

5 for i = 1, 2, . . . , 4,
δi(x) = −1

5 for i = 1, 2, . . . , 4,
σi(x) = −1

5 for i = 1, 2, 3,
= 0 for i = 4,

at any point x ∈ M then proceeding similarly as in Example 3, it can be
easily shown that the manifold under consideration is a (WW2S)4. Hence
we can state the following:

Theorem 5.5. Let M4 be a Riemannian manifold endowed with the metric
given in (5.28). Then (M4, g) is a weakly W2-symmetric manifold with non-
vanishing scalar curvature which is neither W2-symmetric nor W2-recurrent.

Example 5. Let Mn = {(x1, x2, . . . , xn) ∈ Rn : 0 < x4 < 1} (n ≥ 4)
endowed with the metric

ds2 = gijdxidxj =
[
(x4)

4
3 −1

][
(dx1)2+(dx2)2+(dx3)2

]
+δabdxadxb, (5.29)

0 < x4 < 1, where δab is the Kronecker delta and a, b run from 1 to n.
Then the only non-vanishing components of the Christoffel symbols, the

curvature tensor, the Ricci tensor, the scalar curvature, the W2-curvature
tensor and their covariant derivatives are given by
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Γ1
14 = Γ2

24 = Γ3
34 = 2

3x4 , Γ4
11 = Γ4

22 = Γ4
33 = −2

3(x4)
1
3 ,

R1441 = R2442 = R3443 = 2

9(x4)
2
3
,

S11 = S22 = S33 = 2

9(x4)
2
3
, S44 = 2

3(x4)2
, r = 4

3(x4)2
6= 0,

(W2)1221 = (W2)1331 = (W2)2332 = − 2
9(n−1)(x

4)
2
3 ,

(W2)1441 = (W2)2442 = (W2)3443 = 2(n−2)

9(n−1)(x4)
2
3
,

(W2)1212 = (W2)1313 = (W2)2323 = 2
9(n−1)(x

4)
2
3 ,

(W2)1414 = (W2)2424 = (W2)3434 = − 2(n−4)

9(n−1)(x4)
2
3
,

(W2)1qq1 = (W2)2qq2 = (W2)3qq3 = − 2

9(n−1)(x4)
2
3
,

(W2)4qq4 = − 2

3(n−1)(x4)
2
3

for 5 ≤ q ≤ n,

(W2)1221,4 = (W2)1331,4 = (W2)2332,4 = 4

9(n−1)(x4)
1
3
,

(W2)1441,4 = (W2)2442,4 = (W2)3443,4 = − 4(n−2)

9(n−1)(x4)
5
3
,

(W2)1212,4 = (W2)1313,4 = (W2)2323,4 = − 4

9(n−1)(x4)
1
3
,

(W2)1414,4 = (W2)2424,4 = (W2)3434,4 = 4(n−4)

9(n−1)(x4)
5
3
,

(W2)1qq1,4 = (W2)2qq2,4 = (W2)3qq3,4 = 4

9(n−1)(x4)
5
3
,

(W2)4qq4,4 = 4

9(n−1)(x4)
5
3

for 5 ≤ q ≤ n,

and the components which can be obtained from these by the symmetry
properties where ‘,’ denotes the covariant differentiation with respect to
the metric tensor g. Therefore our Mn with the considered metric is a
Riemannian manifold which is neither W2-symmetric nor W2-recurrent and
of non-vanishing and non-constant scalar curvature.

We shall now show that this Mn is a (WW2S)n, i.e., it satisfies (1.5). If
we consider the 1-forms

αi(x) = − 2
3x4 for i = 4,

= 0 otherwise,
βi(x) = 1

x4 for i = 4,
= 0 otherwise,

δi(x) = − 1
x4 for i = 4,

= 0 otherwise,
σi(x) = 1

3x4 for i = 4,
= 0 otherwise,

at any point x ∈ M then proceeding similarly as in Example 3, it can be
easily shown that the manifold under consideration is a (WW2S)n. Hence
we can state the following:
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Theorem 5.6. Let Mn be a Riemannian manifold endowed with the metric
given in (5.29). Then (Mn, g) is a weakly W2-symmetric manifold with non-
vanishing scalar curvature which is neither W2-symmetric nor W2-recurrent.
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