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ON SPECIAL WEAKLY RICCI-SYMMETRIC KENMOTSU
MANIFOLDS

NESIP AKTAN, ALI GÖRGÜLÜ AND ERDAL ÖZÜSAĞLAM

Abstract. In this paper, we have studied special weakly Ricci sym-
metric Kenmotsu manifolds. We show that if a special weakly Ricci-
symmetric Kenmotsu manifold admits a cyclic parallel Ricci tensor then
the associate 1–form α must be zero. On the other hand we show that a
special weakly Ricci-symmetric Kenmotsu manifold can not be an Ein-
stein manifold if the associate 1–form α 6= 0 and Ricci tensor of a special
weakly Ricci-symmetric Kenmotsu manifold is parallel.

1. Introduction

In 1971, K. Kenmotsu studied a class of contact Riemann manifolds sat-
isfying some special conditions. We call them Kenmotsu manifolds [6]. Sev-
eral authors have studied some properties of Kenmotsu manifolds since then.
In the recent years, J-B. Jun, U. C. De and G. Pathak (see [7]) partially
classified the Kenmotsu manifolds and considered manifolds admitting the
transformation which keeps the Riemannian curvature tensor and Ricci ten-
sor invariant, U. C. De and C. Özgür (see [9]) studied the quasi-conformal
curvature tensor of a Kenmotsu manifold and S Hong, C. Özgür and M. M.
Tripathi (see [5]) obtained some results on the concircular curvature tensor
of Kenmotsu manifolds.

As a generalization of Chaki’s pseudosymmetric and pseudo Ricci sym-
metric manifolds (see [2] and [3]), the notion of weakly symmetric and
weakly Ricci-symmetric manifolds were introduced by L. Tamássy and T.
Q. Binh (see [12] and [13]). These type manifolds were studied with differ-
ent structures by several authors (see [4], [10] and [12]). Recently in [11],
C. Özgür studied weakly symmetric Kenmotsu manifolds. The notion of
special weakly Ricci symmetric manifolds was introduced and studied by H.
Singh, and Q. Khan in [8].
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In this paper, we have studied some geometric properties of special weakly
Ricci-symmetric Kenmotsu manifolds. The paper is organized as follows. In
Section 2, we give a brief account of almost contact metric manifolds and
Kenmotsu manifolds. In Section 3, we consider a special weakly Ricci-sy-
mmetric Kenmotsu manifold admits a cyclic parallel Ricci tensor and we
show that under these conditions the 1–form α must vanish. On the other
hand we show that the Ricci tensor of a special weakly Ricci-symmetric
Kenmotsu manifold is parallel and we find necessary conditions for a special
weakly Ricci-symmetric Kenmotsu manifold to be an Einstein manifold.

2. Preliminaries

Let Mn be an n–dimensional differentiable manifold equipped with a
triple (φ, ξ, η), where φ is a (1, 1)–tensor field, ξ is a vector field, η is a
1–form on Mn such that

η(ξ) = 1, φ2 = −I + ξ ⊗ η (1)

which implies
φξ = 0, η ◦ φ = 0, rank(φ) = n− 1. (2)

If Mn admits a Riemannian metric g, such that

g(φX, φY ) = g(X,Y )− η (X) η (Y ) , (3)

g(ξ,X) = η(X), (4)

then Mn is said to admit a (φ, ξ, η, g)–structure. If moreover

(5Xφ) Y = −g(X, φY )ξ − η (Y ) φX. (5)

and
5Xξ = −φ2X (6)

where5 denotes the Riemannian connection of g, then (Mn, φ, ξ, η, g) (whe-
re n = 2m + 1) is called a Kenmotsu manifold.

In a Kenmotsu manifold Mn, besides these relations the following rela-
tions also hold ([7]):

S(X, ξ) = − (n− 1) η(X) (7)

R(X, ξ)Y = g(X, Y )ξ − η(Y )X (8)

R(X, Y )ξ = η(X)Y − η(Y )X (9)

g(R(ξ, X)Y, ξ) = −g(X, Y ) + η(X)η(Y ) (10)

R(ξ, X)ξ = X − η(X)ξ (11)

for any vector fields X, Y of Mn.
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3. On special weakly Ricci-symmetric Kenmotsu manifolds

An n–dimensional Riemannian manifold (Mn, g) is called a special weakly
Ricci-symmetric manifold (SWRS)n if

(∇XS)(Y,Z) = 2α(X)S(Y, Z) + α(Y )S(X,Z) + α(Z)S(Y, X), (12)

for any vector fields X, Y on Mn, where α is a 1–form and is defined by

α(X) = g(X, ρ), (13)

where ρ is the associated vector field [8].

Theorem 3.1. If a special weakly Ricci-symmetric Kenmotsu manifold ad-
mits a cyclic parallel Ricci tensor then the 1–form α must be vanish.

Proof. Let (12) and (13) be satisfied in a Kenmotsu manifold Mn. Taking
the cyclic sum in (12), we get

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y )

= 4(α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(Y,X)). (14)

Let Mn admit a cyclic Ricci tensor. Then (14) reduces to

α(X)S(Y,Z) + α(Y )S(X, Z) + α(Z)S(Y, X) = 0. (15)

Taking Z = ξ in (15) and using (7) and (13), we get

− (n− 1)α(X)η(Y )− (n− 1)α(Y )η(X) + η(ρ)S(Y,X) = 0. (16)

Now putting Y = ξ in (16) and using (1), (7) and (13), we get

− (n− 1) α(X)− (n− 1) η(ρ)η(X)− (n− 1) η(ρ)η(X) = 0. (17)

Taking X = ξ in (17) and using (1) and (13), we get

η(ρ) = 0. (18)

So by the use of (18) in (17), we have α(X) = 0, for any vector fields X on
Mn. This completes the proof of the theorem. ¤
Theorem 3.2. A special weakly Ricci-symmetric Kenmotsu manifold can
not be an Einstein manifold if the 1–form α 6= 0.

Proof. For an Einstein manifold (∇XS)(Y,Z) = 0 and S(Y, Z) = kg(Y, Z),
then (12) gives

2α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(Y,X) = 0. (19)

Taking Z = ξ in (19) and using (7) and (13), we get

−2 (n− 1)α(X)η(Y )− (n− 1)α(Y )η(X) + η(ρ)S(Y, X) = 0. (20)

Taking X = ξ in (20) and using (1), (7) and (13), we get

−2 (n− 1) η(ρ)η(Y )− (n− 1)α(Y )− (n− 1) η(ρ)η(Y ) = 0. (21)
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Taking Y = ξ in (21) and using (1) and (13), we get

η(ρ) = 0. (22)

Using (22) in (21), we get α(Y ) = 0, for any vector fields Y on Mn, which
completes the proof. ¤
Theorem 3.3. The Ricci tensor of a special weakly Ricci-symmetric Ken-
motsu manifold is parallel.

Proof. Taking Z = ξ in (12), we have

(∇XS)(Y, ξ) = 2α(X)S(Y, ξ) + α(Y )S(X, ξ) + α(ξ)S(Y, X). (23)

The left-hand side can be written in the form

(∇XS)(Y, ξ) = ∇XS(Y, ξ)− S(∇XY, ξ)− S(Y,∇Xξ). (24)

Then, in view of (7), (13), and (24), equation (23) becomes

∇XS(Y, ξ)− S(∇XY, ξ)− S(Y,∇Xξ)

= −2 (n− 1) α(X)η(Y )− (n− 1)α(Y )η(X) + η(ρ)S(Y, X). (25)

Taking Y = ξ in (25) and using (1), (6), (7) and (13), we get

−2 (n− 1)α(X)− (n− 1) η(ρ)η(X)− (n− 1) η(ρ)η(X) = 0. (26)

Putting X = ξ in (26) we obtain

η(ρ) = 0. (27)

Using (27) in (26) we get
α(X) = 0, (28)

for any vector fields Y on Mn. Hence in view of (28) in (12), we get ∇XS =
0, which is proves the result. ¤
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Department of Mathematics
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