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RESULT ON VARIATIONAL INEQUALITY PROBLEM

HEMANT KUMAR NASHINE

Abstract. The aim of this paper is to present an improved and ex-
tended version of the variational inequality problem of Vetrivel and
Nanda [7] by using a weaker condition in the topological vector space
and without using the result of Lassonde [3].

1. Introduction

An existence theorem dealing with the variational inequality problem was
discussed by Gwinner [1], which is, an infinite dimensional version of the
Walras excess demand theorem (see also Zeidler [8]), as follows:

Theorem 1.1. Let A and B be nonempty compact convex subsets of Haus-
dorff locally convex topological vector spaces X and Y, respectively. Let
f : A× B → R be continuous. Let T : A → B be a multifunction. Suppose
that

(i) for each y ∈ B, {x ∈ A : f(x, y) < t} is convex for all t ∈ R,
(ii) T is an upper semicontinuous multifunction with nonempty compact

convex values. Then there exists x0 ∈ A and y0 ∈ T (x0) such that
f(x0, y0) ≤ f(x, y0) for all x ∈ A.

This result was improved by Vetrivel and Nanda [7] for multifunction with
open inverse values in the same space in the line of Tarafdar and Yuan [6].

In this paper, our purpose is to improve and extend the result of Vetrivel
and Nanda [7] by using a weaker assumption in the topological vector space
instead of locally convex Hausdorff topological vector space. Since any con-
vex or star-shaped set in a topological vector space is acyclic, we assume that
the function involved is an upper semicontinuous multifunction with acyclic
values instead of convex values. For this reason, we use the result of Sh-
ioji [4, Lemma 1] instead of Lassonde [3] along with the result of Horvath [2].
To prove the theorem, we follow the method of Tarafdar and Watson [5].
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2. Preliminaries

To prove our main result, Let us recall the following:
Let X and Y be non-empty sets. The collection of all non-empty subsets

of X is denoted by 2X .
A multifunction or set-valued function from X to Y is defined to be a

function that assigns to each elements of X a non-empty subset of Y.
If T is a multifunction from X to Y, then it is designated as T : X → 2Y ,

and for every x ∈ X , T x is called a value of T .
For A ⊆ X , the image of A under T , denoted by T (A), is defined as

T (A) =
⋃

x∈A
T x.

For B ⊆ Y, the preimage or inverse image of B under T , denoted by T −1(B),
is defined as

T −1(B) = {x ∈ X : T x ∩ B 6= φ}.
If y ∈ Y, then T −1(y) is called a inverse value of T . If it is open, then it
called an open inverse value.

A multivalued function T : X → 2Y is upper semicontinuous (usc)(lower
semicontinuous(lsc)) if T −1(B) = {x ∈ X : T x ∩ B 6= φ} is closed(open)
for each closed (open) subset B of Y. If T is both usc and lsc, then it is
continuous.

A multifunction T : X → 2Y is said to be a compact multifunction, if
T (X ) is contained in a compact subset of Y.

It is known that if T : X → 2Y is an upper semicontinuous multifunction
with compact values, then T (K) is a compact in Y whenever K is compact
subset of X .

Let ∆n be the standard n−dimensional simplex with vertices e0, e1, e2,
. . . , en. If Jn = {0, 1, 2, . . . , n}. We denote by ∆J = Co{ej : j ∈ J} for any
non-empty subset J of Jn.

A topological space X is said to be contractible, if the identity mapping
IX of X is homotopic to a constant function. A topological space is said
to be an acyclic space if all of its reduced Cech homology groups over the
rationals vanish. In particular, any contractible space is acyclic, and hence,
any convex or star-shaped set in a topological vector space is acyclic. For
a topological space X , we shall denote by ka(X ), the family of all compact
acyclic subsets of X .

For our main result, we need following results due to Horvath [2] and
Shioji [4, Lemma 1]:
Theorem 2.1. [2]. Let X be a topological space. For any nonempty subset
J of {0, 1, . . . , n}, let ΓJ be a nonempty contractible subset of X . If φ 6=
J ⊂ J ′ ⊂ {0, 1, . . . , n} implies ΓJ ⊂ ΓJ ′, then there exists a single valued
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continuous function f : ∆n → X such that g[∆J ] ⊆ ΓJ for all non-empty
subsets J of {0, 1, . . . , n}.
Theorem 2.2. [4]. Let ∆n be an n−dimensional simplex with the Euclidean
topology and X a compact topological space. Let h : X → ∆n be a single-
valued continuous mapping and T : ∆n → ka(X ) be a upper semicontinuous
set-valued mapping. Then there exists a point x0 ∈ ∆n such that x0 ∈
h(T (x0)).

3. Main result

Theorem 3.1. Let A be as in Theorem 1.1 and B be an arbitrary subset of
topological vector space Y. Let f : A×B → R be continuous. Let T : A → B
be a multifunction. Suppose that

(i) for each y ∈ B, {x ∈ A : f(x, y) < t} is convex for all t ∈ R;
(ii) T −1(y) contains an open set Oy(which may be empty) such that⋃

y∈T (A)Oy = A;
(iii) for every open set V in A, the set ∩{T v : v ∈ V} is empty or

contractible;
(iv) T (A) is compact and contractible;

Then there exist x0 ∈ A and y0 ∈ T (x0) such that f(x0, y0) ≤ f(x, y0) for
all x ∈ A.

Proof. Since A is compact and
⋃

y∈T (A)Oy = A, there exists a finite subset
{y0, y1, y2, . . . , yn} ⊂ T (A) such thatA =

⋃n
i=0Oyi . Now, for each nonempty

subset J of N = {0, 1, 2, . . . , n}, define

ΓJ =

{
∩{T (x) : x ∈ ⋂

j∈J Oyj}, if
⋂

j∈J Oyj 6= φ,
T (A), otherwise

.

Evidently, if x ∈ ⋂
j∈J Oyj , then {yj : j ∈ J} ⊂ T (x). By (ii), each ΓJ

is nonempty contractible and it is clear that ΓJ ⊆ ΓJ ′ , whenever φ 6= J ⊂
J ′ ⊂ N.

By Theorem 2.1, there exists a single valued continuous function f : ∆n →
T (A) such that f [∆J ] ⊆ ΓJ , for all φ 6= J ⊂ N . Let {h0, h1, . . . , hn} be a
continuous partition of unity subordinated to the open covering {Oyi}i∈N

i.e., for each i ∈ N, hi : A → [0, 1] is continuous; {x ∈ A : hi(x) 6= 0} ⊂ Oyi

such that
∑n

i=0 hi(x) = 1 for all x ∈ A.
Define h : A → ∆n by

h(x) = (h0(x), h1(x), h2(x), . . . , hn(x)) for all x ∈ A.

Then, h is continuous. Then, h(x) ⊂ ∆J(x) for all x ∈ A, where J(x) :
{J(x) := j ∈ N : hj(x) 6= 0}. Therefore, we have

f(h(x)) ∈ f(∆J(x)) ⊆ ΓJ(x) ⊆ T (x), textforall x ∈ A. (3.1)
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Consider G : T (A) → A defined by G(y) = {z ∈ A : f(z, y) ≤ f(w, y)
for all w ∈ A}. For each y ∈ T (A), G(y) is nonempty since f assumes
its minimum on the compact set A. Also, it is closed and hence compact.
Further, G(y) is acyclic. Indeed, let z1 and z2 ∈ A be such that f(zi, y) ≤
f(w, y) for all w ∈ A and i = 1, 2. Since any convex or star-shaped set in a
topological vector space is acyclic. So, G(y) is acyclic. By the assumption
on f, f(λz1 + (1 − λ)z2, y) ≤ f(w, y) for all w ∈ A. Since f is continuous,
the graph of G, Gr(G) = {(y, z) : y ∈ T (A), z ∈ G(y)} is a closed subset of
the compact set T (A)×A. Then it follows that G is upper semicontinuous.

Thus, by the above discussion G is upper semicontinuous with nonempty
compact acyclic values and f : ∆n → T (A) is continuous, it follows that
the composition mapping G ◦ f : ∆ → A is also upper semicontinuous with
nonempty compact acyclic values. Since h : A → ∆n is continuous and
hence, Theorem 2.2 guarantees the existence of a point x0 ∈ ∆n such that
x0 ∈ h(G ◦ f(x0)). Let y0 ∈ f(x0), then we have

y0 = f(x0) ∈ f(h(A ◦ f(x0))) = f(h(G(y0))),

so that there exists x0 ∈ G(y0) such that y0 = f(h(x0)) ⊂ T (x0).
¤

Remark 3.2. In the light of the fact that any convex or star-shaped set in
a topological vector space is acyclic and condition (ii) of Theorem 3.1, our
Theorem 3.1, it turn, improves and extends the Theorem 3.1 of Vetrivel and
Nanda [7] in any topological vector space.
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