SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 115–122

ON θ -b-irresolute functions

N. RAJESH

ABSTRACT. The concept of *b*-open sets was introduced by Andrijevic. The aim of this paper is to introduce and characterize θ -*b*-irresolute functions by using *b*-open sets.

1. INTRODUCTION

In 1965, Njastad [7] initiated the study of so called α -open sets. This notion has been studied extensively in recent years by many topologists. As a generalization of open sets, *b*-open sets were introduced and studied by Andrijevic. This notions was further studied by Ekici [3, 4, 5], Park [8] and Caldas et al [2]. In this paper, we will continue the study of related functions with *b*-open [1] sets. We introduce and characterize the concepts of θ -*b*-irresolute functions and relationships between strongly *b*-irresolute functions and graphs are investigated.

Throughout this paper, X and Y always refer to topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A) and int(A) denote the closure of A and interior of A in X, respectively. A subset A of X is said to be α -open [7] (resp. b-open [1]) if $A \subset int(cl(int(A)))$ (resp. $A \subset cl(\int (A)) \cup int(cl(A)))$). The complement of b-open set is called b-closed [1]. The intersection of all b-closed sets of X containing A is called the b-closure [1] of A and is denoted by bcl(A). A set A is b-closed [8] if and only if bcl(A) = A. The union of all b-open sets of X contained in A is called the b-interior [1] of A and is denoted by bint(A). A set A is said to be b-regular [8] if it is b-open and b-closed. The family of all α -open (resp. b-open, b-closed, b-regular) sets of X is denoted by $\alpha O(X)$ (resp. BO(X), BC(X), BR(X)). We will set BO(X, x) $= \{V \in BO(X) | x \in V\}$ for $x \in X$.

²⁰⁰⁰ Mathematics Subject Classification. 54C05.

Key words and phrases. Topological spaces, b-open sets.

N. RAJESH

2. Preliminaries

A point x of X is called a b- θ -cluster [8] point of $S \subset X$ if $b \operatorname{cl}(U) \cap S \neq \emptyset$ for every $U \in BO(X, x)$. The set of all b- θ -cluster points of S is called the b- θ -closure of S and is denoted by $b \operatorname{cl}_{\theta}(S)$. A subset S is said to be b- θ -closed [8] if and only if $S = b \operatorname{cl}_{\theta}(S)$. The complement of a b- θ -closed set is said to be b- θ -open [8].

Theorem 2.1. [8] Let A be a subset of a topological space X. Then,

- (i) $A \in BO(X)$ if and only if $b \operatorname{cl}(A) \in BR(X)$.
- (ii) $A \in BC(X)$ if and only if $b \operatorname{int}(A) \in BR(X)$.

Theorem 2.2. [8] For a subset A of a topological space X, the following properties hold:

- (i) If $A \in BO(X)$, then $b \operatorname{cl}(A) = b \operatorname{cl}_{\theta}(A)$,
- (ii) $A \in BR(X)$ if and only if A is b- θ -open and b- θ -closed.

Definition 2.3. [8] A topological space X is said to be b-regular if for each closed set F and each $x \notin F$, there exist disjoint b-open sets U and V such that $x \in U$ and $F \subset V$.

Theorem 2.4. [8] For a topological space X, the following properties are equivalent:

- (i) X is b-regular;
- (ii) For each open set U and each $x \in U$, there exists $V \in BO(X)$ such that $x \in V \subset b \operatorname{cl}(V) \subset U$;
- (iii) For each open set U and each $x \in U$, there exists $V \in BR(X)$ such that $x \in V \subset U$.

Definition 2.5. A function $f : X \to Y$ is said to be b-irresolute [6] if $f^{-1}(V) \in BO(X)$ for every $V \in BO(Y)$.

Definition 2.6. A function $f : X \to Y$ is said to be weakly b-irresolute [10] if for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists a $U \in BO(X, x)$ such that $f(U) \subset b \operatorname{cl}(V)$.

3. θ -*b*-irresolute functions

We introduce the following definition

Definition 3.1. A function $f : X \to Y$ is said to be θ -b-irresolute if for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$.

Clearly, every *b*-irresolute function is θ -*b*-irresolute and every θ -*b*-irresolute function is weakly *b*-irresolute. But the converses are not true as shown by the following example.

Example 3.2. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Then the identity map $f : (X, \tau) \to (Y, \sigma)$ is θ -b-irresolute but not b-irresolute.

Theorem 3.3. For a function $f : X \to Y$ the following properties are equivalent:

- (i) f is θ -b-irresolute;
- (ii) $b \operatorname{cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(b \operatorname{cl}_{\theta}(B))$ for every subset B of Y;
- (iii) $f(b \operatorname{cl}_{\theta}(A)) \subset b \operatorname{cl}_{\theta}(f(A))$ for every subset A of X.

Proof. (i)⇒(ii): Let *B* be any subset of *Y*. Suppose that $x \notin f^{-1}(b \operatorname{cl}_{\theta}(B))$. Then $f(x) \notin b \operatorname{cl}_{\theta}(B)$ and there exits $V \in BO(Y, f(x))$ such that $b \operatorname{cl}(V) \cap B$ = Ø. Since *f* is θ -*b*-irresolute, there exists $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U))$ $\subset b \operatorname{cl}(V)$. Therefore, we have $f(b \operatorname{cl}(U)) \cap B = \emptyset$ and $b \operatorname{cl}(U) \cap f^{-1}(B) = \emptyset$. This shows that $x \notin b \operatorname{cl}_{\theta}(f^{-1}(B))$. Hence, we obtain $b \operatorname{cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(b \operatorname{cl}_{\theta}(B))$.

(ii) \Rightarrow (iii): Let A be any subset of X. Then we have $b \operatorname{cl}_{\theta}(A) \subset b \operatorname{cl}_{\theta}(f^{-1}(f(A))) \subset f^{-1}(b \operatorname{cl}_{\theta}(f(A)))$ and hence $f(b \operatorname{cl}_{\theta}(A)) \subset b \operatorname{cl}_{\theta}(f(A))$.

(iii) \Rightarrow (ii): Let *B* be a subset of *Y*. We have $f(b \operatorname{cl}_{\theta}(f^{-1}(B))) \subset b \operatorname{cl}_{\theta}(f(f^{-1}(B))) \subset b \operatorname{cl}_{\theta}(B)$ and hence $b \operatorname{cl}_{\theta}(f^{-1}(B)) \subset f^{-1}(b \operatorname{cl}_{\theta}(B))$.

(ii) \Rightarrow (i): Let $x \in X$ and $V \in BO(Y, f(x))$. Then we have $b \operatorname{cl}(V) \cap (Y - b \operatorname{cl}(V)) = \emptyset$ and $f(x) \notin b \operatorname{cl}_{\theta}(Y - b \operatorname{cl}(V))$. Hence, $x \notin f^{-1}(b \operatorname{cl}_{\theta}(Y - b \operatorname{cl}(V)))$ and $x \notin b \operatorname{cl}_{\theta}(f^{-1}(Y - b \operatorname{cl}(V)))$. There exists $U \in BO(X, x)$ such that $b \operatorname{cl}(U) \cap f^{-1}(Y - b \operatorname{cl}(V)) = \emptyset$ and hence $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$. This shows that f is θ -b-irresolute.

A point x of X is called a b- θ -interior point of A if there exists a b-open set U containing x such that $b \operatorname{cl}(U) \subset A$. The set of all b- θ -interior points of A is said to be the b- θ -interior of A [8], denoted by $b \operatorname{int}_{\theta}(A)$.

Theorem 3.4. For a function $f : X \to Y$ the following properties are equivalent:

- (i) f is b- θ -irresolute;
- (ii) $f^{-1}(V) \subset bint_{\theta}(f^{-1}(b \operatorname{cl}(V)))$ for every $V \in BO(Y)$.
- (iii) $b \operatorname{cl}_{\theta}(f^{-1}(V)) \subset f^{-1}(b \operatorname{cl}(V))$ for every $V \in BO(Y)$.

Proof. (i) \Rightarrow (ii): Suppose that $V \in BO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(U)$. Therefore, $x \in U \subset b \operatorname{cl}(U) \subset f^{-1}(b \operatorname{cl}(V))$. This shows that $x \in b \operatorname{int}_{\theta}(f^{-1}(b \operatorname{cl}(V)))$. This shows that $f^{-1}(V) \subset b \operatorname{int}_{\theta}(f^{-1}(b \operatorname{cl}(V)))$.

(ii) \Rightarrow (iii): Suppose that $V \in BO(Y)$ and $x \notin f^{-1}(b\operatorname{cl}(V))$. Then $f(x) \notin b\operatorname{cl}(V)$ and there exists $U \in BO(Y, f(x))$ such that $U \cap V = \emptyset$ and hence $b\operatorname{cl}(U) \cap V = \emptyset$. Therefore, we have $f^{-1}(b\operatorname{cl}(U)) \cap f^{-1}(V) = \emptyset$. Since $x \in f^{-1}(U)$, by (ii), $x \in b\operatorname{int}_{\theta}(f^{-1}(b\operatorname{cl}(U)))$. There exists $W \in BO(X, x)$

such that $b \operatorname{cl}(W) \subset f^{-1}(b \operatorname{cl}(U))$. Thus, we have $b \operatorname{cl}(W) \cap f^{-1}(V) = \emptyset$ and hence $x \notin b \operatorname{cl}_{\theta}(f^{-1}(V))$. This shows that $b \operatorname{cl}_{\theta}(f^{-1}(V)) \subset f^{-1}(b \operatorname{cl}(V))$. (iii) \Rightarrow (i): Suppose that $x \in X$ and $V \in BO(Y, f(x))$. Then, $V \cap (Y - b \operatorname{cl}(V)) = \emptyset$ and $f(x) \notin b \operatorname{cl}(Y - b \operatorname{cl}(V))$. Therefore, $x \notin f^{-1}(b \operatorname{cl}(Y - b \operatorname{cl}(V)))$ and by (iii), $x \notin b \operatorname{cl}_{\theta}(f^{-1}(Y - b \operatorname{cl}(V)))$. There exists $U \in BO(X, x)$ such that $b \operatorname{cl}(U) \cap f^{-1}(Y - b \operatorname{cl}(V)) = \emptyset$. Therefore, we obtain $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$. This shows that f is θ -b-irresolute.

A function $f: X \to Y$ is said to be strongly *b*-irresolte [9] if for each point $x \in X$ and each $V \in BO(Y, f(x))$, there exists a $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U)) \subset V$.

Theorem 3.5. Let Y be a b-regular space. Then for a function $f : X \to Y$ the following properties are equivalent:

- (i) f is strongly b-irresolute;
- (ii) f is b-irresolute;
- (iii) f is θ -b-irresolute.

Proof. (i) \Rightarrow (ii): This is obvious.

(ii) \Rightarrow (iii): Suppose that $x \in X$ and $V \in BO(Y, f(x))$. Since f is birresolute, $f^{-1}(V)$ is b-open and $f^{-1}(b \operatorname{cl}(V))$ is b-closed in X. Now, put U $= f^{-1}(V)$. Then we have $U \in BO(X, x)$ and $b \operatorname{cl}(U) \subset f^{-1}(b \operatorname{cl}(V))$. Therefore, we obtain $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$. This shows that f is θ -b-irresolute.

(iii) \Rightarrow (i): Suppose that $x \in X$ and $V \in BO(Y, f(x))$. Since Y is b-regular, there exists $W \in BO(Y)$ such that $f(x) \in W \subset b \operatorname{cl}(W) \subset V$. Since f is θ -b-irresolute, there exists $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(W) \subset V$. This shows that f is strongly b-irresolute.

Theorem 3.6. Let X be a b-regular space. Then $f : X \to Y$ is b- θ -irresolute if and only if it is weakly b-irresolute.

Proof. Suppose that f is weakly b-irresolute. Let $x \in X$ and $V \in BO(Y, f(x))$. Then, there exists $U \in BO(X, x)$ such that $f(U) \subset b \operatorname{cl}(V)$. Since X is b-regular, there exists $U_0 \in BO(X, x)$ such that $x \in U_0 \subset b \operatorname{cl}(U_0) \subset U$. Therefore, we obtain $f(b \operatorname{cl}(U_0)) \subset b \operatorname{cl}(V)$. This shows that f is θ -b-irresolute. \Box

Lemma 3.7. [8] For the subsets A and B of X, $b \operatorname{cl}(A \times B) \subset b \operatorname{cl}(A) \times b \operatorname{cl}(B)$.

Theorem 3.8. A function $f : X \to Y$ is θ -b-irresolute if the graph function $g : X \to X \times Y$ of f, defined by g(x) = (x, f(x)) for each $x \in X$, is θ -b-irresolute.

Proof. Suppose that g is θ -b-irresolute. Let $x \in X$ and $V \in BO(Y, f(x))$. Then $X \times V$ is a b-open set of $X \times Y$ containing g(x). Since g is θ -b-irresolute, there exists $U \in BO(X, x)$ such that $g(b \operatorname{cl}(U)) \subset b \operatorname{cl}(X \times V)$. By Lemma

118

3.7, $b \operatorname{cl}(X \times V) \subset (X \times b \operatorname{cl}(V))$. Therefore, we obtain $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$. This shows that f is θ -b-irresolute.

Lemma 3.9. [1, 5] Let A and X_0 be subsets of a space X.

(i) If $A \in BO(X)$ and $X_0 \in \alpha O(X)$, then $A \cap X_0 \in BO(X_0)$;

(ii) If $A \in BO(X_0)$ and $X_0 \in \alpha O(X)$, then $A \in BO(X)$.

Lemma 3.10. [8] Let A and X_0 be subsets of a space X such that $A \subset X_0 \subset X$. Let $b \operatorname{cl}_{X_0}(A)$ denote the b-closure of A with respect to the subspace X_0 .

(i) If X_0 is α -open in X, then $b \operatorname{cl}_{X_0}(A) \subset b \operatorname{cl}(A)$;

(ii) If $A \in BO(X_0)$ and $X_0 \in \alpha O(X)$, then $b \operatorname{cl}(A) \subset b \operatorname{cl}_{X_0}(A)$.

Theorem 3.11. If $f : X \to Y$ is θ -b-irresolute and X_0 is an α -open subset of X, then the restriction $f_{|X_0} : X_0 \to Y$ is θ -b-irresolute.

Proof. For any $x \in X_0$ and any $V \in BO(Y, f(x))$, there exists $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$ since f is θ -b-irresolute. Let $U_0 = U \cap X_0$, then by Lemmas 3.9 and 3.10, $U_0 \in BO(X_0, x)$ and $b \operatorname{cl}_{X_0}(U_0) \subset b \operatorname{cl}(U_0)$. Therefore, we obtain $(f_{|x_0})$ $(b \operatorname{cl}_{X_0}(U_0)) = f(b \operatorname{cl}_{X_0}(U_0)) \subset f(b \operatorname{cl}(U_0)) \subset f(b \operatorname{cl}(U_0)) \subset f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$. This shows that $f_{|x_0}$ is θ -b-irresolute. \Box

Theorem 3.12. A function $f : X \to Y$ is θ -b-irresolute if for each $x \in X$ there exists $X_0 \in \alpha O(X, x)$ such that the restriction $f_{|X_0} \colon X_0 \to Y$ is θ -b-irresolute.

Proof. Let $x \in X$ and $V \in BO(Y, f(x))$. There exists $X_0 \in \alpha O(X, x)$ such that $f_{|_{X_0}} \colon X_0 \to Y$ is θ -b-irresolute. Thus, there exists $U \in BO(X_0, x)$ such that $(f_{|_{X_0}})$ $(b \operatorname{cl}_{X_0}(U)) \subset b \operatorname{cl}(V)$. By Lemmas 3.9 and 3.10, $U \in BO(X, x)$ and $b \operatorname{cl}(U) \subset b \operatorname{cl}_{X_0}(U)$. Hence, we have $f(b \operatorname{cl}(U)) = (f_{|_{X_0}})$ $(b \operatorname{cl}(U)) \subset (f_{|_{X_0}})$ $(b \operatorname{cl}_{X_0}(U)) \subset b \operatorname{cl}(V)$. This shows that f is θ -b-irresolute.

Corollary 3.13. Let $\{U_{\alpha} : \alpha \in \wedge\}$ be an α -open cover of a topological space X. A function $f : X \to Y$ is θ -b-irresolute if and only if the restriction $f_{|_{U_{\alpha}}}$: $U_{\alpha} \to Y$ is θ -b-irresolute for each $\alpha \in \wedge$.

Proof. The proof follows from Theorems 3.11 and 3.12.

Theorem 3.14. Let $f: X \to Y$, $g: Y \to Z$ be functions and $g \circ f: X \to Z$ be the composition. Then the following properties hold:

- (i) If f and g are b- θ -irresolute, then $g \circ f$ is θ -b-irresolute;
- (ii) If f is strongly b-irresolute and g is weakly b-irresolute, then $g \circ f$ is θ -b-irresolute;
- (iii) If f is weakly b-irresolute and g is θ -b-irresolute, then $g \circ f$ is weakly b-irresolute;

N. RAJESH

(iv) If f is θ -b-irresolute and g is strongly b-irresolute, then $g \circ f$ is strongly b-irresolute.

Proof. The proof follows from the definitions.

4. Graphs of θ -b-irresolute functions

Definition 4.1. A topological space X is said to be b-T₂ [8] if for each pair of distinct points x and y in X, there exists $U \in BO(X, x)$ and $V \in BO(X, y)$ such that $b \operatorname{cl}(U) \cap b \operatorname{cl}(V) = \emptyset$.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)): x \in X\}$ of $X \times Y$ is called the graph of f and is denoted by G(f).

Definition 4.2. The graph G(f) of a function $f : X \to Y$ is said to be strongly b-closed [8] (resp. b- θ -closed [8]) if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in BO(X, x)$ and $V \in BO(Y, y)$ such that $(b \operatorname{cl}(U) \times V) \cap G(F)$ $= \emptyset$ (resp. $(b \operatorname{cl}(U) \times b \operatorname{cl}(V)) \cap G(f) = \emptyset$).

Lemma 4.3. The graph G(f) of a function $f : X \to Y$ is b- θ -closed in $X \times Y$ if and only if for each point $(x, y) \in (X \times Y) - G(f)$, there exist $U \in BO(X, x)$ and $V \in BO(Y, y)$ such that $f(b \operatorname{cl}(U)) \cap b \operatorname{cl}(V) = \emptyset$.

Proof. The proof follows from the definitions.

Theorem 4.4. If $f : X \to Y$ is θ -b-irresolute and Y is b-T₂, then G(f) is b- θ -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. It follows that $f(x) \neq y$. Since Y is b- T_2 , there exist b-open set V and W in Y containing f(x) and y, respectively, such that $b \operatorname{cl}(V) \cap b \operatorname{cl}(W) = \emptyset$. Since f is θ -b-irresolute, there exists $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U)) \subset b \operatorname{cl}(V)$. Therefore, $f(b \operatorname{cl}(U)) \cap b \operatorname{cl}(W) = \emptyset$ and by Lemma 4.3, G(f) is b- θ -closed in $X \times Y$.

Recall that a space X is said to be $b T_2$ [8] if for any pair of distinct points x, y of X, there exist disjoint b-open sets U and V such that $x \in U$ and $y \in V$.

Theorem 4.5. If $f : X \to Y$ is strongly b-irresolute and Y is b-T₂, then G(f) is b- θ -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. It follows that $f(x) \neq y$. Since Y is b- T_2 , there exist b-open sets V and W in Y containing f(x) and y, respectively, such that $V \cap W = \emptyset$ and hence $V \cap b \operatorname{cl}(W) = \emptyset$. Since f is strongly b-irresolute, there exists $U \in BO(X, x)$ such that $f(b \operatorname{cl}(U)) \subset V$. Therefore, $f(b \operatorname{cl}(U)) \cap b \operatorname{cl}(W) = \emptyset$ and by Lemma 4.3, G(f) is b- θ -closed in $X \times Y$. \Box

120

Theorem 4.6. Let $f, g: X \to Y$ be functions. If G(f) is b- θ -closed and g is θ -b-irresolute, then the set $\{(x_1, x_2): f(x_1) = g(x_2)\}$ is b- θ -closed in the product space $X \times X$.

Proof. Let $A = \{(x_1, x_2) : f(x_1) = g(x_2)\}$. Suppose $(x_1, x_2) \notin A$. Then $f(x_1) \neq g(x_2)$ and hence $(x_1, g(x_2)) \notin G(f)$. Since G(f) is *b*- θ -closed, there exist $U \in BO(X, x_1)$ and $W \in BO(Y, g(x_2))$ such that $f(b \operatorname{cl}(U)) \cap b \operatorname{cl}(W) = \emptyset$. Since g is θ -*b*-irresolute, there exists $U_0 \in BO(X, x_2)$ such that $g(b \operatorname{cl}(U_0)) \subset b \operatorname{cl}(W)$ and hence $f(b \operatorname{cl}(U)) \cap g(b \operatorname{cl}(U_0)) = \emptyset$. Therefore, we obtain $(b \operatorname{cl}(U) \times b \operatorname{cl}(U_0)) \cap A = \emptyset$ and hence A is *b*- θ -closed. □

Theorem 4.7. If $f : X \to Y$ is a θ -b-irresolute function and Y is b- T_2 , then the subset $A = \{(x, y): f(x) = f(y)\}$ is b- θ -closed in $X \times X$.

Proof. Since f is θ -b-irresolute and Y is b- T_2 , by Theorem 4.4, G(f) is b- θ -closed. Therefore, by Theorem 4.6, A is b- θ -closed.

Definition 4.8. A topological space X is said to be

- (i) b-closed [8] if every cover of X by b-open sets has a finite subcover whose b-closures cover X;
- (ii) countably b-closed [8] if every countable cover of X by b-open sets has a finite subcover whose b-closures cover X.

A subset K of a space X is said to be b-closed relative to X [8] if for every cover $\{V_{\alpha}: \alpha \in \wedge\}$ of K by b-open sets of X, there exists a finite subset \wedge_0 of \wedge such that $K \subset \bigcup \{b \operatorname{cl}(V_{\alpha}): \alpha \in \wedge_0\}$.

Theorem 4.9. If $f : X \to Y$ is θ -b-irresolute function and K is b-closed relative to X, then f(K) is b-closed relative to Y.

Proof. Suppose that $f: X \to Y$ is θ -b-irresolute and K is b-closed relative to X. Let $\{V_{\alpha}: \alpha \in \wedge\}$ be a cover of f(K) by b-open sets of X. For each point $x \in K$, there exists $\alpha(x) \in \wedge$ such that $f(x) \in V_{\alpha(x)}$. Since f is θ b-irresolute, there exists $U_x \in BO(X, x)$ such that $f(b \operatorname{cl}(U_x)) \subset b \operatorname{cl}(V_{\alpha(x)})$. The family $\{U_x: x \in K\}$ is a cover of K by b-open sets of X and hence there exists a finite subset K_1 of K such that $K \subset \bigcup_{x \in K_1} b \operatorname{cl}(U_x)$. Therefore, we obtain $f(K) \subset \bigcup_{x \in K_1} b \operatorname{cl}(V_{\alpha(x)})$. This shows that f(K) is b-closed relative to Y.

Corollary 4.10. If $f : X \to Y$ be a θ -b-irresolute surjection. Then the following properties hold:

- (i) If X is b-closed, then Y is b-closed;
- (ii) If X is countably b-closed, then Y is countably b-closed.

N. RAJESH

References

- [1] D. Andrijevic, On b-open sets, Math. Vesnik, 48 (1996), 59-64.
- [2] M. Caldas, S. Jafari and T. Noiri, $On \wedge_b$ -sets and the associated topology τ^{\wedge_b} (submitted).
- [3] E. Ekici, On γ-US-spaces, Indian J. Math., 47 (2-3) (2005), 131-138.
- [4] E. Ekici, On R-spaces, Int. J. Pure. Appl. Math., 25 (2) (2005), 163–172.
- [5] E. Ekici and M. Caldas, Slightly γ-continuous functions, Bol. Soc. Parana. Mat., (3) 22 (2) (2004), 63-74.
- [6] A. A. El-Atik, A study of some types of mappings on topological spaces, Master's Thesis, Faculty of Science, Tanta University, Tanta, Egypt (1997).
- [7] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [8] J. H. Park, Strongly θ -b-continuous functions, Acta Math. Hungar., 110 (4) 2006, 347-359.
- [9] N. Rajesh, On strongly b-irresolute functions, (under preparation).
- [10] N. Rajesh, On weakly b-irresolute functions, (submitted).

(Received: August 5, 2006) (Revised: December 4, 2006) Department of Mathematics Kongu Engineering College Perundurai, Erode-638 052 Tamil Nadu, India E-mail: nrajesh_topology@yahoo.co.in