ON (g, s)-CONTINUOUS AND $(\pi g, s)$ -CONTINUOUS FUNCTIONS

ERDAL EKICI

ABSTRACT. New generalizations of contra-continuity called $(\pi g, s)$ -continuity and (g, s)-continuity are presented. Characterizations and properties of $(\pi g, s)$ -continuous functions are discussed.

1. INTRODUCTION

It is well known that the concept of closedness is fundamental with respect to the investigation of general topological spaces. Levine [24] initiated the study of generalized closed sets. The concept of πg -closed sets was introduced by Dontchev and Noiri [12]. In 2000, Dontchev and Noiri [12] obtained new characterizations of quasi-normal spaces [42] by using πg -closed sets. Initiation of contra-continuity was due to Dontchev [9]. In 1996, Dontchev proved that contra-continuous images of strongly S-closed spaces are compact. In this paper, we introduce and investigate a generalization of contracontinuity by utilizing πg -closed sets. The notions of $(\pi g, s)$ -continuous functions and (g, s)-continuous functions are introduced. Also, we obtain characterizations and properties of $(\pi g, s)$ -continuous functions.

2. Preliminaries

In this paper, spaces X and Y mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, cl(A) and int(A) represent the closure of A and the interior of A, respectively.

A subset A of a space X is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))) [38]. The δ -interior [40] of a subset A of X is the union of all regular open sets of X contained in A and it is denoted by δ -int(A). A subset A is called δ -open [40] if $A = \delta$ -int(A). The complement of δ -open set is called δ -closed. The δ -closure of a set A in a

²⁰⁰⁰ Mathematics Subject Classification. 54C05, 54C08.

space (X, τ) is defined by δ - $cl(A) = \{x \in X : A \cap int(cl(U)) \neq \emptyset, U \in \tau \text{ and } x \in U\}$ and it is denoted by δ -cl(A).

The finite union of regular open sets is said to be π -open [42]. The complement of π -open set is said to be π -closed. A subset A of a space X is said to be generalized closed (briefly, g-closed) [24] (resp. πg -closed [12]) if $cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. π -open) in X. If the complement of A is πg -closed (resp. g-closed), A is said to be πg -open (resp. g-open). The union (resp. intersection) of all πg -open (resp. πg -closed) sets, each contained in (resp. containing) a set S in a topological space X is called the πg -interior (resp. πg -closure) of S and it is denoted by πg -int(S) (resp. πg -cl(S)) [17]. For any subset K of a topological space X, $X \setminus \pi g$ -cl(K) = πg -int($X \setminus K$) [17]. If a subset A is πg -closed in a space X, then $A = \pi g$ -cl(A) [17].

A subset A is said to be semi-open [23] if $A \subset cl(int(A))$. The complement of a semi-open set is called semi-closed [8]. The intersection of all semiclosed sets containing A is called the semi-closure [8] of A and is denoted by scl(A). The semi-interior of A is defined by the union of all semi-open sets contained in A and is denoted by sint(A). A point $x \in X$ is said to be a θ -semi-cluster point [21] of a subset A of X if $cl(U) \cap A \neq \emptyset$ for every semiopen set U containing x. The set of all θ -semi-cluster points of A is called the θ -semi-closure of A and is denoted by θ -s-cl(A). A subset A is called θ -semi-closed [21] if $A = \theta$ -s-cl(A). The complement of a θ -semi-closed set is called θ -semi-open.

A subset A of a space X is said to be (1) α -open [28] (resp. preopen [27] or locally dense [7], β -open [1] or semi-preopen [2]) if $A \subset int(cl(int(A)))$ (resp. $A \subset int(cl(A)), A \subset cl(int(cl(A)))$). If the complement of A is α open (resp. preopen, β -open), then A is said to be α -closed (resp. preclosed, β -closed). The union of all α -open (resp. preopen) sets, each contained in a set S in a topological space X is called the α -interior (resp. preinterior) of S and it is denoted by $\alpha int(S)$ (resp. pint(S)). The intersection of all α -closed sets, each containing a set S in a topological space X is called the α -closure (resp. preclosure) of S and it is denoted by $\alpha cl(S)$ (resp. pcl(S)).

The family of all δ -open (resp. πg -open, πg -closed, regular open, regular closed, semi-open, closed) sets of X containing a point $x \in X$ is denoted by $\delta O(X, x)$ (resp. $\pi GO(X, x), \pi GC(X, x), RO(X, x), RC(X, x), SO(X, x), C(X, x)$). The family of all δ -open (resp. πg -open, πg -closed, regular open, regular closed, semi-open, β -open, preopen) sets of X is denoted by $\delta O(X)$ (resp. $\pi GO(X), \pi GC(X), RO(X), RC(X), SO(X), \beta O(X), PO(X)$).

Definition 1. A space X is said to be

(1) s-Urysohn [3] if for each pair of distinct points x and y in X, there exist $U \in SO(X, x)$ and $V \in SO(X, y)$ such that $cl(U) \cap cl(V) = \emptyset$,

(2) weakly Hausdorff [36] if each element of X is an intersection of regular closed sets.

Definition 2. A space X said to be

- (1) S-closed [39] if every regular closed cover of X has a finite subcover,
- (2) countably S-closed [1] if every countable cover of X by regular closed sets has a finite subcover,
- (3) S-Lindelof [25] if every cover of X by regular closed sets has a countable subcover.

Definition 3. [17] A space (X, τ) is called $\pi g \cdot T_{1/2}$ if every πg -closed set is closed.

Definition 4. [13] Let B be a subset of a space X. The set $\cap \{A \in RO(X) : B \subset A\}$ is called the r-kernel of B and is denoted by r-ker(B).

Proposition 5. [13] The following properties hold for subsets A, B of a space X:

- (1) $x \in r$ -ker(A) if and only if $A \cap K \neq \emptyset$ for any regular closed set K containing x.
- (2) $A \subset r$ -ker(A) and A = r-ker(A) if A is regular open in X.
- (3) $A \subset B$, then r-ker $(A) \subset r$ -ker(B).

Lemma 6. [26] If V is an open set, then scl(V) = int(cl(V)).

The subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of a function $f : X \to Y$ and is denoted by G(f).

3. (g, s)-continuous and $(\pi g, s)$ -continuous functions

Definition 7. A function $f : X \to Y$ is called $(\pi g, s)$ -continuous (resp. (g, s)-continuous) if the inverse image of each regular open set of Y is πg -closed (resp. g-closed) in X.

Theorem 8. The following are equivalent for a function $f: X \to Y$:

- (1) f is $(\pi g, s)$ -continuous,
- (2) the inverse image of a regular closed set of Y is πg -open,
- (3) $f^{-1}(int(cl(V)))$ is πg -closed for every open subset V of Y,
- (4) $f^{-1}(cl(int(F)))$ is πg -open for every closed subset F of Y,
- (5) $f^{-1}(cl(U))$ is πg -open in X for every $U \in \beta O(Y)$,
- (6) $f^{-1}(cl(U))$ is πg -open in X for every $U \in SO(Y)$,
- (7) $f^{-1}(int(cl(U)))$ is πg -closed in X for every $U \in PO(Y)$.

Proof. $(1) \Leftrightarrow (2)$: Obvious.

(1) \Leftrightarrow (3) : Let V be an open subset of Y. Since int(cl(V)) is regular open, $f^{-1}(int(cl(V)))$ is πg -closed. The converse is similar.

 $(2) \Leftrightarrow (4)$: Similar to $(1) \Leftrightarrow (3)$.

 $(2) \Rightarrow (5)$: Let U be any β -open set of Y. By Theorem 2.4 of [2] that cl(U) is regular closed. Then by (2) $f^{-1}(cl(U)) \in \pi GO(X)$.

 $(5) \Rightarrow (6)$: Obvious from the fact that $SO(Y) \subset \beta O(Y)$.

 $(6) \Rightarrow (7)$: Let $U \in PO(Y)$. Then $Y \setminus int(cl(U))$ is regular closed and hence it is semiopen. Then, we have $X \setminus f^{-1}(int(cl(U))) = f^{-1}(Y \setminus int(cl(U)))$ $= f^{-1}(cl(Y \setminus int(cl(U)))) \in \pi GO(X)$. Hence $f^{-1}(int(cl(U)))$ is πg -closed in X.

 $(7) \Rightarrow (1)$: Let U be any regular open set of Y Then $U \in PO(Y)$ and hence $f^{-1}(U) = f^{-1}(int(cl(U)))$ is πg -closed in X.

Lemma 9. [32] For a subset A of a topological space (Y, σ) , the following properties hold:

- (1) $\alpha cl(A) = cl(A)$ for every $A \in \beta O(Y)$,
- (2) pcl(A) = cl(A) for every $A \in SO(Y)$,
- (3) scl(A) = int(cl(A)) for every $A \in PO(Y)$.

Corollary 10. The following are equivalent for a function $f: X \to Y$:

- (1) f is $(\pi g, s)$ -continuous,
- (2) $f^{-1}(\alpha cl(V))$ is πg -open in X for every $V \in \beta O(Y)$,
- (3) $f^{-1}(pcl(V))$ is πq -open in X for every $V \in SO(Y)$,
- (4) $f^{-1}(scl(V))$ is πg -closed in X for every $V \in PO(Y)$.

Proof. It follows from Lemma 9.

Theorem 11. Suppose that $\pi GC(X)$ is closed under arbitrary intersections. The following are equivalent for a function $f: X \to Y$:

- (1) f is $(\pi g, s)$ -continuous,
- (2) the inverse image of a θ -semi-open set of Y is πg -open,
- (3) the inverse image of a θ -semi-closed set of Y is πg -closed,
- (4) $f(\pi g \cdot cl(U)) \subset r \cdot ker(f(U))$ for every subset U of X,
- (5) $\pi g \cdot cl(f^{-1}(V)) \subset f^{-1}(r \cdot ker(V))$ for every subset V of Y,
- (6) for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists a πg -open set U in X containing x such that $f(U) \subset cl(V)$,
- (7) $f^{-1}(V) \subset \pi g$ -int $(f^{-1}(cl(V)))$ for every $V \in SO(Y)$,
- (8) $f(\pi g \cdot cl(A)) \subset \theta \cdot s \cdot cl(f(A))$ for every subset A of X,
- (9) $\pi g \cdot cl(f^{-1}(B)) \subset f^{-1}(\theta \cdot s \cdot cl(B))$ for every subset B of Y,
- (10) $\pi g \cdot cl(f^{-1}(V)) \subseteq f^{-1}(\theta \cdot s \cdot cl(V))$ for every open subset V of Y,
- (11) $\pi g \cdot cl(f^{-1}(V)) \subseteq f^{-1}(scl(V))$ for every open subset V of Y,
- (12) πg -cl($f^{-1}(V)$) $\subseteq f^{-1}(int(cl(V)))$ for every open subset V of Y.

Proof. $(1) \Rightarrow (2)$: Since any θ -semi-open set is a union of regular closed sets, by using Theorem 8, (2) holds.

102

 $(2) \Rightarrow (6)$: Let $x \in X$ and $V \in SO(Y)$ containing f(x). Since cl(V) is θ -semi-open in Y, there exists a πg -open set U in X containing x such that $x \in U \subset f^{-1}(cl(V))$. Hence $f(U) \subset cl(V)$.

 $(6) \Rightarrow (7)$: Let $V \in SO(Y)$ and $x \in f^{-}(V)$. Then $f(x) \in V$. By (6), there exists a πg -open set U in X containing x such that $f(U) \subset cl(V)$. It follows that $x \in U \subset f^{-1}(cl(V))$. Hence $x \in \pi g$ -int $(f^{-1}(cl(V)))$. Thus, $f^{-1}(V) \subset \pi g$ -int $(f^{-1}(cl(V)))$.

 $(7) \Rightarrow (1)$: Let F be any regular closed set of Y. Since $F \in SO(Y)$, then by $(7), f^{-1}(F) \subset \pi g\text{-}int(f^{-1}(F))$. This shows that $f^{-1}(F)$ is πg -open in X. Hence, by Theorem 8, (1) holds.

 $(2) \Leftrightarrow (3)$: Obvious.

 $(1) \Rightarrow (4)$: We shall use Theorem 8. Let U be any subset of X. Let $y \notin r$ ker(f(U)). Then there exists a regular closed set F containing y such that $f(U) \cap F = \emptyset$. Hence, we have $U \cap f^{-1}(F) = \emptyset$ and $\pi g \cdot cl(U) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(\pi g \cdot cl(U)) \cap F = \emptyset$ and $y \notin f(\pi g \cdot cl(U))$. Thus, $f(\pi g \cdot cl(U)) \subset r \cdot ker(f(U))$.

 $(4) \Rightarrow (5)$: Let V be any subset of Y. By (4), $f(\pi g \cdot cl(f^{-1}(V))) \subset r \cdot ker(V)$ and $\pi g \cdot cl(f^{-1}(V)) \subset f^{-1}(r \cdot ker(V))$.

 $(5) \Rightarrow (1)$: Let V be any regular open set of Y. By Proposition 5, πg - $cl(f^{-1}(V) \subset f^{-1}(\mathbf{r}\text{-}ker(V)) = f^{-1}(V)$ and πg - $cl((f^{-1}(V)) = f^{-1}(V)$. We obtain that $f^{-1}(V)$ is πg -closed in X.

 $(6) \Rightarrow (8)$: Let A be any subset of X. Suppose that $x \in \pi g \operatorname{-cl}(A)$ and G is any semiopen set of Y containing f(x). By (6), there exists $U \in \pi GO(X, x)$ such that $f(U) \subset \operatorname{cl}(G)$. Since $x \in \pi g \operatorname{-cl}(A)$, $U \cap A \neq \emptyset$ and hence $\emptyset \neq$ $f(U) \cap f(A) \subset \operatorname{cl}(G) \cap f(A)$. Therefore, we obtain $f(x) \in \theta \operatorname{-s-cl}(f(A))$ and hence $f(\pi g \operatorname{-cl}(A)) \subset \theta \operatorname{-s-cl}(f(A))$.

 $(8) \Rightarrow (9)$: Let *B* be any subset of *Y*. Then $f(\pi g \cdot cl(f^{-1}(B))) \subset \theta \cdot s \cdot cl(f(f^{-1}(B))) \subset \theta \cdot s \cdot cl(B)$ and $\pi g \cdot cl(f^{-1}(B)) \subset f^{-1}(\theta \cdot s \cdot cl(B))$.

 $(9) \Rightarrow (6)$: Let V be any semiopen set of Y containing f(x). Since $cl(V) \cap (Y \setminus cl(V)) = \emptyset$, we have $f(x) \notin \theta$ -s- $cl(Y \setminus cl(V))$ and $x \notin f^{-1}(\theta$ -s- $cl(Y \setminus cl(V)))$. By $(9), x \notin \pi g$ - $cl(f^{-1}(Y \setminus cl(V)))$. Hence, there exists $U \in \pi GO(X, x)$ such that $U \cap f^{-1}(Y \setminus cl(V)) = \emptyset$ and $f(U) \cap (Y \setminus cl(V)) = \emptyset$. It follows that $f(U) \subset cl(V)$. Thus, (6) holds.

 $(9) \Rightarrow (10)$: Obvious.

 $(10) \Rightarrow (11)$: Obvious from the fact that θ -s-cl(V) = scl(V) for an open set V.

 $(11) \Rightarrow (12)$: Obvious from Lemma 6.

 $(12) \Rightarrow (1)$: Let $V \in RO(Y)$. Then by $(12) \pi g \cdot cl(f^{-1}(V)) \subseteq f^{-1}$ $(int(cl(V))) = f^{-1}(V)$. Hence, $f^{-1}(V)$ is πg -closed which proves that f is $(\pi g, s)$ -continuous. **Corollary 12.** Assume that $\pi GC(X)$ is closed under arbitrary intersections. The following are equivalent for a function $f: X \to Y$:

- (1) f is $(\pi g, s)$ -continuous,
- (2) πg -cl($f^{-1}(B)$) $\subset f^{-1}(\theta$ -s-cl(B)) for every $V \in SO(Y)$,
- (3) $\pi g \cdot cl(f^{-1}(B)) \subset f^{-1}(\theta \cdot s \cdot cl(B))$ for every $V \in PO(Y)$,
- (4) πg -cl $(f^{-1}(B)) \subset f^{-1}(\theta$ -s-cl(B)) for every $V \in \beta O(Y)$.
- 4. The related functions with $(\pi g, s)$ -continuous functions

Definition 13. A function $f : X \to Y$ is said to be:

- (1) perfectly continuous [30] if $f^{-1}(V)$ is clopen in X for every open set V of Y,
- (2) regular set-connected [11, 15] if $f^{-1}(V)$ is clopen in X for every $V \in RO(Y)$,
- (3) almost s-continuous [6, 33] if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists an open set U in X containing x such that $f(U) \subset s\text{-}cl(V)$,
- (4) strongly continuous [22] if $f(cl(A)) \subset f(A)$ for every subset A of X or equivalently if the inverse image of every set in Y is clopen in X,
- (5) *RC*-continuous [10] if $f^{-1}(V)$ is regular closed in X for each open set V of Y,
- (6) contra R-map [16] if $f^{-1}(V)$ is regular closed in X for every regular open set V of Y,
- (7) contra-super-continuous [20] if for each $x \in X$ and each $F \in C(Y, f(x))$, there exists a regular open set U in X containing x such that $f(U) \subset F$,
- (8) almost contra-super-continuous [14] if $f^{-1}(V)$ is δ -closed in X for every regular open set V of Y,
- (9) contra-continuous [9] if $f^{-1}(V)$ is closed in X for every open set V of Y,
- (10) contra g-continuous [5] if $f^{-1}(V)$ is g-closed in X for every open set V of Y,
- (11) (θ, s) -continuous [21, 34] if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists an open set U in X containing x such that $f(U) \subset cl(V)$,
- (12) contra πg -continuous [18] if $f^{-1}(V)$ is πg -closed in X for every open set V of Y.

Remark 14. The following diagram holds for a function $f: X \to Y$:

strongly continuous	\Rightarrow	almost s-continuous
\Downarrow		\Downarrow
perfectly continuous	\Rightarrow	regular set-connected
\downarrow		\Downarrow
RC-continuous	\Rightarrow	contra R-map
\downarrow		\Downarrow
contra-super-continuous	\Rightarrow	almost contra-super-continuous
\downarrow		\Downarrow
contra-continuous	\Rightarrow	(θ, s) -continuous
\Downarrow		\Downarrow
contra g -continuous	\Rightarrow	(g, s)-continuous
\Downarrow		\Downarrow
contra πg -continuous	\Rightarrow	$(\pi q, s)$ -continuous

None of these implications is reversible as shown in the following examples and in the related papers.

Example 15. Let X be the real numbers with the cofinite topology and $Y = \{a, b, c\}$ with the topology $\sigma = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. We define the function $f : X \to Y$ such as

$$f(x) = \begin{cases} a, & x \in X \setminus \{0\} \\ c, & x = 0 \end{cases}$$

Then f is $(\pi g, s)$ -continuous but it is not (g, s)-continuous.

Example 16. Let $X = Y = \{a, b, c, d\}, \tau = \sigma = \{X, \emptyset, \{c\}, \{a, d\}, \{a, c, d\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ which is defined as f(a) = a, f(b) = d, f(c) = b, f(d) = a is $(\pi g, s)$ -continuous but it is not contra πg -continuous.

Example 17. Let $X = Y = \{a, b, c, d\}, \tau = \sigma = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ which is defined as f(a) = d, f(b) = c, f(c) = d, f(d) = b is (g, s)-continuous but it is not contra g-continuous.

Example 18. Let $X = Y = \{a, b, c, d\}, \tau = \sigma = \{X, \emptyset, \{c\}, \{a, d\}, \{a, c, d\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ which is defined as f(a) = c, f(b) = c, f(c) = b, f(d) = b is (g, s)-continuous but it is not (θ, s) -continuous.

A topological space (X, τ) is said to be extremely disconnected [4] if the closure of every open set of X is open in X.

Definition 19. A function $f: X \to Y$ is said to be:

ERDAL EKICI

- (1) πg -continuous [12] if $f^{-1}(V)$ is πg -open in X for every open set V of Y.
- (2) almost πg -continuous [12] if $f^{-1}(V)$ is πg -open in X for every regular open set V of Y.

Theorem 20. Let (Y, σ) be extremely disconnected. Then, the following are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (1) f is $(\pi g, s)$ -continuous,
- (2) f is almost πg -continuous.

Proof. (1) \Rightarrow (2) : Let $x \in X$ and U be any regular open set of Y containing f(x). Since (Y, σ) is extremely disconnected, by Lemma 5.6 of [35] U is clopen and hence U is regular closed. Then $f^{-1}(U)$ is πg -open in X. Thus, f is almost πg -continuous.

 $(2) \Rightarrow (1)$: Let K be any regular closed set of Y. Since (Y, σ) is extremely disconnected, K is regular open and $f^{-1}(K)$ is πg -open in X. Thus, f is $(\pi g, s)$ -continuous.

Theorem 21. Let $f : X \to Y$ be a function from a $\pi g \cdot T_{1/2}$ space (X, τ) to a topological space (Y, v). Then the following are equivalent:

- (1) f is $(\pi q, s)$ -continuous,
- (2) f is (g, s)-continuous,
- (3) f is (θ, s) -continuous.

Definition 22. A space is said to be P_{Σ} [41] or strongly s-regular [19] if for any open set V of X and each $x \in V$, there exists $K \in RC(X, x)$ such that $x \in K \subset V$.

Theorem 23. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then, if f is $(\pi g, s)$ -continuous, X is πg - $T_{1/2}$ and Y is P_{Σ} , then f is continuous.

Proof. Let G be any open set of Y. Since Y is P_{Σ} , there exists a subfamily Φ of RC(Y) such that $G = \bigcup \{A : A \in \Phi\}$. Since X is $\pi g \cdot T_{1/2}$ and f is $(\pi g, s)$ -continuous, $f^{-1}(A)$ is open in X for each $A \in \Phi$ and $f^{-1}(G)$ is open in X. Thus, f is continuous.

Theorem 24. Let Y be a regular space and $f : X \to Y$ be a function. Suppose that the collection of πg -closed sets of X is closed under arbitrary intersections. Then if f is $(\pi g, s)$ -continuous, f is πg -continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing f(x). Since Y is regular, there exists an open set G in Y containing f(x) such that $cl(G) \subset V$. Since f is $(\pi g, s)$ -continuous, there exists $U \in \pi GO(X, x)$ such that $f(U) \subset cl(G)$. Then $f(U) \subset cl(G) \subset V$. Hence, f is πg -continuous.

Theorem 25. Let $f : X \to Y$ be a function from a $\pi g \cdot T_{1/2}$ space (X, τ) to an extremely disconnected space (Y, υ) . Then the following are equivalent:

- (1) f is $(\pi q, s)$ -continuous,
- (2) f is (g, s)-continuous,
- (3) f is (θ, s) -continuous,
- (4) f is almost contra-super-continuous,
- (5) f is contra R-map,
- (6) f is regular set-connected,
- (7) f is almost s-continuous.

Proof. $(7) \Rightarrow (6) \Rightarrow (5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$: Follows from Remark 14.

 $(1) \Rightarrow (7)$: Let V be any semi-open semi-closed set of Y. Since V is semi-open, cl(V) = cl(int(V)) and hence cl(V) is open in Y. Since V is semi-closed, $int(cl(V)) \subset V \subset cl(V)$ and hence int(cl(V)) = V = cl(V). Therefore, V is clopen in Y and $V \in RO(Y) \cap RC(Y)$. Since f is $(\pi g, s)$ continuous, $f^{-1}(V)$ is πg -open and πg -closed in X. Since X is πg - $T_{1/2}$, then $\tau = \pi GO(X)$. Thus, $f^{-1}(V)$ is clopen in X and hence f is almost s-continuous [33, Theorem 3.1].

Definition 26. A space is said to be weakly P_{Σ} [31] if for any $V \in RO(X)$ and each $x \in V$, there exists $F \in RC(X, x)$ such that $x \in F \subset V$.

Theorem 27. Let $f : (X, \tau) \to (Y, \sigma)$ be a $(\pi g, s)$ -continuous function and let $\pi GC(X)$ be closed under arbitrary intersections. If Y is weakly P_{Σ} and X is $\pi g \cdot T_{1/2}$, then f is regular set-connected.

Proof. Let V be any regular open set of Y. Since Y is weakly P_{Σ} , there exists a subfamily Φ of RC(Y) such that $V = \bigcup \{A : A \in \Phi\}$. Since f is $(\pi g, s)$ -continuous, $f^{-1}(A)$ is πg -open in X for each $A \in \Phi$ and $f^{-1}(V)$ is πg -open in X. Also, $f^{-1}(V)$ is πg -closed in X since f is $(\pi g, s)$ -continuous. Since X is πg - $T_{1/2}$, then $\tau = \pi GO(X)$. Hence, $f^{-1}(V)$ is clopen in X and then f is regular set-connected.

Definition 28. A function $f : X \to Y$ is said to be πg -irresolute [17] if $f^{-1}(V)$ is πg -open in X for every $V \in \pi GO(Y)$.

Theorem 29. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then, the following properties hold:

- (1) If f is πg -irresolute and g is $(\pi g, s)$ -continuous, then $g \circ f$ is $(\pi g, s)$ -continuous.
- (2) If f is $(\pi g, s)$ -continuous and g is contra R-map, then $g \circ f$ is almost πg -continuous.
- (3) If f is πg -continuous and g is (θ, s) -continuous, then $g \circ f$ is $(\pi g, s)$ -continuous.

ERDAL EKICI

(4) If f is $(\pi g, s)$ -continuous and g is RC-continuous, then $g \circ f$ is πg -continuous.

5. Fundamental properties

Definition 30.

- (1) A subset S of a space X is said to be πg -compact relative to X if for every cover $\{A_i : i \in I\}$ of S by πg -open sets of X, there exists a finite subset I_0 of I such that $S \subset \bigcup \{A_i : i \in I_0\}$.
- (2) A space X said to be πg -compact [17] if every πg -open cover of X has a finite subcover.
- (3) A graph G(f) of a function $f : X \to Y$ is said to be $(\pi g, s)$ -graph if there exist a πg -open set A in X containing x and a semi-open set B in Y containing y such that $(A \times cl(B)) \cap G(f) = \emptyset$ for each $(x, y) \in (X \times Y) \setminus G(f)$.

Theorem 31.

- (1) Every πg -closed subset of a πg -compact space X is πg -compact relative to X.
- (2) The surjective $(\pi g, s)$ -continuous image of a πg -compact space is S-closed.
- (3) If $f : (X, \tau) \to (Y, \sigma)$ is πg -irresolute and a subset A of X is πg compact relative to X, then its image f(A) is πg -compact relative to Y.

Proof. (1): Let A be a πg -closed subset of a πg -compact space (X, τ) . Let $\{U_i : i \in I\}$ be a cover of A by πg -open subsets of X. So $A \subset \bigcup_{i \in I} U_i$ and then $(X \setminus A) \cup (\bigcup_{i \in I} U_i) = X$. Since X is πg -compact, there exists a finite subset I_0 of I such that $(X \setminus A) \cup (\bigcup_{i \in I_0} U_i) = X$. Then $A \subset \bigcup_{i \in I_0} U_i$ and hence A is πg -compact relative to X.

(2) : Let (X, τ) be a πg -compact space and $f : (X, \tau) \to (Y, \sigma)$ be a surjective $(\pi g, s)$ -continuous function. Let $\{U_i : i \in I\}$ be a cover of X by regular closed sets. Then $\{f^{-1}(U_i) : i \in I\}$ is a cover of X by πg -open sets, since f is $(\pi g, s)$ -continuous. By πg -compactness of X, there exists a finite subset I_0 of I such that $X = \bigcup_{i \in I_0} f^{-1}(U_i)$. Since f is surjective, $Y = \bigcup_{i \in I_0} U_i$ and hence Y is S-closed.

(3): Similar to that of (2).

Proposition 32. The following properties are equivalent for a function f: (1) G(f) is $(\pi g, s)$ -graph,

- (2) for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a πg -open set A in X containing x and a semi-open set B in Y containing y such that $f(A) \cap cl(B) = \emptyset$,
- (3) for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a πg -open set A in X containing x and a regular closed set K in Y containing y such that $f(A) \cap K = \emptyset$.

Definition 33. A subset S of a space X is said to be S-closed relative to X [29] if for every cover $\{A_i : i \in I\}$ of S by semi-open sets of X, there exists a finite subset I_0 of I such that $S \subset \cup \{cl(A_i) : i \in I_0\}$.

Theorem 34. If a function $f : X \to Y$ has a $(\pi g, s)$ -graph and the collection of πg -closed sets of X is closed under arbitrary intersections, then $f^{-1}(A)$ is πg -closed in X for every subset A which is S-closed relative to Y.

Proof. Suppose that A is S-closed relative to Y and $x \notin f^{-1}(A)$. We have $(x,y) \in X \times Y \setminus G(f)$ for each $y \in A$ and there exist a πg -open set B_y containing x and a semi-open set C_y containing y such that $f(B_y) \cap cl(C_y) = \emptyset$. Since $\{C_y : y \in A\}$ is a cover by semi-open sets of Y, there exists a finite subset $\{y_1, y_2, \ldots, y_n\}$ of A such that $A \subset \bigcup \{cl(C_{y_i}) : i = 1, 2, 3, \ldots, n\}$. Take $B = \cap \{B_{y_i} : i = 1, 2, 3, \ldots, n\}$. Then B is a πg -open containing x and $f(B) \cap A = \emptyset$. Thus, $B \cap f^{-1}(A) = \emptyset$ and hence $f^{-1}(A)$ is πg -closed in X.

Theorem 35. Let $f : X \to Y$ be a $(\pi g, s)$ -continuous functions. Then the following properties hold:

- (1) G(f) is a $(\pi g, s)$ -graph if Y is an s-Urysohn.
- (2) f is almost πg -continuous if Y is an s-Urysohn and $\pi GC(X)$ is closed under arbitrary intersections.

Proof. (1): Let Y be s-Urysohn and $(x, y) \in (X \times Y) \setminus G(f)$. Then $f(x) \neq y$. Since Y is s-Urysohn, there exist $M \in SO(Y, f(x))$ and $N \in SO(Y, y)$ such that $cl(M) \cap cl(N) = \emptyset$. Since f is $(\pi g, s)$ -continuous, there exists a πg -open set A in X containing x such that $f(A) \subset cl(M)$. Hence, $f(A) \cap cl(N) = \emptyset$ and G(f) is $(\pi g, s)$ -graph in $X \times Y$.

(2): Let F be a regular closed set in Y. By Theorem 3.3 and 3.4 [29], F is S-closed relative to Y. Hence, by Theorem 34 and (1), $f^{-1}(F)$ is πg -closed in X and hence f is almost πg -continuous.

Definition 36. A space X is said to be

- (1) $\pi g \cdot T_2$ [18] if for each pair of distinct points x and y in X, there exist $U \in \pi GO(X, x)$ and $V \in \pi GO(X, y)$ such that $U \cap V = \emptyset$.
- (2) πg - T_1 [18] if for each pair of distinct points in X, there exist πg -open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

ERDAL EKICI

(3) r- T_1 [15] if for each pair of distinct points in X, there exist regular open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Theorem 37. Let $f, g: X \to Y$ be functions and πg -cl(S) be πg -closed for each $S \subset X$. If

- (1) f and g are $(\pi g, s)$ -continuous,
- (2) Y is s-Urysohn,

then $A = \{x \in X : f(x) = g(x)\}$ is πg -closed in X.

Proof. Let $x \in X \setminus A$, then it follows that $f(x) \neq g(x)$. Since Y is s-Urysohn, there exist $M \in SO(Y, f(x))$ and $N \in SO(Y, g(x))$ such that $cl(M) \cap cl(N) = \emptyset$. Since f and g are $(\pi g, s)$ -continuous, there exist πg -open sets U and V containing x such that $f(U) \subset cl(M)$ and $g(V) \subset cl(N)$. Hence, $U \cap V = P \in \pi GO(X), f(P) \cap g(P) = \emptyset$ and then $x \notin \pi g$ -cl(A). Thus, A is πg -closed in X. \Box

A subset A of a topological space X is said to be πg -dense in X if πg cl(A) = X.

Theorem 38. Let $f, g: X \to Y$ be functions and πg -cl(S) be πg -closed for each $S \subset X$. If

- (1) Y is s-Urysohn,
- (2) f and g are $(\pi g, s)$ -continuous,
- (3) f = g on πg -dense set $A \subset X$,

then f = g on X.

Proof. Since f and g are $(\pi g, s)$ -continuous and Y is s-Urysohn, by Theorem 37, $B = \{x \in X : f(x) = g(x)\}$ is πg -closed in X. We have f = g on πg -dense set $A \subset X$. Since $A \subset B$ and A is πg -dense set in X, then $X = \pi g$ -cl $(A) \subset \pi g$ -cl(B) = B. Hence, f = g on X.

Theorem 39. The following properties hold for a function $f: X \to Y$:

- (1) If f is a $(\pi g, s)$ -continuous injection and Y is s-Urysohn, then X is πg -T₂.
- (2) If f is a $(\pi g, s)$ -continuous injection and Y is weakly Hausdorff, then X is πg -T₁.
- (3) If f is surjective and it has a $(\pi g, s)$ -graph, then Y is weakly T_2 .

Proof. (1) : Let Y be s-Urysohn. By the injectivity of $f, f(x) \neq f(y)$ for any distinct points x and y in X. Since Y is s-Urysohn, there exist $A \in SO(Y, f(x))$ and $B \in SO(Y, f(y))$ such that $cl(A) \cap cl(B) = \emptyset$. Since f is a $(\pi g, s)$ -continuous, there exist πg -open sets C and D in X containing x and y, respectively, such that $f(C) \subset cl(A)$ and $f(D) \subset cl(B)$ such that $C \cap D = \emptyset$. Thus, X is πg -T₂.

(2) : Let Y be weakly Hausdorff. For $x \neq y$ in X, there exist A, $B \in RC(Y)$ such that $f(x) \in A$, $f(y) \notin A$, $f(x) \notin B$ and $f(y) \in B$. Since f is $(\pi g, s)$ -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are πg -open subsets of X such that $x \in f^{-1}(A), y \notin f^{-1}(A), x \notin f^{-1}(B)$ and $y \in f^{-1}(B)$. Hence, X is πg -T₁.

(3) : Let y_1 and y_2 be any distinct points of Y. Since f is surjective, $f(x) = y_1$, for some $x \in X$ and $(x, y_2) \in (X \times Y) \setminus G(f)$. Then, there exist a πg -open set A in X containing x and a regular closed set K in Y containing y_2 such that $f(A) \cap K = \emptyset$. Hence $y_1 \notin K$. This implies that Y is weakly T_2 .

Definition 40. A space X said to be

- (1) countably πg -compact [18] if every countable cover of X by πg -open sets has a finite subcover,
- (2) πg -Lindelof [18] if every πg -open cover of X has a countable subcover.

Theorem 41. Let $f : X \to Y$ be a $(\pi g, s)$ -continuous surjection. Then the following statements hold:

- (1) if X is πg -Lindelof, then Y is S-Lindelof.
- (2) if X is countably πg -compact, then Y is countably S-closed.

Definition 42. A space X is called

- (1) πg -connected if X is not the union of two disjoint nonempty πg -open sets.
- (2) πg -ultra-connected if every two non-void πg -closed subsets of X intersect,
- (3) hyperconnected [37] if every open set is dense.

Theorem 43. Let $f: X \to Y$ be a $(\pi g, s)$ -continuous surjection.

- (1) If X is πg -connected, then Y is connected.
- (2) If X is πg -ultra-connected, then Y is hyperconnected.

Proof. (1) : Assume that Y is not connected space. Then there exist nonempty disjoint open sets A and B such that $Y = A \cup B$. Also, A and B are clopen in Y. Since f is $(\pi g, s)$ -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are πg -open in X. Moreover, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty disjoint and $X = f^{-1}(A) \cup f^{-1}(B)$. This shows that X is not πg -connected. This contradicts the assumption that Y is not connected.

Definition 44. [18] The πg -frontier of a subset A of a space X is given by πg -fr $(A) = \pi g$ -cl $(A) \cap \pi g$ -cl $(X \setminus A)$.

Theorem 45. Suppose that $\pi GC(X)$ is closed under arbitrary intersections. A function $f: X \to Y$ is not $(\pi g, s)$ -continuous at x if and only if $x \in \pi g$ - $fr(f^{-1}(F))$ for some $F \in RC(Y, f(x))$. Proof. (\Rightarrow) : Let f be not $(\pi g, s)$ -continuous at x. Then there exists $F \in RC(Y, f(x))$ for which $f(U) \nsubseteq F$ for every $U \in \pi GO(X, x)$. Thus, $f(U) \cap (Y \setminus F) \neq \emptyset$ for every $U \in \pi GO(X, x)$ and hence $U \cap (X \setminus f^{-1}(F)) \neq \emptyset$ for every $U \in \pi GO(X, x)$. Thus, $x \in \pi g\text{-}cl(X \setminus f^{-1}(F))$. Since $x \in f^{-1}(F)$, $x \in \pi g\text{-}fr(f^{-1}(F))$.

 (\Leftarrow) : Let $x \in X$ and suppose that there exists $F \in RC(Y, f(x))$ such that $x \in \pi g$ - $fr(f^{-1}(F))$. Suppose f is $(\pi g, s)$ -continuous at x. Then there exists a πg -open set U such that $x \in U$ and $U \subset f^{-1}(F)$. Hence, $x \notin \pi g$ - $cl(X \setminus f^{-1}(F))$. This contradiction implies that f is not $(\pi g, s)$ -continuous at x.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and βcontinuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] D. Andrijevic, Semipreopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [3] S. P. Arya and M. P. Bhamini, Some generalizations of pairwise Urysohn spaces, Indian J. Pure Appl. Math., 18 (1987), 1088–1093.
- [4] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass 1996.
- [5] M. Caldas, S. Jafari, T. Noiri and M. Simoes, A new generalization of contracontinuity via Levine's g-closed sets, Chaos, Solitons and Fractals, to appear.
- [6] S. H. Cho, A note on almost s-continuous functions, Kyungpook Math. J., 42 (2002), 171–175.
- [7] H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351–360.
- [8] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J. Math. Math. Sci., 19 (2) (1996), 303–310.
- [10] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Pannonica, 10 (1999), 159–168.
- [11] J. Dontchev, M. Ganster and I. Reilly, More on almost s-continuity, Indian J. Math., 41 (1999), 139–146.
- [12] J. Dontchev and T. Noiri, Quasi-normal and πg-closed sets, Acta Math. Hungar., 89
 (3) (2000), 211–219.
- [13] E. Ekici, On contra R-continuity and a weak form, Indian J. Math., 46 (2–3) (2004), 267–281.
- [14] E. Ekici, Almost contra-super-continuous functions, Studii si Cercetari Stiintifice, Seria: Matematica, Univ. din Bacau, 14 (2004), 31–42.
- [15] E. Ekici, Properties of regular set-connected functions, Kyungpook Math. J., 44 (2004), 395–403.
- [16] E. Ekici, Another form of contra-continuity, Kochi J. Math., 1 (2006), 21–29.
- [17] E. Ekici and C. W. Baker, $On \pi g$ -closed sets and continuity, Kochi J. Math., accepted.
- [18] E. Ekici, On contra πg -continuous functions, to appear.
- [19] M. Ganster, On strongly s-regular spaces, Glasnik Mat., 25 (45) (1990), 195-201.
- [20] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 42 (1999), 27-34.

- [21] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341–348.
- [22] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67 (1960), 269.
- [23] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [24] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89–96.
- [25] G. D. Maio, S-closed spaces, S-sets and S-continuous functions, Accad. Sci. Torino, 118 (1984), 125–134.
- [26] G.Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18 (1987), 226–233.
- [27] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [28] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
 [29] T. Noiri, On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat.
- Natur., 8 (64) (1978), 157–162.
- [30] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15 (1984), 241–250.
- [31] T. Noiri, A note on S-closed spaces, Bull. Inst. Math. Acad. Sinica, 12 (1984), 229– 235.
- [32] T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math., 20 (1989), 571–576.
- [33] T. Noiri, B. Ahmad and M. Khan, Almost s-continuous functions, Kyungpook Math. J., 35 (1995), 311–322.
- [34] T. Noiri and S. Jafari, Properties of (θ, s) -continuous functions, Topology Appl., 123 (2002), 167–179.
- [35] M. C. Pal and P. Bhattacharyya, Faint precontinuous functions, Soochow J. Math., 21 (1995), 273–289.
- [36] T. Soundararajan, Weakly Hausdorff Spaces and the Cardinality of Topological Spaces, in: General Topology and its Relation to Modern Analysis and Algebra. III, Proc. Conf. Kanpur, 1968, Academia, Prague 1971, pp. 301–306.
- [37] L. A. Steen and J. A. Seebach Jr, *Counterexamples in Topology*, Holt, Rinerhart and Winston, New York 1970.
- [38] M. H. Stone, Applications of the theory of Boolean rings to general topology, TAMS, 41 (1937), 375–381.
- [39] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60 (1976), 335–338.
- [40] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103– 118.
- [41] G. J. Wang, On S-closed spaces, Acta Math. Sinica, 24 (1981), 55-63.
- [42] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, 178 (1968), 778–779.

(Received: June 21, 2006) (Revised: October 16, 2006) Department of Mathematics Canakkale Onsekiz Mart University Terzioglu Campus 17020 Canakkale, Turkey E-mail: eekici@comu.edu.tr