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ON (g, s)-CONTINUOUS AND (πg, s)-CONTINUOUS
FUNCTIONS

ERDAL EKICI

Abstract. New generalizations of contra-continuity called (πg, s)-con-
tinuity and (g, s)-continuity are presented. Characterizations and pro-
perties of (πg, s)-continuous functions are discussed.

1. Introduction

It is well known that the concept of closedness is fundamental with re-
spect to the investigation of general topological spaces. Levine [24] initiated
the study of generalized closed sets. The concept of πg-closed sets was intro-
duced by Dontchev and Noiri [12]. In 2000, Dontchev and Noiri [12] obtained
new characterizations of quasi-normal spaces [42] by using πg-closed sets.
Initiation of contra-continuity was due to Dontchev [9]. In 1996, Dontchev
proved that contra-continuous images of strongly S-closed spaces are com-
pact. In this paper, we introduce and investigate a generalization of contra-
continuity by utilizing πg-closed sets. The notions of (πg, s)-continuous
functions and (g, s)-continuous functions are introduced. Also, we obtain
characterizations and properties of (πg, s)-continuous functions.

2. Preliminaries

In this paper, spaces X and Y mean topological spaces on which no
separation axioms are assumed unless explicitly stated. For a subset A of a
space X, cl(A) and int(A) represent the closure of A and the interior of A,
respectively.

A subset A of a space X is said to be regular open (resp. regular closed)
if A = int(cl(A)) (resp. A = cl(int(A))) [38]. The δ-interior [40] of a subset
A of X is the union of all regular open sets of X contained in A and it is
denoted by δ-int(A). A subset A is called δ-open [40] if A = δ-int(A). The
complement of δ-open set is called δ-closed. The δ-closure of a set A in a

2000 Mathematics Subject Classification. 54C05, 54C08.



100 ERDAL EKICI

space (X, τ) is defined by δ-cl(A) = {x ∈ X : A∩ int(cl(U)) 6= ∅, U ∈ τ and
x ∈ U} and it is denoted by δ-cl(A).

The finite union of regular open sets is said to be π-open [42]. The
complement of π-open set is said to be π-closed. A subset A of a space
X is said to be generalized closed (briefly, g-closed) [24] (resp. πg-closed
[12]) if cl(A) ⊂ U whenever A ⊂ U and U is open (resp. π-open) in X. If
the complement of A is πg-closed (resp. g-closed), A is said to be πg-open
(resp. g-open). The union (resp. intersection) of all πg-open (resp. πg-
closed) sets, each contained in (resp. containing) a set S in a topological
space X is called the πg-interior (resp. πg-closure) of S and it is denoted
by πg-int(S) (resp. πg-cl(S)) [17]. For any subset K of a topological space
X, X\πg-cl(K) = πg-int(X\K) [17]. If a subset A is πg-closed in a space
X, then A = πg-cl(A) [17].

A subset A is said to be semi-open [23] if A ⊂ cl(int(A)). The complement
of a semi-open set is called semi-closed [8]. The intersection of all semi-
closed sets containing A is called the semi-closure [8] of A and is denoted by
scl(A). The semi-interior of A is defined by the union of all semi-open sets
contained in A and is denoted by sint(A). A point x ∈ X is said to be a
θ-semi-cluster point [21] of a subset A of X if cl(U)∩A 6= ∅ for every semi-
open set U containing x. The set of all θ-semi-cluster points of A is called
the θ-semi-closure of A and is denoted by θ-s-cl(A). A subset A is called
θ-semi-closed [21] if A = θ-s-cl(A). The complement of a θ-semi-closed set
is called θ-semi-open.

A subset A of a space X is said to be (1) α-open [28] (resp. preopen [27]
or locally dense [7], β-open [1] or semi-preopen [2]) if A ⊂ int(cl(int(A)))
(resp. A ⊂ int(cl(A)), A ⊂ cl(int(cl(A)))). If the complement of A is α-
open (resp. preopen, β-open), then A is said to be α-closed (resp. preclosed,
β-closed). The union of all α-open (resp. preopen) sets, each contained in
a set S in a topological space X is called the α-interior (resp. preinterior)
of S and it is denoted by αint(S) (resp. pint(S)). The intersection of all
α-closed sets, each containing a set S in a topological space X is called the
α-closure (resp. preclosure) of S and it is denoted by αcl(S) (resp. pcl(S)).

The family of all δ-open (resp. πg-open, πg-closed, regular open, regular
closed, semi-open, closed) sets of X containing a point x ∈ X is denoted by
δO(X, x) (resp. πGO(X,x), πGC(X, x), RO(X, x), RC(X,x), SO(X, x),
C(X,x)). The family of all δ-open (resp. πg-open, πg-closed, regular open,
regular closed, semi-open, β-open, preopen) sets of X is denoted by δO(X)
(resp. πGO(X), πGC(X), RO(X), RC(X), SO(X), βO(X), PO(X)).

Definition 1. A space X is said to be
(1) s-Urysohn [3] if for each pair of distinct points x and y in X, there

exist U ∈ SO(X, x) and V ∈ SO(X, y) such that cl(U) ∩ cl(V ) = ∅,
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(2) weakly Hausdorff [36] if each element of X is an intersection of
regular closed sets.

Definition 2. A space X said to be
(1) S-closed [39] if every regular closed cover of X has a finite subcover,
(2) countably S-closed [1] if every countable cover of X by regular closed

sets has a finite subcover,
(3) S-Lindelof [25] if every cover of X by regular closed sets has a count-

able subcover.

Definition 3. [17] A space (X, τ) is called πg-T1/2 if every πg-closed set is
closed.

Definition 4. [13] Let B be a subset of a space X. The set ∩{A ∈ RO(X) :
B ⊂ A} is called the r-kernel of B and is denoted by r-ker(B).

Proposition 5. [13] The following properties hold for subsets A, B of a
space X:

(1) x ∈ r-ker(A) if and only if A ∩K 6= ∅ for any regular closed set K
containing x.

(2) A ⊂ r-ker(A) and A = r-ker(A) if A is regular open in X.
(3) A ⊂ B, then r-ker(A) ⊂ r-ker(B).

Lemma 6. [26] If V is an open set, then scl(V ) = int(cl(V )).

The subset {(x, f(x)) : x ∈ X} ⊂ X × Y is called the graph of a function
f : X → Y and is denoted by G(f).

3. (g, s)-continuous and (πg, s)-continuous functions

Definition 7. A function f : X → Y is called (πg, s)-continuous (resp.
(g, s)-continuous) if the inverse image of each regular open set of Y is πg-
closed (resp. g-closed) in X.

Theorem 8. The following are equivalent for a function f : X → Y :
(1) f is (πg, s)-continuous,
(2) the inverse image of a regular closed set of Y is πg-open,
(3) f−1(int(cl(V ))) is πg-closed for every open subset V of Y ,
(4) f−1(cl(int(F ))) is πg-open for every closed subset F of Y ,
(5) f−1(cl(U)) is πg-open in X for every U ∈ βO(Y ),
(6) f−1(cl(U)) is πg-open in X for every U ∈ SO(Y ),
(7) f−1(int(cl(U))) is πg-closed in X for every U ∈ PO(Y ).

Proof. (1) ⇔ (2) : Obvious.
(1) ⇔ (3) : Let V be an open subset of Y . Since int(cl(V )) is regular

open, f−1(int(cl(V ))) is πg-closed. The converse is similar.
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(2) ⇔ (4) : Similar to (1) ⇔ (3).
(2) ⇒ (5) : Let U be any β-open set of Y . By Theorem 2.4 of [2] that

cl(U) is regular closed. Then by (2) f−1(cl(U)) ∈ πGO(X).
(5) ⇒ (6) : Obvious from the fact that SO(Y ) ⊂ βO(Y ).
(6) ⇒ (7) : Let U ∈ PO(Y ). Then Y \int(cl(U)) is regular closed and

hence it is semiopen. Then, we have X\f−1(int(cl(U)) = f−1(Y \int(cl(U)))
= f−1(cl(Y \int(cl(U)))) ∈ πGO(X). Hence f−1(int(cl(U))) is πg-closed in
X.

(7) ⇒ (1) : Let U be any regular open set of Y Then U ∈ PO(Y ) and
hence f−1(U) = f−1(int(cl(U))) is πg-closed in X. ¤

Lemma 9. [32] For a subset A of a topological space (Y, σ), the following
properties hold:

(1) αcl(A) = cl(A) for every A ∈ βO(Y ),
(2) pcl(A) = cl(A) for every A ∈ SO(Y ),
(3) scl(A) = int(cl(A)) for every A ∈ PO(Y ).

Corollary 10. The following are equivalent for a function f : X → Y :
(1) f is (πg, s)-continuous,
(2) f−1(αcl(V )) is πg-open in X for every V ∈ βO(Y ),
(3) f−1(pcl(V )) is πg-open in X for every V ∈ SO(Y ),
(4) f−1(scl(V )) is πg-closed in X for every V ∈ PO(Y ).

Proof. It follows from Lemma 9. ¤

Theorem 11. Suppose that πGC(X) is closed under arbitrary intersections.
The following are equivalent for a function f : X → Y :

(1) f is (πg, s)-continuous,
(2) the inverse image of a θ-semi-open set of Y is πg-open,
(3) the inverse image of a θ-semi-closed set of Y is πg -closed,
(4) f(πg-cl(U)) ⊂r-ker(f(U)) for every subset U of X,
(5) πg-cl(f−1(V )) ⊂ f−1(r-ker(V )) for every subset V of Y ,
(6) for each x ∈ X and each V ∈ SO(Y, f(x)), there exists a πg -open

set U in X containing x such that f(U) ⊂ cl(V ),
(7) f−1(V ) ⊂ πg-int(f−1(cl(V ))) for every V ∈ SO(Y ),
(8) f(πg-cl(A)) ⊂ θ-s-cl(f(A)) for every subset A of X,
(9) πg-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every subset B of Y ,

(10) πg-cl(f−1(V )) ⊆ f−1(θ-s-cl(V )) for every open subset V of Y ,
(11) πg-cl(f−1(V )) ⊆ f−1(scl(V )) for every open subset V of Y ,
(12) πg-cl(f−1(V )) ⊆ f−1(int(cl(V ))) for every open subset V of Y .

Proof. (1) ⇒ (2) : Since any θ-semi-open set is a union of regular closed
sets, by using Theorem 8, (2) holds.
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(2) ⇒ (6) : Let x ∈ X and V ∈ SO(Y ) containing f(x). Since cl(V ) is
θ-semi-open in Y , there exists a πg-open set U in X containing x such that
x ∈ U ⊂ f−1(cl(V )). Hence f(U) ⊂ cl(V ).

(6) ⇒ (7) : Let V ∈ SO(Y ) and x ∈ f−(V ). Then f(x) ∈ V . By (6),
there exists a πg-open set U in X containing x such that f(U) ⊂ cl(V ). It
follows that x ∈ U ⊂ f−1(cl(V )). Hence x ∈ πg-int(f−1(cl(V ))). Thus,
f−1(V ) ⊂ πg-int(f−1(cl(V ))).

(7) ⇒ (1) : Let F be any regular closed set of Y . Since F ∈ SO(Y ), then
by (7), f−1(F ) ⊂ πg-int(f−1(F )). This shows that f−1(F ) is πg-open in
X. Hence, by Theorem 8, (1) holds.

(2) ⇔ (3) : Obvious.
(1) ⇒ (4) : We shall use Theorem 8. Let U be any subset of X. Let y /∈r-

ker(f(U)). Then there exists a regular closed set F containing y such that
f(U)∩F = ∅. Hence, we have U ∩f−1(F ) = ∅ and πg-cl(U)∩f−1(F ) = ∅.
Therefore, we obtain f(πg-cl(U))∩F = ∅ and y /∈ f(πg-cl(U)). Thus, f(πg-
cl(U)) ⊂r-ker(f(U)).

(4) ⇒ (5) : Let V be any subset of Y . By (4), f(πg-cl(f−1(V ))) ⊂r-
ker(V ) and πg-cl(f−1(V )) ⊂ f−1( r-ker(V )).

(5) ⇒ (1) : Let V be any regular open set of Y . By Proposition 5, πg-
cl(f−1(V ) ⊂ f−1(r-ker(V )) = f−1(V ) and πg-cl((f−1(V )) = f−1(V ). We
obtain that f−1(V ) is πg-closed in X.

(6) ⇒ (8) : Let A be any subset of X. Suppose that x ∈ πg -cl(A) and G is
any semiopen set of Y containing f(x). By (6), there exists U ∈ πGO(X, x)
such that f(U) ⊂ cl(G). Since x ∈ πg-cl(A), U ∩ A 6= ∅ and hence ∅ 6=
f(U) ∩ f(A) ⊂ cl(G) ∩ f(A). Therefore, we obtain f(x) ∈ θ-s-cl(f(A)) and
hence f(πg-cl(A)) ⊂ θ-s-cl(f(A)).

(8) ⇒ (9) : Let B be any subset of Y . Then f(πg-cl(f−1(B))) ⊂ θ-s-
cl(f(f−1(B))) ⊂ θ-s-cl(B) and πg-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)).

(9) ⇒ (6) : Let V be any semiopen set of Y containing f(x). Since
cl(V ) ∩ (Y \cl(V )) = ∅, we have f(x) /∈ θ-s-cl(Y \cl(V )) and x /∈ f−1(θ-s-
cl(Y \cl(V ))). By (9), x /∈ πg-cl(f−1(Y \cl(V ))). Hence, there exists U ∈
πGO(X,x) such that U ∩ f−1(Y \cl(V )) = ∅ and f(U)∩ (Y \cl(V )) = ∅. It
follows that f(U) ⊂ cl(V ). Thus, (6) holds.

(9) ⇒ (10) : Obvious.
(10) ⇒ (11) : Obvious from the fact that θ-s-cl(V ) = scl(V ) for an open

set V .
(11) ⇒ (12) : Obvious from Lemma 6.
(12) ⇒ (1) : Let V ∈ RO(Y ). Then by (12) πg-cl(f−1(V )) ⊆ f−1

(int(cl(V ))) = f−1(V ). Hence, f−1(V ) is πg-closed which proves that f
is (πg, s)-continuous. ¤
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Corollary 12. Assume that πGC(X) is closed under arbitrary intersec-
tions. The following are equivalent for a function f : X → Y :

(1) f is (πg, s)-continuous,
(2) πg-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every V ∈ SO(Y ),
(3) πg-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every V ∈ PO(Y ),
(4) πg-cl(f−1(B)) ⊂ f−1(θ-s-cl(B)) for every V ∈ βO(Y ).

4. The related functions with (πg, s)-continuous functions

Definition 13. A function f : X → Y is said to be:
(1) perfectly continuous [30] if f−1(V ) is clopen in X for every open set

V of Y ,
(2) regular set-connected [11, 15] if f−1(V ) is clopen in X for every

V ∈ RO(Y ),
(3) almost s-continuous [6, 33] if for each x ∈ X and each V ∈ SO

(Y, f(x)), there exists an open set U in X containing x such that
f(U) ⊂ s-cl(V ),

(4) strongly continuous [22] if f(cl(A)) ⊂ f(A) for every subset A of X
or equivalently if the inverse image of every set in Y is clopen in X,

(5) RC-continuous [10] if f−1(V ) is regular closed in X for each open
set V of Y ,

(6) contra R-map [16] if f−1(V ) is regular closed in X for every regular
open set V of Y ,

(7) contra-super-continuous [20] if for each x ∈ X and each F ∈ C(Y,
f(x)), there exists a regular open set U in X containing x such that
f(U) ⊂ F ,

(8) almost contra-super-continuous [14] if f−1(V ) is δ-closed in X for
every regular open set V of Y ,

(9) contra-continuous [9] if f−1(V ) is closed in X for every open set V
of Y ,

(10) contra g-continuous [5] if f−1(V ) is g-closed in X for every open set
V of Y ,

(11) (θ,s)-continuous [21, 34] if for each x ∈ X and each V ∈ SO(Y,
f(x)), there exists an open set U in X containing x such that f(U) ⊂
cl(V ),

(12) contra πg-continuous [18] if f−1(V ) is πg-closed in X for every open
set V of Y .
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Remark 14. The following diagram holds for a function f : X → Y :

strongly continuous ⇒ almost s-continuous
⇓ ⇓

perfectly continuous ⇒ regular set-connected
⇓ ⇓

RC-continuous ⇒ contra R-map
⇓ ⇓

contra-super-continuous ⇒ almost contra-super-continuous
⇓ ⇓

contra-continuous ⇒ (θ, s)-continuous
⇓ ⇓

contra g-continuous ⇒ (g, s)-continuous
⇓ ⇓

contra πg-continuous ⇒ (πg, s) -continuous

None of these implications is reversible as shown in the following examples
and in the related papers.

Example 15. Let X be the real numbers with the cofinite topology and
Y = {a, b, c} with the topology σ = {Y,∅, {a}, {c}, {a, c}, {b, c}}. We define
the function f : X → Y such as

f(x) =

{
a, x ∈ X\{0}
c, x = 0

Then f is (πg, s)-continuous but it is not (g, s)-continuous.

Example 16. Let X = Y = {a, b, c, d}, τ = σ = {X,∅, {c}, {a, d},
{a, c, d}}. Then the function f : (X, τ) → (Y, σ) which is defined as
f(a) = a, f(b) = d, f(c) = b, f(d) = a is (πg, s)-continuous but it is
not contra πg-continuous.

Example 17. Let X = Y = {a, b, c, d}, τ = σ = {X,∅, {a}, {c}, {a, b},
{a, c}, {a, b, c}, {a, c, d}}. Then the function f : (X, τ) → (Y, σ) which is
defined as f(a) = d, f(b) = c, f(c) = d, f(d) = b is (g, s)-continuous but it
is not contra g-continuous.

Example 18. Let X = Y = {a, b, c, d}, τ = σ = {X,∅, {c}, {a, d},
{a, c, d}}. Then the function f : (X, τ) → (Y, σ) which is defined as
f(a) = c, f(b) = c, f(c) = b, f(d) = b is (g, s)-continuous but it is not
(θ, s)-continuous.

A topological space (X, τ) is said to be extremely disconnected [4] if the
closure of every open set of X is open in X.

Definition 19. A function f : X → Y is said to be:
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(1) πg-continuous [12] if f−1(V ) is πg-open in X for every open set V
of Y .

(2) almost πg-continuous [12] if f−1(V ) is πg-open in X for every
regular open set V of Y .

Theorem 20. Let (Y, σ) be extremely disconnected. Then, the following are
equivalent for a function f : (X, τ) → (Y, σ):

(1) f is (πg, s)-continuous,
(2) f is almost πg-continuous.

Proof. (1) ⇒ (2) : Let x ∈ X and U be any regular open set of Y containing
f(x). Since (Y, σ) is extremely disconnected, by Lemma 5.6 of [35] U is
clopen and hence U is regular closed. Then f−1(U) is πg-open in X. Thus,
f is almost πg-continuous.

(2) ⇒ (1) : Let K be any regular closed set of Y . Since (Y, σ) is extremely
disconnected, K is regular open and f−1(K) is πg-open in X. Thus, f is
(πg, s)-continuous. ¤
Theorem 21. Let f : X → Y be a function from a πg-T1/2 space (X, τ) to
a topological space (Y, υ). Then the following are equivalent:

(1) f is (πg, s)-continuous,
(2) f is (g, s)-continuous,
(3) f is (θ, s)-continuous.

Definition 22. A space is said to be PΣ [41] or strongly s-regular [19] if for
any open set V of X and each x ∈ V , there exists K ∈ RC(X, x) such that
x ∈ K ⊂ V .

Theorem 23. Let f : (X, τ) → (Y, σ) be a function. Then, if f is (πg, s)-
continuous, X is πg-T1/2 and Y is PΣ, then f is continuous.

Proof. Let G be any open set of Y . Since Y is PΣ, there exists a subfamily
Φ of RC(Y ) such that G = ∪{A : A ∈ Φ}. Since X is πg-T1/2 and f is
(πg, s)-continuous, f−1(A) is open in X for each A ∈ Φ and f−1(G) is open
in X. Thus, f is continuous. ¤
Theorem 24. Let Y be a regular space and f : X → Y be a function.
Suppose that the collection of πg-closed sets of X is closed under arbitrary
intersections. Then if f is (πg, s)-continuous, f is πg-continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y contain-
ing f(x). Since Y is regular, there exists an open set G in Y contain-
ing f(x) such that cl(G) ⊂ V . Since f is (πg, s)-continuous, there exists
U ∈ πGO(X, x) such that f(U) ⊂ cl(G). Then f(U) ⊂ cl(G) ⊂ V . Hence,
f is πg-continuous. ¤
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Theorem 25. Let f : X → Y be a function from a πg-T1/2 space (X, τ) to
an extremely disconnected space (Y, υ). Then the following are equivalent:

(1) f is (πg, s)-continuous,
(2) f is (g, s)-continuous,
(3) f is (θ, s)-continuous,
(4) f is almost contra-super-continuous,
(5) f is contra R-map,
(6) f is regular set-connected,
(7) f is almost s-continuous.

Proof. (7) ⇒ (6) ⇒ (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1) : Follows from Remark
14.

(1) ⇒ (7) : Let V be any semi-open semi-closed set of Y . Since V is
semi-open, cl(V ) = cl(int(V )) and hence cl(V ) is open in Y . Since V is
semi-closed, int(cl(V )) ⊂ V ⊂ cl(V ) and hence int(cl(V )) = V = cl(V ).
Therefore, V is clopen in Y and V ∈ RO(Y ) ∩ RC(Y ). Since f is (πg, s)-
continuous, f−1(V ) is πg-open and πg-closed in X. Since X is πg-T1/2,
then τ = πGO(X). Thus, f−1(V ) is clopen in X and hence f is almost
s-continuous [33, Theorem 3.1]. ¤
Definition 26. A space is said to be weakly PΣ [31] if for any V ∈ RO(X)
and each x ∈ V , there exists F ∈ RC(X, x) such that x ∈ F ⊂ V .

Theorem 27. Let f : (X, τ) → (Y, σ) be a (πg, s)-continuous function and
let πGC(X) be closed under arbitrary intersections. If Y is weakly PΣ and
X is πg-T1/2, then f is regular set-connected.

Proof. Let V be any regular open set of Y . Since Y is weakly PΣ, there
exists a subfamily Φ of RC(Y ) such that V = ∪{A : A ∈ Φ}. Since f is
(πg, s)-continuous, f−1(A) is πg-open in X for each A ∈ Φ and f−1(V ) is
πg-open in X. Also, f−1(V ) is πg-closed in X since f is (πg, s)-continuous.
Since X is πg-T1/2, then τ = πGO(X). Hence, f−1(V ) is clopen in X and
then f is regular set-connected. ¤
Definition 28. A function f : X → Y is said to be πg-irresolute [17] if
f−1(V ) is πg-open in X for every V ∈ πGO(Y ).

Theorem 29. Let f : X → Y and g : Y → Z be functions. Then, the
following properties hold:

(1) If f is πg-irresolute and g is (πg, s)-continuous, then g ◦f is (πg, s)-
continuous.

(2) If f is (πg, s)-continuous and g is contra R-map, then g◦f is almost
πg-continuous.

(3) If f is πg-continuous and g is (θ, s)-continuous, then g ◦f is (πg, s)-
continuous.
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(4) If f is (πg, s)-continuous and g is RC-continuous, then g ◦ f is πg-
continuous.

5. Fundamental properties

Definition 30.

(1) A subset S of a space X is said to be πg-compact relative to X if
for every cover {Ai : i ∈ I} of S by πg-open sets of X, there exists
a finite subset I0 of I such that S ⊂ ∪{Ai : i ∈ I0}.

(2) A space X said to be πg-compact [17] if every πg-open cover of X
has a finite subcover.

(3) A graph G(f) of a function f : X → Y is said to be (πg, s)-graph
if there exist a πg-open set A in X containing x and a semi-open
set B in Y containing y such that (A × cl(B)) ∩G(f) = ∅ for each
(x, y) ∈ (X × Y )\G(f).

Theorem 31.

(1) Every πg-closed subset of a πg-compact space X is πg-compact rel-
ative to X.

(2) The surjective (πg, s)-continuous image of a πg-compact space is S-
closed.

(3) If f : (X, τ) → (Y, σ) is πg-irresolute and a subset A of X is πg-
compact relative to X, then its image f(A) is πg-compact relative to
Y .

Proof. (1) : Let A be a πg-closed subset of a πg-compact space (X, τ). Let
{Ui : i ∈ I} be a cover of A by πg-open subsets of X. So A ⊂ ∪

i∈I
Ui and then

(X\A) ∪ ( ∪
i∈I

Ui) = X. Since X is πg-compact, there exists a finite subset

I0 of I such that (X\A) ∪ ( ∪
i∈I0

Ui) = X. Then A ⊂ ∪
i∈I0

Ui and hence A is

πg-compact relative to X.
(2) : Let (X, τ) be a πg-compact space and f : (X, τ) → (Y, σ) be a

surjective (πg, s)-continuous function. Let {Ui : i ∈ I} be a cover of X by
regular closed sets. Then {f−1(Ui) : i ∈ I} is a cover of X by πg-open sets,
since f is (πg, s)-continuous. By πg-compactness of X, there exists a finite
subset I0 of I such that X = ∪

i∈I0
f−1(Ui). Since f is surjective, Y = ∪

i∈I0
Ui

and hence Y is S-closed.
(3) : Similar to that of (2). ¤

Proposition 32. The following properties are equivalent for a function f :

(1) G(f) is (πg, s)-graph,
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(2) for each (x, y) ∈ (X × Y )\G(f), there exist a πg-open set A in X
containing x and a semi-open set B in Y containing y such that
f(A) ∩ cl(B) = ∅,

(3) for each (x, y) ∈ (X × Y )\G(f), there exist a πg-open set A in X
containing x and a regular closed set K in Y containing y such that
f(A) ∩K = ∅.

Definition 33. A subset S of a space X is said to be S-closed relative to X
[29] if for every cover {Ai : i ∈ I} of S by semi-open sets of X, there exists
a finite subset I0 of I such that S ⊂ ∪{cl(Ai) : i ∈ I0}.
Theorem 34. If a function f : X → Y has a (πg, s)-graph and the collection
of πg-closed sets of X is closed under arbitrary intersections, then f−1(A)
is πg-closed in X for every subset A which is S-closed relative to Y .

Proof. Suppose that A is S-closed relative to Y and x /∈ f−1(A). We have
(x, y) ∈ X × Y \G(f) for each y ∈ A and there exist a πg-open set By

containing x and a semi-open set Cy containing y such that f(By)∩cl(Cy) =
∅. Since {Cy : y ∈ A} is a cover by semi-open sets of Y , there exists a finite
subset {y1, y2,. . . , yn} of A such that A ⊂ ∪{cl(Cyi) : i = 1, 2, 3, . . . , n}.
Take B = ∩{Byi : i = 1, 2, 3, . . . , n}. Then B is a πg-open containing x and
f(B) ∩ A = ∅. Thus, B ∩ f−1(A) = ∅ and hence f−1(A) is πg-closed in
X. ¤
Theorem 35. Let f : X → Y be a (πg, s)-continuous functions. Then the
following properties hold:

(1) G(f) is a (πg, s)-graph if Y is an s-Urysohn.
(2) f is almost πg-continuous if Y is an s-Urysohn and πGC(X) is

closed under arbitrary intersections.

Proof. (1) : Let Y be s-Urysohn and (x, y) ∈ (X×Y )\G(f). Then f(x) 6= y.
Since Y is s-Urysohn, there exist M ∈ SO(Y, f(x)) and N ∈ SO(Y, y) such
that cl(M)∩cl(N) = ∅. Since f is (πg, s)-continuous, there exists a πg-open
set A in X containing x such that f(A) ⊂ cl(M). Hence, f(A) ∩ cl(N) = ∅
and G(f) is (πg, s)-graph in X × Y .

(2) : Let F be a regular closed set in Y . By Theorem 3.3 and 3.4 [29], F is
S-closed relative to Y . Hence, by Theorem 34 and (1), f−1(F ) is πg-closed
in X and hence f is almost πg-continuous. ¤
Definition 36. A space X is said to be

(1) πg-T2 [18] if for each pair of distinct points x and y in X, there exist
U ∈ πGO(X, x) and V ∈ πGO(X, y) such that U ∩ V = ∅.

(2) πg-T1 [18] if for each pair of distinct points in X, there exist πg-open
sets U and V containing x and y, respectively, such that y /∈ U and
x /∈ V .
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(3) r-T1 [15] if for each pair of distinct points in X, there exist regular
open sets U and V containing x and y, respectively, such that y /∈ U
and x /∈ V .

Theorem 37. Let f , g : X → Y be functions and πg-cl(S) be πg-closed for
each S ⊂ X. If

(1) f and g are (πg, s)-continuous,
(2) Y is s-Urysohn,

then A = {x ∈ X : f(x) = g(x)} is πg-closed in X.

Proof. Let x ∈ X\A, then it follows that f(x) 6= g(x). Since Y is s-Urysohn,
there exist M ∈ SO(Y, f(x)) and N ∈ SO(Y, g(x)) such that cl(M)∩cl(N) =
∅. Since f and g are (πg, s)-continuous, there exist πg-open sets U and V
containing x such that f(U) ⊂ cl(M) and g(V ) ⊂ cl(N). Hence, U ∩ V =
P ∈ πGO(X), f(P )∩g(P ) = ∅ and then x /∈ πg-cl(A). Thus, A is πg-closed
in X. ¤

A subset A of a topological space X is said to be πg-dense in X if πg-
cl(A) = X.

Theorem 38. Let f , g : X → Y be functions and πg-cl(S) be πg-closed for
each S ⊂ X. If

(1) Y is s-Urysohn,
(2) f and g are (πg, s)-continuous,
(3) f = g on πg-dense set A ⊂ X,

then f = g on X.

Proof. Since f and g are (πg, s)-continuous and Y is s-Urysohn, by Theorem
37, B = {x ∈ X : f(x) = g(x)} is πg-closed in X. We have f = g on
πg-dense set A ⊂ X. Since A ⊂ B and A is πg-dense set in X, then
X = πg-cl(A) ⊂ πg-cl(B) = B. Hence, f = g on X. ¤
Theorem 39. The following properties hold for a function f : X → Y :

(1) If f is a (πg, s)-continuous injection and Y is s-Urysohn, then X is
πg-T2.

(2) If f is a (πg, s)-continuous injection and Y is weakly Hausdorff, then
X is πg-T1.

(3) If f is surjective and it has a (πg, s)-graph, then Y is weakly T2.

Proof. (1) : Let Y be s-Urysohn. By the injectivity of f , f(x) 6= f(y)
for any distinct points x and y in X. Since Y is s-Urysohn, there exist
A ∈ SO(Y, f(x)) and B ∈ SO(Y, f(y)) such that cl(A) ∩ cl(B) = ∅ . Since
f is a (πg, s)-continuous, there exist πg-open sets C and D in X containing
x and y, respectively, such that f(C) ⊂ cl(A) and f(D) ⊂ cl(B) such that
C ∩D = ∅. Thus, X is πg-T2.
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(2) : Let Y be weakly Hausdorff. For x 6= y in X, there exist A, B ∈
RC(Y ) such that f(x) ∈ A, f(y) /∈ A, f(x) /∈ B and f(y) ∈ B. Since f is
(πg, s)-continuous, f−1(A) and f−1(B) are πg-open subsets of X such that
x ∈ f−1(A), y /∈ f−1(A), x /∈ f−1(B) and y ∈ f−1(B). Hence, X is πg-T1.

(3) : Let y1 and y2 be any distinct points of Y . Since f is surjective,
f(x) = y1, for some x ∈ X and (x, y2) ∈ (X ×Y )\G(f). Then, there exist a
πg-open set A in X containing x and a regular closed set K in Y containing
y2 such that f(A) ∩K = ∅. Hence y1 /∈ K. This implies that Y is weakly
T2. ¤
Definition 40. A space X said to be

(1) countably πg-compact [18] if every countable cover of X by πg-open
sets has a finite subcover,

(2) πg-Lindelof [18] if every πg-open cover of X has a countable sub-
cover.

Theorem 41. Let f : X → Y be a (πg, s)-continuous surjection. Then the
following statements hold:

(1) if X is πg-Lindelof, then Y is S-Lindelof.
(2) if X is countably πg-compact, then Y is countably S-closed.

Definition 42. A space X is called
(1) πg-connected if X is not the union of two disjoint nonempty πg-open

sets.
(2) πg-ultra-connected if every two non-void πg-closed subsets of X in-

tersect,
(3) hyperconnected [37] if every open set is dense.

Theorem 43. Let f : X → Y be a (πg, s)-continuous surjection.
(1) If X is πg-connected, then Y is connected.
(2) If X is πg-ultra-connected, then Y is hyperconnected.

Proof. (1) : Assume that Y is not connected space. Then there exist non-
empty disjoint open sets A and B such that Y = A ∪ B. Also, A and
B are clopen in Y . Since f is (πg, s)-continuous, f−1(A) and f−1(B) are
πg-open in X. Moreover, f−1(A) and f−1(B) are nonempty disjoint and
X = f−1(A) ∪ f−1(B). This shows that X is not πg-connected. This
contradicts the assumption that Y is not connected. ¤
Definition 44. [18] The πg-frontier of a subset A of a space X is given by
πg-fr(A) = πg-cl(A) ∩ πg-cl(X\A).

Theorem 45. Suppose that πGC(X) is closed under arbitrary intersections.
A function f : X → Y is not (πg, s)-continuous at x if and only if x ∈ πg-
fr(f−1(F )) for some F ∈ RC(Y, f(x)).
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Proof. (⇒) : Let f be not (πg, s)-continuous at x. Then there exists F ∈
RC(Y, f(x)) for which f(U) * F for every U ∈ πGO(X,x). Thus, f(U) ∩
(Y \F ) 6= ∅ for every U ∈ πGO(X,x) and hence U ∩ (X\f−1(F )) 6= ∅ for
every U ∈ πGO(X, x). Thus, x ∈ πg-cl(X\f−1(F )). Since x ∈ f−1(F ),
x ∈ πg-fr(f−1(F )).

(⇐) : Let x ∈ X and suppose that there exists F ∈ RC(Y, f(x)) such
that x ∈ πg-fr(f−1(F )). Suppose f is (πg, s)-continuous at x. Then there
exists a πg-open set U such that x ∈ U and U ⊂ f−1(F ). Hence, x /∈ πg-
cl(X\f−1(F )). This contradiction implies that f is not (πg, s)-continuous
at x. ¤
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