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ON (g,s)-CONTINUOUS AND (=g, s)-CONTINUOUS
FUNCTIONS

ERDAL EKICI

ABSTRACT. New generalizations of contra-continuity called (7g, s)-con-
tinuity and (g, s)-continuity are presented. Characterizations and pro-
perties of (g, s)-continuous functions are discussed.

1. INTRODUCTION

It is well known that the concept of closedness is fundamental with re-
spect to the investigation of general topological spaces. Levine [24] initiated
the study of generalized closed sets. The concept of mg-closed sets was intro-
duced by Dontchev and Noiri [12]. In 2000, Dontchev and Noiri [12] obtained
new characterizations of quasi-normal spaces [42] by using mg-closed sets.
Initiation of contra-continuity was due to Dontchev [9]. In 1996, Dontchev
proved that contra-continuous images of strongly S-closed spaces are com-
pact. In this paper, we introduce and investigate a generalization of contra-
continuity by utilizing mg-closed sets. The notions of (wg, s)-continuous
functions and (g, s)-continuous functions are introduced. Also, we obtain
characterizations and properties of (g, s)-continuous functions.

2. PRELIMINARIES

In this paper, spaces X and Y mean topological spaces on which no
separation axioms are assumed unless explicitly stated. For a subset A of a
space X, cl(A) and int(A) represent the closure of A and the interior of A,
respectively.

A subset A of a space X is said to be regular open (resp. regular closed)
if A=int(cl(A)) (resp. A = cl(int(A))) [38]. The d-interior [40] of a subset
A of X is the union of all regular open sets of X contained in A and it is
denoted by d-int(A). A subset A is called d-open [40] if A = 6-int(A). The
complement of d-open set is called §-closed. The §-closure of a set A in a
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space (X, 7) is defined by 6-cl(A) = {z € X : Anint(cl(U)) # 0, U € 7 and
x € U} and it is denoted by d-cl(A).

The finite union of regular open sets is said to be m-open [42]. The
complement of m-open set is said to be m-closed. A subset A of a space
X is said to be generalized closed (briefly, g-closed) [24] (resp. mg-closed
[12]) if cl(A) C U whenever A C U and U is open (resp. m-open) in X. If
the complement of A is mg-closed (resp. g-closed), A is said to be mg-open
(resp. g-open). The union (resp. intersection) of all mg-open (resp. mg-
closed) sets, each contained in (resp. containing) a set S in a topological
space X is called the mg-interior (resp. mg-closure) of S and it is denoted
by mwg-int(S) (resp. wg-cl(S)) [17]. For any subset K of a topological space
X, X\mg-cdl(K) = wg-int(X\K) [17]. If a subset A is wg-closed in a space
X, then A = mg-cl(A) [17].

A subset A is said to be semi-open [23] if A C cl(int(A)). The complement
of a semi-open set is called semi-closed [8]. The intersection of all semi-
closed sets containing A is called the semi-closure [8] of A and is denoted by
scl(A). The semi-interior of A is defined by the union of all semi-open sets
contained in A and is denoted by sint(A). A point z € X is said to be a
6-semi-cluster point [21] of a subset A of X if cl(U) N A # () for every semi-
open set U containing x. The set of all #-semi-cluster points of A is called
the @-semi-closure of A and is denoted by 6-s-cl(A). A subset A is called
f-semi-closed [21] if A = #-s-cl(A). The complement of a #-semi-closed set
is called #-semi-open.

A subset A of a space X is said to be (1) a-open [28] (resp. preopen [27]
or locally dense [7], S-open [1] or semi-preopen [2]) if A C int(cl(int(A)))
(resp. A C int(cl(A)), A C cl(int(cl(A)))). If the complement of A is a-
open (resp. preopen, 3-open), then A is said to be a-closed (resp. preclosed,
(-closed). The union of all a-open (resp. preopen) sets, each contained in
a set S in a topological space X is called the a-interior (resp. preinterior)
of S and it is denoted by aint(S) (resp. pint(S)). The intersection of all
a-closed sets, each containing a set .S in a topological space X is called the
a-closure (resp. preclosure) of S and it is denoted by acl(S) (resp. pcl(S)).

The family of all J-open (resp. mg-open, mg-closed, regular open, regular
closed, semi-open, closed) sets of X containing a point € X is denoted by
0O0(X,z) (resp. mGO(X,z), nGC(X,x), RO(X,z), RC(X,z), SO(X,z),
C(X,z)). The family of all d-open (resp. mg-open, mwg-closed, regular open,
regular closed, semi-open, (-open, preopen) sets of X is denoted by 60(X)
(resp. TGO(X), tGC(X), RO(X), RC(X), SO(X), pO(X), PO(X)).

Definition 1. A space X is said to be

(1) s-Urysohn [3] if for each pair of distinct points x and y in X, there
exist U € SO(X,z) and V € SO(X,y) such that cl(U)Necl(V) =0,
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(2) weakly Hausdorff [36] if each element of X is an intersection of
reqular closed sets.

Definition 2. A space X said to be

(1) S-closed [39] if every regular closed cover of X has a finite subcover,

(2) countably S-closed [1] if every countable cover of X by reqular closed
sets has a finite subcover,

(3) S-Lindelof [25] if every cover of X by regular closed sets has a count-
able subcover.

Definition 3. [17] A space (X, T) is called 7g-T /5 if every mg-closed set is
closed.

Definition 4. [13] Let B be a subset of a space X. The set N{A € RO(X) :
B C A} is called the r-kernel of B and is denoted by r-ker(B).

Proposition 5. [13] The following properties hold for subsets A, B of a
space X :

(1) x € r-ker(A) if and only if AN K # & for any regular closed set K
containing x.

(2) A Cr-ker(A) and A =r-ker(A) if A is reqular open in X.

(3) A C B, then r-ker(A) C r-ker(B).

Lemma 6. [26] If V is an open set, then scl(V') = int(cl(V)).

The subset {(z, f(z)) : z € X} C X XY is called the graph of a function
f:X — Y and is denoted by G(f).

3. (g,5)-CONTINUOUS AND (7g, s)-CONTINUOUS FUNCTIONS

Definition 7. A function f : X — Y is called (mwg,s)-continuous (resp.
(g, s)-continuous) if the inverse image of each reqular open set of Y is mg-
closed (resp. g-closed) in X.
Theorem 8. The following are equivalent for a function f : X — Y:

(1) f is (mwg,s)-continuous,

(2) the inverse image of a reqular closed set of Y is mg-open,

(3) f=(int(cl(V))) is wg-closed for every open subset V of Y,
(4) f=Y(cl(int(F))) is mg-open for every closed subset F of Y,
(5) f~Hcl(U)) is mg-open in X for every U € BO(Y),

(6) f~1(cl(U)) is mg-open in X for every U € SO(Y),

(7) f=(int(cl(U))) is mg-closed in X for every U € PO(Y).

Proof. (1) & ( ) : Obvious.
: Let V' be an open subset of Y. Since int(cl(V)) is regular
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V))) is mg-closed. The converse is similar.
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(2) & (4) : Similar to (1)  (3).

(2) = (5) : Let U be any (-open set of Y. By Theorem 2.4 of [2] that
cl(U) is regular closed. Then by (2) f~1(cl(U)) € nGO(X).

(5) = (6) : Obvious from the fact that SO(Y) C O(Y).

(6) = (7) : Let U € PO(Y). Then Y\int(cl(U)) is regular closed and
hence it is semiopen. Then, we have X\ f~1(int(cl(U)) = f~H(Y \int(cl(V)))
= 7Y (Y\int(cl(U)))) € tGO(X). Hence f~1(int(cl(U))) is mg-closed in
X

(7) = (1) : Let U be any regular open set of Y Then U € PO(Y) and
hence f~Y(U) = f~Y(int(cl(U))) is mg-closed in X. O

Lemma 9. [32] For a subset A of a topological space (Y, o), the following
properties hold:

(1) acl(A) = cl(A) for every A € BO(Y),

(2) pel(A) = cl(A) for every A € SO(Y),

(3) scl(A) = int(cl(A)) for every A € PO(Y).

Corollary 10. The following are equivalent for a function f: X — Y:

(1) f z's (g, s)-continuous,

(2) f (acl( )) is wg-open in X for every V € BO(Y),
3) f (pcl( )) is wg-open in X for every V € SO(Y),
(4) f~Y(scl(V)) is wg-closed in X for every V € PO(Y).

Proof. It follows from Lemma 9. O

Theorem 11. Suppose that tGC(X) is closed under arbitrary intersections.
The following are equivalent for a function f: X — Y

(1) f is (mwg,s)-continuous,

(2) the inverse image of a 0-semi-open set of Y is wg-open,

(3) the inverse image of a 6-semi-closed set of Y is wg -closed,

(4) f(wg-cl(U)) Cr-ker(f( )) for every subset U of X,

(5) wg-cl(f~H(V)) C f~Y(r-ker(V)) for every subset V of Y,

(6) for each x € X and each V € SO(Y, f(x)), there exists a mg -open
set U in X contammg x such that f(U) C cl(V),

(7) f~YV) C mg-int(f~1(cl(V))) for every V € SO(Y),
(8) f(mg-cl(A)) C 0-s- cl(f( )) for every subset A of X,
(9) mg-cl(f~Y(B)) C f~1(0-5-cl(B)) for every subset B of Y,
(10) mg-cl(f~1(V)) C f L(0-s-cl(V)) for every open subset V of Y,
(11) 7g-cl(f~1(V)) C f~(scl(V)) for every open subset V of Y,
(12) mg-cl(f~1(V)) C f=(int(cl(V))) for every open subset V of Y.
Proof. (1) = (2) : Since any #-semi-open set is a union of regular closed

sets, by using Theorem 8, (2) holds.
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(2) = (6) : Let z € X and V € SO(Y) containing f(z). Since cl(V) is
f-semi-open in Y, there exists a mg-open set U in X containing = such that
r €U C f~1(cl(V)). Hence f(U) C cl(V).

(6) = (7) : Let V€ SO(Y) and = € f~(V). Then f(x) € V. By (6),
there exists a mg-open set U in X containing x such that f(U) C cl(V). It
follows that * € U C f~1(cl(V)). Hence z € mg-int(f~1(cl(V))). Thus,
7L V) © mg-int(f(el(V))).

(7) = (1) : Let F be any regular closed set of Y. Since F' € SO(Y), then
by (7), f~YF) C wg-int(f~*(F)). This shows that f~1(F) is wg-open in
X. Hence, by Theorem 8, (1) holds.

(2) < (3) : Obvious.

(1) = (4) : We shall use Theorem 8. Let U be any subset of X. Let y ¢r-
ker(f(U)). Then there exists a regular closed set F' containing y such that
f(U)NF = @. Hence, we have UN f~Y(F) = @ and 7g-cl(U)N f~H(F) = @.
Therefore, we obtain f(rg-cl(U))NF = @ and y ¢ f(ng-cl(U)). Thus, f(mwg-
c(U)) Cr-ker(f(U)).

(4) = (5) : Let V be any subset of Y. By (4), f(mg-cl(f~1(V))) Cr-
ker(V) and wg-cl(f~1(V)) C f~1( r-ker(V)).

(5) = (1) : Let V be any regular open set of Y. By Proposition 5, mg-
A(f~H(V) € f (r-ker(V)) = fH(V) and mg-cl((f~'(V)) = f~H(V). We
obtain that f~(V) is mg-closed in X.

(6) = (8) : Let A be any subset of X. Suppose that x € 7g -cl(A) and G is
any semiopen set of Y containing f(z). By (6), there exists U € 1GO(X, x)
such that f(U) C cl(G). Since z € wg-cl(A), UN A # () and hence ) #
FO)YN f(A) C cd(G) N f(A). Therefore, we obtain f(x) € 6-s-cl(f(A)) and
hence f(mg-cl(A)) C 0-s-cl(f(A)).

(8) = (9) : Let B be any subset of Y. Then f(rg-cl(f~1(B))) C 6-s-
c(f(f~1(B))) C -s5-cl(B) and wg-cl(f~1(B)) C f~1(#-s-cl(B)).

(9) = (6) : Let V be any semiopen set of Y containing f(x). Since
(V)N (Y\el(V)) = 0, we have f(z) ¢ 0-s-cl(Y\cl(V)) and = ¢ f~1(0-s-
c(Y\cl(V))). By (9), z ¢ mg-cl(f~1(Y\cl(V))). Hence, there exists U €
7GO(X, z) such that UN f~Y1(Y\cl(V)) = @ and f(U)N(Y\cl(V)) = @. It
follows that f(U) C cl(V'). Thus, (6) holds.

(9) = (10) : Obvious.

(10) = (11) : Obvious from the fact that §-s-cl(V') = scl(V') for an open
set V.

(11) = (12) : Obvious from Lemma 6.

(12) = (1) : Let V € RO(Y). Then by (12) mg-cl(f~1(V)) € f!
(int(cl(V))) = f~1(V). Hence, f~1(V) is mg-closed which proves that f
is (mg, s)-continuous. O
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Corollary 12. Assume that 7GC(X) is closed under arbitrary intersec-
tions. The following are equivalent for a function f: X — Y
f is (mg, s)-continuous,

(1)

(2) mg-cl(f~Y(B)) C f~Y(0-s-cl(B)) for every V€ SO(Y),
(3) wg-cl(f~Y(B)) C f~1(0-5-cl(B)) for every V € PO(Y),
(4) mg-cl(f~Y(B)) C f~1(0-5-cl(B)) for every V € BO(Y).

4. THE RELATED FUNCTIONS WITH (g, $)-CONTINUOUS FUNCTIONS

Definition 13. A function f: X —Y is said to be:

(1) perfectly continuous [30] if f=1(V) is clopen in X for every open set
VofY,

(2) regular set-connected [11, 15] if f=1(V) is clopen in X for every
V € RO(Y),

(3) almost s-continuous [6, 33] if for each x € X and each V € SO
(Y, f(x)), there exists an open set U in X containing x such that
fU) C s-cl(V),

(4) strongly continuous [22] if f(cl(A)) C f(A) for every subset A of X
or equivalently if the inverse image of every set in'Y is clopen in X,

(5) RC-continuous [10] if f~1(V) is reqular closed in X for each open
set V of Y,

(6) contra R-map [16] if f~1(V) is reqular closed in X for every regular
open set V of Y,

(7) contra-super-continuous [20] if for each x € X and each F € C(Y,
f(x)), there exists a reqular open set U in X containing x such that
fU)CF,

(8) almost contra-super-continuous [14] if f=4(V) is 6-closed in X for
every reqular open set V of Y,

(9) contra-continuous [9] if f~1(V) is closed in X for every open set V
of Y,

(10) contra g-continuous [5] if f~1(V) is g-closed in X for every open set
V oof Y,

(11) (8,s)-continuous [21, 34] if for each x € X and each V € SO(Y,
f(z)), there exists an open set U in X containing x such that f(U) C
a(v),

(12) contra wg-continuous [18] if f~1(V) is mg-closed in X for every open
set V of Y.
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Remark 14. The following diagram holds for a function f: X — Y

strongly continuous = almost s-continuous
4 .

perfectly continuous = regular set-connected
4 .

RC-continuous = contra R-map
4 U
contra-super-continuous = almost contra-super-continuous
4 U
contra-continuous = (0, s)-continuous

4 U

contra g-continuous = (g, s)-continuous
4 U

contra wg-continuous = (mg, s) -continuous

None of these implications is reversible as shown in the following examples
and in the related papers.

Example 15. Let X be the real numbers with the cofinite topology and
Y = {a,b, c} with the topology o = {Y, &, {a}, {c},{a,c}, {b,c}}. We define
the function f: X — Y such as

f(x):{a, z € X\{0}

c, =0
Then f is (7g, s)-continuous but it is not (g, s)-continuous.

Example 16. Let X =Y = {a,b,¢,d}, 7 = 0 = {X,9,{c}, {a,d},
{a,c,d}}. Then the function f : (X,7) — (Y,0) which is defined as
fla) = a, f(b) = d, f(c) = b, f(d) = a is (mg,s)-continuous but it is

not contra mg-continuous.

Example 17. Let X =Y = {a,b,¢,d}, 7 = 0 = {X,2,{a}, {c}, {a,b},
{a,c}, {a,b,c}, {a,c,d}}. Then the function f : (X,7) — (Y, o) which is
defined as f(a) =d, f(b) =¢, f(c) =d, f(d) = b is (g, s)-continuous but it

is not contra g-continuous.

Example 18. Let X =Y = {a,b,¢,d}, 7 = 0 = {X,9,{c}, {a,d},
{a,c¢,d}}. Then the function f : (X,7) — (Y,0) which is defined as
fla) = ¢, f(b) = ¢, f(¢) = b, f(d) = b is (g,s)-continuous but it is not
(0, s)-continuous.

A topological space (X, 7) is said to be extremely disconnected [4] if the
closure of every open set of X is open in X.

Definition 19. A function f: X — Y is said to be:
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(1) wg-continuous [12] if f=Y(V) is mg-open in X for every open set V
of Y.

(2) almost mg-continuous [12] if f~Y(V) is mg-open in X for every
reqular open set V of Y.

Theorem 20. Let (Y, o) be extremely disconnected. Then, the following are
equivalent for a function f: (X, 1) — (Y,0):

(1) f is (mg,s)-continuous,

(2) f is almost wg-continuous.

Proof. (1) = (2) : Let € X and U be any regular open set of Y containing
f(z). Since (Y,0) is extremely disconnected, by Lemma 5.6 of [35] U is
clopen and hence U is regular closed. Then f~1(U) is mg-open in X. Thus,
f is almost wg-continuous.

(2) = (1) : Let K be any regular closed set of Y. Since (Y, o) is extremely
disconnected, K is regular open and f~1(K) is mg-open in X. Thus, f is
(g, s)-continuous. O

Theorem 21. Let f: X — Y be a function from a wg-Ty /5 space (X, T) to
a topological space (Y,v). Then the following are equivalent:

(1) f is (wg, s)-continuous,

(2) f is (g,s)-continuous,

(3) f is (0, s)-continuous.

Definition 22. A space is said to be Ps, [41] or strongly s-regular [19] if for
any open set V of X and each x € V, there exists K € RC(X,x) such that
reKCV.

Theorem 23. Let f: (X,7) — (Y,0) be a function. Then, if f is (ng,s)-
continuous, X is mg-T1, and 'Y is Py, then f is continuous.

Proof. Let G be any open set of Y. Since Y is Py, there exists a subfamily
® of RC(Y) such that G = U{A : A € ®}. Since X is mg-T; /5 and f is
(mg, s)-continuous, f~'(A) is open in X for each A € ® and f~!(G) is open
in X. Thus, f is continuous. U

Theorem 24. Let Y be a regular space and f : X — Y be a function.
Suppose that the collection of wg-closed sets of X s closed under arbitrary
intersections. Then if f is (wg, s)-continuous, f is wg-continuous.

Proof. Let x be an arbitrary point of X and V an open set of ¥ contain-
ing f(x). Since Y is regular, there exists an open set G in Y contain-
ing f(x) such that cl(G) C V. Since f is (7g, s)-continuous, there exists

U € 1GO(X, ) such that f(U) C cl(G). Then f(U) C cl(G) C V. Hence,
f is wg-continuous. O
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Theorem 25. Let f: X — Y be a function from a 7g-Ty 5 space (X,7) to
an extremely disconnected space (Y,v). Then the following are equivalent:

(1) f is (mwg,s)-continuous,

)
) f is (0, s)-continuous,

) f is almost contra-super-continuous,
) f is contra R-map,

) f is regular set-connected,

) f is almost s-continuous.

Proof. (7) = (6) = (5) = (4) = (3) = (2) = (1) : Follows from Remark

(1) = (7) : Let V be any semi-open semi-closed set of Y. Since V is
semi-open, cl(V) = cl(int(V)) and hence cl(V) is open in Y. Since V is
semi-closed, int(cl(V)) C V C cl(V) and hence int(cl(V)) = V = cl(V).
Therefore, V' is clopen in Y and V € RO(Y) N RC(Y). Since f is (ng,s)-
continuous, f~1(V) is mg-open and mg-closed in X. Since X is 7g-11/2,
then 7 = 7GO(X). Thus, f~1(V) is clopen in X and hence f is almost
s-continuous [33, Theorem 3.1]. O

Definition 26. A space is said to be weakly Ps, [31] if for any V € RO(X)
and each v € V, there exists F' € RC(X,x) such thatx € F C V.

Theorem 27. Let f: (X,7) — (Y,0) be a (7g, s)-continuous function and
let tGC(X) be closed under arbitrary intersections. If Y is weakly Ps and
X is mg-Ty o, then [ is reqular set-connected.

Proof. Let V be any regular open set of Y. Since Y is weakly Ps, there
exists a subfamily ® of RC(Y) such that V. = U{4A : A € ®}. Since f is
(mg, s)-continuous, f~1(A) is mg-open in X for each A € ® and f~1(V) is
mg-open in X. Also, f~1(V) is mg-closed in X since f is (g, s)-continuous.
Since X is mg-T} ), then 7 = 7GO(X). Hence, f~*(V) is clopen in X and
then f is regular set-connected. ([

Definition 28. A function f : X — Y is said to be mg-irresolute [17] if
(V) is mg-open in X for every V € nGO(Y).

Theorem 29. Let f : X — Y and g : Y — Z be functions. Then, the
following properties hold:
(1) If f is mg-irresolute and g is (7g, s)-continuous, then go f is (wg, s)-
continuous.
(2) If f is (mg, s)-continuous and g is contra R-map, then go f is almost
Tg-continuous.
(3) If f is mg-continuous and g is (0, s)-continuous, then go f is (7g, s)-
continuous.
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(4) If f is (mg, s)-continuous and g is RC-continuous, then go f is wg-
continuous.

5. FUNDAMENTAL PROPERTIES

Definition 30.

(1) A subset S of a space X is said to be wg-compact relative to X if
for every cover {A; :i € I} of S by wg-open sets of X, there exists
a finite subset Iy of I such that S C U{A; :i € Ip}.

(2) A space X said to be wg-compact [17] if every wg-open cover of X
has a finite subcover.

(3) A graph G(f) of a function f : X — Y is said to be (wg,s)-graph
if there exist a mg-open set A in X containing r and a semi-open
set B in'Y containing y such that (A x cl(B)) N G(f) =0 for each
(z.9) € (X x Y\G(f).

Theorem 31.
(1) Every mg-closed subset of a mg-compact space X is wg-compact rel-
ative to X.
(2) The surjective (g, s)-continuous image of a wg-compact space is S-
closed.

3) If f: (X,7) — (Y,0) is mg-irresolute and a subset A of X is mg-
compact relative to X, then its image f(A) is mg-compact relative to
Y.

Proof. (1) : Let A be a mg-closed subset of a mg-compact space (X, 7). Let
{U; : i € I} be a cover of A by mg-open subsets of X. So A C ‘UIUi and then
1€

(X\A4)u ('UIUi) = X. Since X is mg-compact, there exists a finite subset
1€
Iy of I such that (X\A)U (UI Ui) = X. Then A C Y U; and hence A is
1€lp 1€l

mg-compact relative to X.

(2) : Let (X,7) be a mg-compact space and f : (X,7) — (Y,0) be a
surjective (g, s)-continuous function. Let {U; : i € I} be a cover of X by
regular closed sets. Then {f~1(U;) : i € I} is a cover of X by mg-open sets,
since f is (mg, s)-continuous. By mg-compactness of X, there exists a finite

subset I of I such that X = U f~1(U;). Since f is surjective, Y = U Uj;
i€ly i€lp

and hence Y is S-closed.
(3) : Similar to that of (2). O

Proposition 32. The following properties are equivalent for a function f:
(1) G(f) is (wg, s)-graph,
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(2) for each (z,y) € (X x Y)\G(f), there exist a mg-open set A in X
containing x and a semi-open set B in Y containing y such that
F(4) N el(B) =0,

(3) for each (z,y) € (X x Y)\G(f), there exist a wg-open set A in X
containing r and a reqular closed set K in'Y containing y such that

fANK=0.

Definition 33. A subset S of a space X is said to be S-closed relative to X
[29] if for every cover {A; :i € I} of S by semi-open sets of X, there exists
a finite subset Iy of I such that S C U{cl(A;) :i € Ip}.

Theorem 34. If a function f : X — Y has a (7g, s)-graph and the collection
of mg-closed sets of X is closed under arbitrary intersections, then f~1(A)
is wg-closed in X for every subset A which is S-closed relative to Y .

Proof. Suppose that A is S-closed relative to Y and = ¢ f~!(A). We have
(z,y) € X x Y\G(f) for each y € A and there exist a mg-open set B,
containing = and a semi-open set Cy, containing y such that f(B,)Ncl(Cy) =
@. Since {Cy : y € A} is a cover by semi-open sets of Y, there exists a finite
subset {y1, y2,..., yn} of A such that A C U{cl(Cy,) : i = 1,2,3,...,n}.
Take B = N{By, :i=1,2,3,...,n}. Then B is a mg-open containing = and
f(ByNnA=@. Thus, BN f}(A) = @ and hence f~1(A) is mg-closed in
X. O

Theorem 35. Let f : X — Y be a (ng, s)-continuous functions. Then the
following properties hold:
(1) G(f) is a (mg, s)-graph if Y is an s-Urysohn.
(2) f is almost mg-continuous if Y is an s-Urysohn and nGC(X) is
closed under arbitrary intersections.

Proof. (1) : Let Y be s-Urysohn and (z,y) € (X xY)\G(f). Then f(x) # y.
Since Y is s-Urysohn, there exist M € SO(Y, f(z)) and N € SO(Y,y) such
that cl(M)Necl(N) = (. Since f is (g, s)-continuous, there exists a wg-open
set A in X containing 2 such that f(A) C ¢l(M). Hence, f(A)Ncl(N) =10
and G(f) is (mg, s)-graph in X x Y.

(2) : Let F be a regular closed set in Y. By Theorem 3.3 and 3.4 [29], F'is
S-closed relative to Y. Hence, by Theorem 34 and (1), f~1(F) is mg-closed
in X and hence f is almost wg-continuous. ([

Definition 36. A space X is said to be
(1) mg-Ty [18] if for each pair of distinct points x and y in X, there exist
UenGO(X,z) and V € TGO(X,y) such that UNV = (.
(2) mg-T1 [18] if for each pair of distinct points in X, there exist wg-open
sets U and V' containing x and y, respectively, such that y ¢ U and
r¢V.
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(3) T [15] if for each pair of distinct points in X, there exist reqular
open sets U and V' containing x and y, respectively, such that y ¢ U
andx ¢ V.

Theorem 37. Let f, g: X — Y be functions and wg-cl(S) be wg-closed for
each S C X. If

(1) f and g are (7g, s)-continuous,

(2) Y is s-Urysohn,
then A={x € X : f(z) = g(x)} is mg-closed in X.

Proof. Let x € X\ A, then it follows that f(x) # g(z). Since Y is s-Urysohn,
there exist M € SO(Y, f(x)) and N € SO(Y, g(x)) such that cl(M)Ncl(N) =
(). Since f and g are (mg, s)-continuous, there exist mg-open sets U and V'
containing z such that f(U) C cl(M) and g(V) C ¢l(N). Hence, UNV =
P e 7rGO(X), f(P)Ng(P) = 0 and then z ¢ mg-cl(A). Thus, A is mg-closed
in X. U

A subset A of a topological space X is said to be mg-dense in X if 7wg-
cl(A) = X.

Theorem 38. Let f, g: X — Y be functions and wg-cl(S) be wg-closed for
each S C X. If

(1) Y is s-Urysohn,

(2) f and g are (g, s)-continuous,

(3) f =g on mg-dense set A C X,
then f =g on X.

Proof. Since f and g are (mg, s)-continuous and Y is s-Urysohn, by Theorem
37, B={z € X : f(z) = g(z)} is mg-closed in X. We have f = g on
mg-dense set A C X. Since A C B and A is wg-dense set in X, then
X =mg-cl(A) C mg-cl(B) = B. Hence, f =g on X. O
Theorem 39. The following properties hold for a function f : X — Y:
(1) If f is a (7g, s)-continuous injection and Y is s-Urysohn, then X is
7Tg—T2 .
(2) If f is a (wg, s)-continuous injection and Y is weakly Hausdorff, then
X is 7Tg—T1.
(3) If f is surjective and it has a (wg,s)-graph, then'Y is weakly Ts.

Proof. (1) : Let Y be s-Urysohn. By the injectivity of f, f(z) # f(y)
for any distinct points x and y in X. Since Y is s-Urysohn, there exist
A e SO, f(z)) and B € SO(Y, f(y)) such that cl(A) Necl(B) =0 . Since
f is a (mg, s)-continuous, there exist mg-open sets C' and D in X containing
x and y, respectively, such that f(C) C cl(A) and f(D) C cl(B) such that
CND=10. Thus, X is 7g-T5.
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(2) : Let Y be weakly Hausdorff. For x # y in X, there exist A, B €
RC(Y') such that f(z) € A, f(y) ¢ A, f(z) ¢ B and f(y) € B. Since f is
(mg, s)-continuous, f~(A) and f~1(B) are mg-open subsets of X such that
re fYA),y¢ fY(A),z¢ f1(B) and y € f1(B). Hence, X is mg-T}.

(3) : Let y; and y2 be any distinct points of Y. Since f is surjective,
f(z) = y1, for some z € X and (x,y2) € (X x Y)\G(f). Then, there exist a
wg-open set A in X containing x and a regular closed set K in Y containing
y2 such that f(A) N K = (0. Hence y; ¢ K. This implies that Y is weakly
Ts. O

Definition 40. A space X said to be

(1) countably wg-compact [18] if every countable cover of X by mg-open
sets has a finite subcover,

(2) mg-Lindelof [18] if every wg-open cover of X has a countable sub-
cover.

Theorem 41. Let f: X — Y be a (7g, s)-continuous surjection. Then the
following statements hold:

(1) if X is wg-Lindelof, then Y is S-Lindelof.

(2) if X is countably wg-compact, then'Y is countably S-closed.

Definition 42. A space X is called

(1) wg-connected if X is not the union of two disjoint nonempty wg-open
sets.

(2) mg-ultra-connected if every two non-void wg-closed subsets of X in-
tersect,

(3) hyperconnected [37] if every open set is dense.

Theorem 43. Let f : X — Y be a (7g, s)-continuous surjection.

(1) If X is wg-connected, then Y is connected.
(2) If X is wg-ultra-connected, then Y is hyperconnected.

Proof. (1) : Assume that Y is not connected space. Then there exist non-
empty disjoint open sets A and B such that Y = AU B. Also, A and
B are clopen in Y. Since f is (mg, s)-continuous, f~1(A) and f~(B) are
mg-open in X. Moreover, f~'(A) and f~!(B) are nonempty disjoint and
X = f7Y(A)u f~1(B). This shows that X is not mg-connected. This
contradicts the assumption that Y is not connected. O

Definition 44. [18] The wg-frontier of a subset A of a space X is given by
wg-fr(A) = ng-cl(A) Nmg-cl(X\A).

Theorem 45. Suppose that tGC(X) is closed under arbitrary intersections.
A function f: X —Y is not (ng, s)-continuous at x if and only if x € 7g-
fr(f~Y(F)) for some F € RC(Y, f(x)).
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Proof. (=) : Let f be not (mg, s)-continuous at x. Then there exists F' €
RC(Y, f(z)) for which f(U) € F for every U € nGO(X,z). Thus, f(U) N
(Y\F) # @ for every U € tGO(X,x) and hence U N (X\f~1(F)) # & for
every U € 7GO(X,z). Thus, x € wg-cl(X\f~Y(F)). Since x € f~1(F),
x € mg-fr(f~H(F)).

(<) : Let € X and suppose that there exists F' € RC(Y, f(z)) such
that z € mg-fr(f~Y(F)). Suppose f is (7g, s)-continuous at z. Then there
exists a mg-open set U such that x € U and U C f~1(F). Hence, z ¢ mg-
cl(X\f~Y(F)). This contradiction implies that f is not (mg, s)-continuous
at x. ]
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