(L^p, L^q) PROPERTIES OF THE POTENTIAL-TYPE INTEGRALS ASSOCIATED TO NON-DOUBLING MEASURES

MUBARIZ G. HAJIBAYOV

ABSTRACT. The (L^p, L^q) boundedness of the potential-type integrals associated to non-doubling measures are investigated.

1. INTRODUCTION

Let (X, μ) is a space with positive measure μ . By $L^p(X, d\mu)$ denote a class of all μ -measurable functions $f : X \to (-\infty, +\infty)$ with $||f||_{p,\mu} =$ (R $\int_X |f(x)|^p d\mu(x))^{\frac{1}{p}} < \infty.$

Let μ and ν are two positive measures on X and T is a linear operator from $L^p(X, d\mu)$ to $L^q(X, d\nu)$, where $p, q \in (0, \infty)$. T is said to be an operator of strong type $(L^p(X, d\mu), L^q(X, d\nu))$, if there exists a positive constant C such that

$$
\left\|Tf\right\|_{q,\nu}\leq C\left\|f\right\|_{p,\mu},\ \ \text{for}\ \ f\in L^p\left(X,d\mu\right).
$$

If for arbitrary $\beta > 0$ and $f \in L^p(X, d\mu)$

$$
\nu\left\{x:\,\left|Tf\left(x\right)\right|>\beta\right\}\leq\Big(\frac{C\left\|f\right\|_{p,\mu}}{\beta}\Big)^{q},
$$

then T is called an operator of weak type $(L^p(X, d\mu), L^q(X, d\nu)).$

If $X = R^n$, μ and ν are Lebesgue measures on R^n , then in the above conditions we simply say that T is an operator of strong (weak) type (p, q) .

For $0 < \alpha < n$, the operator

$$
I_{\alpha}f(x) = \int_{R^n} |x - y|^{\alpha - n} f(y) dy
$$

is called a classical Riesz potential, where |·| denotes the Euclidean norm and dy is an element of the Lebesgue measure.

¹⁹⁹¹ Mathematics Subject Classification. 31B15, 46E35.

Key words and phrases. Riesz potentials, generalized potential-type integrals, nondoubling measures.

By the classical Hardy-Littlewood-Sobolev theorem, if $1 < p < \infty$ and $\alpha p \lt n$, then $I_{\alpha} f$ is an operator of strong type (p, q) , where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ $\frac{\alpha}{n}$. If $p = 1$, then $I_{\alpha} f$ is an operator of weak type $(1, q)$, where $\frac{1}{q} = 1 - \frac{\alpha}{n}$ $\frac{\alpha}{n}$ (see $[7]$.

The Hardy-Littlewood-Sobolev theorem is an important result in fractional integral theory and potential theory. There are a lot of generalizations of this theorem. In [5] and [6], the Hardy-Littlewood-Sobolev theorem is extended to Orlicz spaces for generalized Riesz potentials. In $[2]$ and $[4]$, generalized potential-type integral operators are considered and (L^p, L^q) properties of these operators are proved. The Hardy-Littlewood-Sobolev theorem is proved for Riesz potentials associated to non-doubling measures in [3].

In [2], the following integral operator is considered

$$
\Lambda f\left(x\right) = \int_{R^n} \mathcal{K}\left(\left|x-y\right|\right) f\left(y\right) dy,\tag{1}
$$

where $\mathcal{K}(\cdot)$ is a kernel satisfying the following three conditions.

 (\mathcal{K}_1) K (·) is a nonnegative decreasing function on $(0,\infty)$ and $\lim_{t\to 0}$ K (t) $=\infty;$

 (\mathcal{K}_2) there exist positive constants A_1 and σ such that for any $0 < h < \infty$

$$
\int_0^h \mathcal{K}(t) t^{n-1} dt \le A_1 h^{\sigma};
$$

 (\mathcal{K}_3) there exist a positive constant A_2 and positive $\gamma(p) = \gamma(p, n)$ such that for any $0 < h < \infty$

$$
\bigg(\int_h^\infty \mathcal K^{p'}\left(t\right)t^{n-1}dt\bigg)^{\frac{1}{p'}}\leq A_2h^{-\gamma(p)},\,if\,1
$$

where $\frac{1}{p} + \frac{1}{p'}$ $\frac{1}{p'}=1.$

If $p = 1$, then $\mathcal{K}(h) \leq A_2 h^{-\gamma(p)}$.

The following theorem is proved in [2].

Theorem A. Let $1 \leq p < \infty$. Then

- 1) if $f \in L^p(R^n, dx)$, then integral (1) converges for almost every x;
- 2) if $l = (1 + \frac{\sigma}{\gamma(p)})p$, then Λ is the operator of weak type (p, l) ;
- 3) if $1 < p < r$ and

$$
\frac{1}{q} = \frac{1}{p} \left[\frac{r-p}{r-1} \frac{\gamma(1)}{\sigma + \gamma(1)} + \frac{p-1}{r-1} \frac{\gamma(r)}{\sigma + \gamma(r)} \right],
$$

then Λ is the operator of strong type (p, q) .

Let μ and ν be two positive measures on X and λ be a nonnegative, symmetric function on $X \times X$. Suppose that there exist positive constants M_1 , M_2 , d and m such that

$$
\mu\left(B\left(x,r\right)\right) \le M_1 r^d\tag{2}
$$

and

$$
\nu\left(B\left(x,r\right)\right) \le M_2 r^m,\tag{3}
$$

where $B(x, r)$ is an open ball with center x and λ -radius r, i.e.,

$$
B(x,r) = \{ y \in X, \lambda(x,y) < r \} \, .
$$

Consider the generalized potential-type integral

$$
Lf(x) = \int_X K(\lambda(x, y)) f(y) d\mu(y), \qquad (4)
$$

where $K(\cdot)$ is a kernel.

In this work we have found the sufficient conditions on the kernel $K(\cdot)$ for the boundedness of operator (4) from $L^p(X, d\mu)$ to $L^q(X, d\nu)$.

2. MAIN RESULT

Theorem 1. Let $1 \leq p < \infty$, μ and ν be two positive measures on X, the conditions (2), (3) be satisfied and the function $K(\cdot)$ satisfy the following conditions:

 (K_1) $K: (0, \infty) \to (0, \infty)$ is a decreasing, bijective function and for any $0 < h < \infty$ \mathfrak{h}

$$
\int_0^h K(t) t^{d-1} dt < \infty;
$$

 (K_2) there exist positive constants A_1 and σ such that for any $0 < h < \infty$

$$
-\int_0^h \frac{dK\left(t\right)}{dt} t^{d+\frac{m-d}{p}} dt \le A_1 h^{\sigma};
$$

(K₃) there exist a positive constant A₂ and positive $\gamma(p) = \gamma(p, d)$ such that for any $0 < h < \infty$

$$
-\int_{h}^{\infty} \frac{dK(t)}{dt} t^{\frac{d}{p'}} dt \le A_2 h^{-\gamma(p)}, \text{ if } p > 1
$$

and

$$
K(h) \le A_2 h^{-\gamma(1)}, \text{ if } p = 1.
$$

Then

i) if $f \in L^p(X, d\mu)$, then integral (4) converges for ν -almost every x. i) if $l = (1 + \frac{\sigma}{\gamma(p)})p$, then L is the operator of weak type $(L^p(X, d\mu), L^l)$ $(X, d\nu)$

iii) if $1 < p < r$ and

$$
\frac{1}{q} = \frac{1}{p} \left[\frac{r-p}{r-1} \frac{\gamma(1)}{\sigma + \gamma(1)} + \frac{p-1}{r-1} \frac{\gamma(r)}{\sigma + \gamma(r)} \right]
$$

then L is an operator of strong type $(L^p(X, d\mu), L^q(X, d\nu))$.

Proof. Take arbitrary $x_0 \in X$. Let $s > 0$, $i \in N$, $H_{s,i} = \{y : y \in B(x_0,i)\}$, $L[f](y) > s$ and $\nu_{s,i} = \nu|_{H_{s,i}}$. Then by Fubini's theorem

$$
s\nu(H_{s,i}) \leq \int_{H_{s,i}} L |f| (y) d\nu(y) = \int_X L |f| (y) d\nu_{s,i}(y)
$$

=
$$
\int_X \left[\int_X K(\lambda(x, y)) d\nu_{s,i}(y) \right] |f(x)| d\mu(x)
$$

=
$$
\int_X L\nu_{s,i}(x) |f(x)| d\mu(x).
$$
 (5)

Consider $L \nu_{s,i}(x) = \int_X K(\lambda(x, y)) d\nu_{s,i}(y)$. Applying Fubini's theorem

$$
L\nu_{s,i}(x) = \int\limits_X \left(\int\limits_0^{K(\lambda(x,y))} dt \right) d\nu_{s,i}(y) = \int_X \left(\int\limits_0^\infty \chi_{\{t < K(\lambda(x,y))\}}(t) dt \right) d\nu_{s,i}(y)
$$

$$
= \int\limits_0^\infty \left(\int_{\lambda(x,y) < K^{-1}(t)} d\nu_{s,i}(y) \right) dt = \int\limits_0^\infty \nu_{s,i}(B(x,K^{-1}(t))) dt
$$

$$
= -\int\limits_0^\infty \nu_{s,i}(B(x,t)) \frac{dK(t)}{dt} dt.
$$

For any $h > 0$ we have by (5)

$$
s\nu(H_{s,i}) \leq -\int_{X} \left(\int_{0}^{\infty} \nu_{s,i} (B(x,t)) \frac{dK(t)}{dt} dt \right) |f(x)| d\mu(x)
$$

$$
= -\int_{0}^{h} \left(\int_{X} |f(x)| \nu_{s,i} (B(x,t)) d\mu(x) \right) \frac{dK(t)}{dt} dt
$$

$$
- \int_{h}^{\infty} \left(\int_{X} |f(x)| \nu_{s,i} (B(x,t)) d\mu(x) \right) \frac{dK(t)}{dt} dt = J_{1} + J_{2}.
$$
 (6)

If $p > 1$, then by (3) one can write

$$
\nu_{s,i}(B(x,t)) = \nu_{s,i}(B(x,t))^{\frac{1}{p'}} \nu_{s,i}(B(x,t))^{\frac{1}{p}} \leq M_{2}^{\frac{1}{p}} \nu_{s,i}(B(x,t))^{\frac{1}{p'}} t^{\frac{m}{p}}.
$$

Using Holder's inequality we have

$$
J_{1} \leq -M_{2}^{\frac{1}{p}} \|f\|_{p,\mu} \int_{0}^{h} \left(\int_{X} \nu_{s,\,i} \left(B\left(x,t\right)\right) d\mu\left(x\right) \right)^{\frac{1}{p'}} t^{\frac{m}{p}} \frac{dK\left(t\right)}{dt} dt. \tag{7}
$$

Estimate $\int_X \nu_{s,i} (B(x,t)) d\mu(x)$. For $t > 0$ define

$$
D_t = \{(x, y) \in X \times X : \lambda(x, y) < t\}.
$$

Let $G(x, y)$ be the characteristic function of D_t . Then by Fubini's theorem

$$
\int_{X} \nu_{s,i} (B(x,t)) d\mu(x) = \int_{X} \int_{B(x,t)} d\nu_{s,i} (y) d\mu(x)
$$

=
$$
\int_{X} \int_{X} G(x,y) d\nu_{s,i} (y) d\mu(x) = \int_{X} \int_{X} G(x,y) d\mu(x) d\nu_{s,i} (y)
$$

=
$$
\int_{X} \mu (B(y,t) d\nu_{s,i} (y) \leq M_1 t^d \int_{X} d\nu_{s,i} (y) = M_1 t^d \nu (H_{s,i}).
$$

From (7) and (K_2) we have

$$
J_{1} \leq -M_{2}^{\frac{1}{p}} M_{1}^{\frac{1}{p'}} \|f\|_{p,\mu} \nu (H_{s,i})^{\frac{1}{p'}} \int_{0}^{h} t^{d+\frac{m-d}{p}} \frac{dK(t)}{dt} dt
$$

$$
\leq M_{2}^{\frac{1}{p}} M_{1}^{\frac{1}{p'}} A_{1} \|f\|_{p,\mu} \nu (H_{s,i})^{\frac{1}{p'}} h^{\sigma}.
$$
 (8)

It is clear that

$$
\nu_{s,i}\left(B\left(x,t\right)\right)\leq\nu_{s,i}\left(B\left(x,t\right)\right)^{\frac{1}{p'}}\nu\left(H_{s,i}\right)^{\frac{1}{p}}.
$$

Then by Holder's inequality and by (K_3)

$$
J_2 \leq -\left\|f\right\|_{p,\mu} \nu \left(H_{s,i}\right)^{\frac{1}{p}} \int_h^{\infty} \left(\int_X \nu_{s,i} \left(B\left(x,t\right)\right) d\mu\left(x\right)\right)^{\frac{1}{p'}} \frac{dK\left(t\right)}{dt} dt
$$

$$
\leq -M_1^{\frac{1}{p'}} \left\|f\right\|_{p,\mu} \nu \left(H_{s,i}\right) \int_h^{\infty} t^{\frac{d}{p'}} \frac{dK\left(t\right)}{dt} dt
$$

$$
\leq M_1^{\frac{1}{p'}} A_2 \left\|f\right\|_{p,\mu} \nu \left(H_{s,i}\right) h^{-\gamma(p)}.
$$
 (9)

At last from (6) , (8) and (9)

$$
s\nu\left(H_{s,i}\right) \le M_1^{\frac{1}{p'}} \|f\|_{p,\mu} \left(M_2^{\frac{1}{p}} A_1 \nu\left(H_{s,i}\right)^{\frac{1}{p'}} h^{\sigma} + A_2 \nu\left(H_{s,i}\right) h^{-\gamma(p)}\right).
$$
 (10)

If $s > M_1^{\frac{1}{p'}} A_2 ||f||_{p,\mu} h^{-\gamma(p)}$, then

$$
\nu\left(H_{s,\,i}\right)\leq M_2A_1^p\Biggl(\frac{s}{M_1^{\frac{1}{p'}}\left\|f\right\|_{p,\mu}}-A_2h^{-\gamma(p)}\Biggr)^{-p}h^{\sigma p}.
$$

Let
$$
H_s = \{y : L |f|(y) > s\}
$$
. Since

$$
\bigcup_i H_{s,i} = H_s
$$

and

$$
H_{s,1}\subset H_{s,2}\subset H_{s,3}\subset\ldots
$$

we have

$$
\nu \{ y : L |f| (y) = \infty \} \le \nu (H_s) = \lim_{i \to \infty} \nu (H_{s,i})
$$

$$
\le M_2 A_1^p \left(\frac{s}{M_1^{\frac{1}{p'}} ||f||_{p,\mu}} - A_2 h^{-\gamma(p)} \right)^{-p} h^{\sigma p}.
$$

and by arbitrariness s one get the proof of i) in the case $p > 1$. If $p=1$, then

$$
J_1 \le -M_2 \|f\|_{1,\mu} \int_0^h t^m \frac{dK(t)}{dt} dt \le M_2 A_1 \|f\|_{1,\mu} h^{\sigma},
$$

$$
J_2 \le -\|f\|_{1,\mu} \nu(H_{s,i}) \int_h^{\infty} \frac{dK(t)}{dt} dt \le A_2 \|f\|_{1,\mu} \nu(H_{s,i}) h^{-\gamma(1)}
$$

and just as above one can get the proof of i) in the case $p = 1$.

.

Let us prove ii). If $p > 1$, then by (10) we have

$$
s\nu(H_s) \leq M_1^{\frac{1}{p'}} \left\|f\right\|_{p,\mu} \left(M_2^{\frac{1}{p}} A_1 \nu(H_s)^{\frac{1}{p'}} h^{\sigma} + A_2 \nu(H_s) h^{-\gamma(p)}\right).
$$

Now let $h = \nu(H_s) \frac{1}{(\sigma + \gamma(p))p}$. Then

$$
s\nu(H_s) \leq M_3 \|f\|_{p,\mu} \nu(H_s) \xrightarrow{\frac{p\sigma + p\gamma(p) - \gamma(p)}{(\sigma + \gamma(p))p}},
$$

where $M_3 = M_1^{\frac{1}{p'}}$ 1 ¡ $M_2^{\frac{1}{p}}A_1 + A_2$ Hence

$$
s\nu(H_s)^{\frac{1}{l}} = s\nu(H_s)\nu(H_s)^{\frac{1}{l}-1} \leq M_3 \|f\|_{p,\mu} \nu(H_s)^{\frac{p\sigma + p\gamma(p) - \gamma(p)}{(\sigma + \gamma(p))p} + \frac{1}{l} - 1}
$$

= $M_3 \|f\|_{p,\mu}.$

So

$$
\nu\left\{y:L\left|f\right|(y)>s\right\}\leq\left(\frac{M_{3}\left\|f\right\|_{p,\mu}}{s}\right)^{l}
$$

and from this it follows that L is the operator of weak type $(L^p(X, d\mu))$, $L^l(X,d\nu)$ ¢ in the case $p > 1$. Taking $h = \nu(H_s) \frac{1}{\sigma + \gamma(1)}$ in a similar way we can prove *ii*) in case $p = 1$.

Now prove iii). If take $p = 1$, then from *ii*) it is seen that L is an operator Now prove iii). It take $p = 1$, then from *u*) it is seen that L is an operator
of weak type $(L^1(X, d\mu), L^{1+\frac{\sigma}{\gamma(1)}}(X, d\nu))$. If we take $p = r$, then L is

an operator of weak type $\left(L^r(X, d\mu), L\right)$ $\left(1+\frac{\sigma}{\gamma(r)}\right)$ ´ $\int^r (X, d\nu)$ ´ . Applying the Marcinkiewic interpolation theorem (see [1]) with $p_0 = 1$, $q_0 = 1 + \frac{\sigma}{\gamma(1)}$ and $p_1 = r, q_1 = \left(1 + \frac{\sigma}{\gamma(r)}\right)r$ we obtain iii). The theorem is proved. \Box

Examples.

1. Let $1 \leq p < \infty$, $\alpha > 0$ and $d - m < \alpha p < d$. Let also $K(t) = t^{\alpha - d}$. If we take $\sigma = \alpha + \frac{m-d}{n}$ $\frac{-d}{p}$ and $\gamma(p) = \frac{d}{p} - \alpha$, then one can see that the function $K(\cdot)$ satisfies the conditions $(K_1), (K_2), (K_3)$. If also λ is quasi-metric and the measures μ and ν are equal, then by simple calculations $l = \frac{dp}{d\mu}$ $rac{dp}{d-\alpha p}$ and $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ $\frac{\alpha}{n}$ and we have the Hardy-Littlewood-Sobolev theorem for Riesz potentials associated to non-doubling measures (see [3, Theorem 3.2 and Theorem 3.4] and [4, Theorem 2.1]).

2. Let $1 \leq p < \infty$, $\alpha > 0$ and assume there exists $\theta > 0$ such that $d-m < \alpha p < d-\theta p$. Let also $K(t) = t^{\alpha-d} \log(1+t)$. If take $\sigma = \alpha + \frac{m-d}{n}$ \overline{p} and $\gamma(p) = \frac{d}{p} - \alpha - \theta$, then the function $K(\cdot)$ satisfies the conditions (K_1) , $(K_2), (K_3).$

Acknowledgement. The author would like to express his thanks to Academician A. D. Gadjiev for valuable remarks. Also, the author is grateful to the referee for some valuable suggestions and corrections.

REFERENCES

- [1] J. Bergh and J. Löfström, *Interpolation Spaces. An Introduction*, Springer-Verlag, 1976.
- [2] A. D. Gadjiev, On generalized potential-type integral operators, Functiones et Approximatio, UAM, 25 (1997), 37–44.
- [3] J. Garcia-Cuerva and A. E. Gatto, Boundedness properties of fractional operators associated to non-doubling measures, Stud. Math., 162 (3) (2004), 245–261.
- [4] V. Kokilashvili and A. Meskhi, Fractional integrals on measure spaces, Frac. Calc. Appl. Anal., 4 (1) (2001), 1–24.
- [5] E. Nakai, On generalized fractional integrals, Taiwanese J. Math., 5 (3) (2001), 587– 602.
- [6] E. Nakai and H. Sumitomo, On generalized Riesz potentials and spaces of some smooth functions, Sci. Math. Japonicae, 54 (3) (2001), 463–472.
- [7] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.

(Revised: August 3, 2006) of NAS of Azerbaijan

(Received: March 24, 2006) Institute of Mathematics and Mechanics 9, F.Agayev str., AZ1141 Baku, Azerbaijan E–mail: mubarizh@rambler.ru