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STRONG TRUNCATED MATRIX MOMENT PROBLEM OF
HAMBURGER

K.K. SIMONOV

Abstract. In this paper we consider the strong truncated matrix mo-
ment problem on the real line. We describe all the solutions of the prob-
lem in the form of a Nevanlinna type formula. We use M. G. Krĕın’s
theory of representations for Hermitian operators and the technique of
boundary triplets and the corresponding Weyl functions.

1. Introduction

In this paper we consider the following problem: Given a finite sequence of
self-adjoint N×N -matrices {Sk}2m

−2m, find all self-adjoint nonnegative Borel
N×N -matrix measures dΣ on R obeying the identities

∫ +∞

−∞
tk dΣ(t) = Sk (k = 0,±1, . . . ,±2m). (1)

This problem is called the strong truncated matrix moment problem of Ham-
burger. The matrices {Sk}2m

−2m are called moments and the measure dΣ is
called a solution of the moment problem (1).

Let us recall that for the classical truncated moment problem one is given
a sequence {Sk}2m

0 and seeks a measure dΣ such that (1) holds only for
nonnegative numbers k.

The classical matrix moment problem was investigated by M. G. Krĕın
(see [17, 18]). In [18], M. G. Krĕın has described all the solutions of the full
classical matrix moment problem for the completely indeterminate case. A
description of all the solutions for the truncated classical matrix moment
problem was originally obtained in [16] using the method of matrix inequal-
ities developed by V. Potapov. Other approaches to the truncated classical
matrix moment problem were presented in [8, 7, 1]. We follow [7] in our
treatment of the strong moment problem.
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Investigations of the scalar strong moment problem and orthogonal Lau-
rent polynomials originated in the papers of W. B. Jones, W. J. Thron,
H. Waadeland, and O. Nj̊astad (see [14, 11, 13]). It is worth noting that a
necessary and sufficient condition for the solvability of the strong moment
problem was originally obtained by Yu.M. Berezanskĭı (see [3]). A descrip-
tion for the solutions of the full scalar strong moment problem was obtained
in [22, 23] for the Hamburger problem and in [15] for the Stieltjes problem.
A detailed bibliography can be found in the survey [12].

To solve the moment problem means to answer the following questions:
(1) Under what conditions is the moment problem solvable?
(2) If the moment problem is solvable, how to determine whether it has

a unique solution?
(3) How to describe all the solutions of the moment problem?

In this paper we give a necessary and sufficient condition for (1) to be
solvable and describe all the solutions of (1) in terms of self-adjoint exten-
sions of a certain linear operator. We also describe the solutions of (1) via
a linear transformation of the Nevanlinna type under the assumption that
the given sequence {Sk}2m

−2m is strictly positive and normalized.
Let us briefly outline the contents of the paper. In Section 2 we recall basic

concepts of M. G. Krĕın’s theory of representations for Hermitian operators
and some methods of the boundary triplets technique.

In Section 3 we establish a solvability criterion for the moment problem (1)
(see Theorem 3.3). We also consider the space of Laurent polynomials of
the form

m∑

k=−m

ξkz
k

({ξk}m
−m ⊂ CN

)

with the inner product generated by the Hankel quadratic form
m∑

i,j=−m

ξ∗j Si+jξi

({ξk}m
−m ⊂ CN

)
.

In this space, we introduce the multiplication operator A and determine a
one-to-one correspondence between the set of minimal self-adjoint extensions
of A and the set of all the solutions of (1) (see Theorem 3.4).

In Section 4 we recall some earlier results from [24] on orthogonal matrix
Laurent polynomials of the first and the second kind.

In Section 5 we construct a boundary triplet (see Theorem 5.4) and the
corresponding resolvent matrix (see Theorem 5.5) of the operator A and
describe the set of all the solutions of (1) in the form of a Nevanlinna type
formula (see Theorem 5.6).

In Section 6 we illustrate our approach with a simple example.
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2. Representations of Hermitian operators

Let us recall basic concepts and statements of M. G. Krĕın’s theory of
representations for Hermitian operators (see [17, 9]) and some methods of
the boundary triplets technique (see [10, 5, 7, 6]).

A linear relation in a Hilbert space H is a linear subspace in H⊕H. Since
any linear operator S in H can be identified with its graph

{{f, Sf} ∈ H⊕ H : f ∈ domS} ,

we can regard any linear operator as a linear relation.
For arbitrary linear relations S̃, T̃ in H and λ ∈ C, we put

dom S̃ =
{

f : {f, g} ∈ S̃
}

, ran S̃ =
{

g : {f, g} ∈ S̃
}

,

ker S̃ =
{

f : {f, 0} ∈ S̃
}

, mul S̃ =
{

g : {0, g} ∈ S̃
}

,

S̃−1 =
{
{g, f} ∈ H⊕ H : {f, g} ∈ S̃

}
,

S̃∗ =
{{

f ′, g′
} ∈ H⊕ H : (g, f ′) = (f, g′) for all {f, g} ∈ S̃

}
,

λS̃ =
{
{f, λg} ∈ H⊕ H : {f, g} ∈ S̃

}
,

S̃ + T̃ =
{{

f, g + g′
} ∈ H⊕ H : {f, g} ∈ S̃,

{
f, g′

} ∈ T̃
}

,

S̃T̃ =
{
{f, h} ∈ H⊕ H : {f, g} ∈ T̃ , {g, h} ∈ S̃

}
.

We define the resolvent set ρ(S̃) of a linear relation S̃ in H by

ρ(S̃) =
{

λ ∈ C : ker(S̃ − λ) = 0, ran(S̃ − λ) = H
}

.

A linear relation is called closed if it is indeed closed as a subspace in H⊕H.
A linear relation S̃ in H is called Hermitian (dissipative) if (f ′, f) ∈ R
(=(f ′, f) ≥ 0) for any pair {f, f ′} ∈ S̃. A Hermitian (dissipative) relation S̃

is called self-adjoint (maximal dissipative) if ρ(S̃) 6= ∅.
Any maximal dissipative linear relation S̃ in H can be uniquely repre-

sented in the form
S̃ = S ⊕ m̂ul S̃,

where

S =
{{

f, f ′
} ∈ S̃ : f ′ ⊥ mul S̃

}
, m̂ul S̃ =

{{
0, f ′

} ∈ S̃
}

.

S is an operator, which is called the operator part of S̃. The relation m̂ul S̃
is called the multivalued part of S̃.
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In this section, we consider a simple closed Hermitian operator A with
finite deficiency indices (N, N) in a Hilbert space H. We assume that the
domain of A is not dense in H and dim(Hª domA) = N . Let us put

Mλ = ran(A−λ), Nλ = HªMλ, N̂λ = {{fλ, λfλ} ∈ H⊕ H : fλ ∈ Nλ} ,

N∞ = mulA∗ = Hª domA, N̂∞ = m̂ulA∗ = 0⊕N∞.

Let L be a subspace in H of dimension N . If there exist at least two
points λ+ ∈ C+ and λ− ∈ C− such that the decomposition

H = L u Mλ (2)

holds for λ = λ±, then L is called the module of a representation of the
operator A.

A point λ ∈ C is called an L-regular point of A if λ is a point of regular
type for A and the decomposition (2) holds. Denote by ρ(A; L) the set of
all L-regular points of A and put

ρs(A; L) =
{
λ ∈ C : λ, λ ∈ ρ(A; L)

}
.

Let us define two holomorphic operator-valued functions

P(λ),Q(λ) : H → L (λ ∈ ρ(A; L))

on the set ρ(A; L). Let P(λ) be the skew projection onto the subspace L
parallel to Mλ. In other words, P(λ) obeys

P(λ)f ∈ L, (I − P(λ))f ∈ Mλ (f ∈ H).

Define Q(λ) by the equality

Q(λ) = PL(A− λ)−1(I −P(λ)).

Henceforth, by PH we denote the orthogonal projection onto a subspace H.
The function P establishes an isomorphism between the Hilbert space H

and the space of holomorphic functions

HL = {fL(λ) = P(λ)f : f ∈ H, λ ∈ ρ(A;L)} .

This isomorphism takes the operator A to the multiplication operator

P(λ)Af = λfL(λ) (f ∈ domA).

It is easy to check the following properties of the functions P(λ) and Q(λ):

P(λ)Af = λP(λ)f, Q(λ)Af = λQ(λ)f + PLf (f ∈ domA),

P̂(λ)∗φ =
{P(λ)∗φ, λP(λ)∗φ

} ∈ A∗,

Q̂(λ)∗φ =
{Q(λ)∗φ, λQ(λ)∗φ + φ

} ∈ A∗
(φ ∈ L),
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P(λ)φ = φ, Q(λ)φ = 0 (φ ∈ L),

PLP(λ)∗ = IL, PLQ(λ)∗ = 0L,

P(λ)∗PL = P(λ)∗, Q(λ)∗PL = Q(λ)∗.

It follows from the above that

Nλ = ker(A∗ − λ) = P(λ)∗L (λ ∈ ρs(A; L)). (3)

Proposition 2.1 (see [6, 7]). The following decomposition holds:

A∗ = A u P̂(λ)∗L u Q̂(λ)∗L (λ ∈ ρs(A; L)).

Definition 2.1. Let Ã be a self-adjoint extension of the operator A, possibly
in a larger Hilbert space H̃ ⊃ H. The extension Ã is called L-minimal if

H̃ = span
{

L, (Ã− λ)−1L : λ ∈ ρ(Ã)
}

.

Definition 2.2. Let Ã be an L-minimal self-adjoint extension of the oper-
ator A. Then the operator-valued function

PL(Ã− λ)−1|L (λ ∈ ρ(Ã))

is called the L-resolvent of the operator A corresponding to the extension
Ã.

Definition 2.3 (see [10]). A triplet Π = {L, Γ0, Γ1}, where Γ = {Γ0,Γ1}
is a linear operator from A∗ to L ⊕ L, is called a boundary triplet for the
linear relation A∗ if the mapping Γ is surjective and obeys the abstract Green
identity

(f ′, g)−(f, g′) = (Γ1f̂ , Γ0ĝ)L−(Γ0f̂ ,Γ1ĝ)L (f̂ =
{
f, f ′

}
, ĝ =

{
g, g′

} ∈ A∗).
(4)

Proposition 2.2 (see [10]). A boundary triplet Π = {L, Γ0, Γ1} defines
a one-to-one correspondence between the set of proper extensions Ã of the
operator A (A ⊂ Ã ⊂ A∗) and the set of linear relations θ ⊂ L ⊕ L. This
correspondence is given by

Ã = Ãθ ←→ θ = Γ dom Ã =
{
{Γ0f, Γ1f} : f ∈ dom Ã

}
.

The extension Ãθ is Hermitian (self-adjoint) if and only if the relation θ has
the same property.

In particular, the operators Γ0 and Γ1 define two self-adjoint extensions
Ã0 and Ã1 of the operator A:

Ã0 = ker Γ0, Ã1 = ker Γ1.
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The equality

γ̂(λ) = {γ(λ), λγ(λ)} =
(
Γ0|N̂λ

)−1
(λ ∈ ρ(Ã0))

defines two operator-valued functions γ̂(λ) : L → N̂λ and γ(λ) : L → Nλ

holomorphic on ρ(Ã0).

Definition 2.4 (see [6]). The operator-valued function M(λ) : L → L
defined by the equality

M(λ)Γ0f̂λ = Γ1f̂λ (f̂λ ∈ N̂λ, λ ∈ ρ(Ã0))

is called the Weyl function of the operator A corresponding to the boundary
triplet Π = {L, Γ0, Γ1}.
Proposition 2.3 (see [6]). The functions M(λ) and γ(λ) obey the identities

γ(λ)− γ(µ) = (λ− µ)(Ã0 − λ)−1γ(µ) (λ, µ ∈ ρ(Ã0)), (5)

M(λ)−M(µ) = (λ− µ)γ(µ)∗γ(λ) (λ, µ ∈ ρ(Ã0)). (6)

Definition 2.5 (see [7]). It is said that a holomorphic function τ : C+ →
L⊕ L belongs to the class ÑL if τ(λ) is a maximal dissipative relation in L
for any λ ∈ C+.

It is said that τ belongs to the class NL if τ(λ) is a maximal dissipative
operator for each λ ∈ C+.

One can extend a function τ ∈ ÑL to the domain C− by the formula

τ(λ) = τ(λ)∗ (λ ∈ C−).

By identities (5) and (6), it follows that M(λ) belongs to the class NL.
Moreover, identity (6) means that M(λ) is a Q-function of the operator A

corresponding to the extension Ã0 in the sense of [19, 20].

Definition 2.6 (see [21]). A 2N × 2N -matrix W (λ) = (wij(λ))21 holomor-
phic on ρ(A;L) is called an L-resolvent matrix of the operator A if it obeys
the identity

W (λ)JW (µ)∗ = J + i(λ− µ)G(λ)G(µ)∗ (λ, µ ∈ ρ(A;L)),

where

J = i

(
0 −1
1 0

)
, G(λ) =

(−Q(λ)
P(λ)

)
.

An L-resolvent matrix is not unique. If W1(λ) and W2(λ) are two different
L-resolvent matrices of A, then there exists a J-unitary matrix U such that

W1(λ) = W2(λ)U (λ ∈ ρ(A; L)).
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There exists a natural one-to-one correspondence between the set of L-
resolvent matrices and the set of boundary triplets. The following theorem
shows how to construct the L-resolvent matrix corresponding to a boundary
triplet.

Theorem 2.4 (see [7]). Let Π = {L, Γ0, Γ1} be a boundary triplet of the
operator A. Then the matrix function

WΠ(λ) =
(
ΓĜ(λ)∗

)∗
=

(−Γ0Q̂(λ)∗ Γ0P̂(λ)∗

−Γ1Q̂(λ)∗ Γ1P̂(λ)∗

)∗
, (7)

where
Ĝ(λ)∗ =

(
−Q̂(λ)∗ P̂(λ)∗

)
,

is an L-resolvent matrix of A. WΠ(λ) is called the ΠL-resolvent matrix of
A corresponding to the boundary triplet Π.

Theorem 2.5 (see [17, 9, 7]). Suppose that Π = {L, Γ0,Γ1} is a boundary
triplet of the operator A such that ker Γ0 = A ⊕ N̂∞. Let M(λ) be the
corresponding Weyl function and let WΠ(λ) = (wij(λ))21 be the corresponding
ΠL-resolvent matrix. Then the formula

PL(Ã− λ)−1|L = (w11(λ)τ(λ) + w12(λ)) (w21(λ)τ(λ) + w22(λ))−1

for λ ∈ ρ(A; L) establishes a one-to-one correspondence between the set of
all L-minimal self-adjoint extensions Ã of the operator A and the set of all
functions τ ∈ ÑL. Moreover, the following conditions hold:

(i) mul Ã = 0 if and only if

lim
y→∞

τ(iy)
y

= 0.

(ii) ker Ã = 0 if and only if

lim
y→0

y(M(iy) + τ(iy))−1 = 0.

3. An operator model

Proposition 3.1. If the moment problem (1) is solvable, then the conditions
m∑

i,j=−m

ξ∗j Si+jξi ≥ 0 (8)

and
m−1∑

i,j=−m

ξ∗j Si+jξi = 0 if and only if
m−1∑

i,j=−m

ξ∗j Si+j+2ξi = 0 (9)

are valid for any sequence {ξk}m
−m ⊂ CN .
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Proof. Suppose dΣ is a solution of the moment problem (1). Then
m∑

i,j=−m

ξ∗j Si+jξi =
∫ +∞

−∞

( m∑

j=−m

ξjt
j

)∗
dΣ(t)

( m∑

i=−m

ξit
i

)
≥ 0

for any {ξk}m
−m ⊂ CN . Thus (8) is valid.

Since ∫ +∞

−∞
t−k dΣ(t) = S−k < ∞ (k = 1, 2, . . . , 2m)

the point t = 0 does not belong to the discrete spectrum of dΣ. Therefore
the condition

∫ +∞

−∞

( m−1∑

j=−m

ξjt
j

)∗
dΣ(t)

( m−1∑

i=−m

ξit
i

)
= 0

holds if and only if
∫ +∞

−∞

( m−1∑

j=−m

ξjt
j+1

)∗
dΣ(t)

( m−1∑

i=−m

ξit
i+1

)
= 0

holds, which proves (9). ¤

In the remainder of this section we assume that the conditions (8) and (9)
hold.

Consider the linear space of N -vector Laurent polynomials of formal de-
gree m

H1 = span
{

φzk : φ ∈ CN , k = −m,−m + 1, . . . ,m
}

.

In this space, we introduce the inner product defined by

(φzi, ψzj) = ψ∗Si+jφ (φ, ψ ∈ CN , i, j = −m,−m + 1, . . . ,m). (10)

Put H0 = {f ∈ H1 : (f, f) = 0}.
It follows from (8) that the inner product (10) is non-negative. Therefore

the factor space H = H1/H0 is a Hilbert space. We denote by φ̂zk the
equivalence class (φzk + H0) ∈ H. It follows from (9) that

z(φ̂zk) = φ̂zk+1, z−1(φ̂z−k) = φ̂z−k−1 (k = −m,−m + 1, . . . , m− 1).

Therefore the multiplication operator

A(φ̂zk) = φ̂zk+1,

domA = span
{

φ̂zk : φ ∈ CN , k = −m,−m + 1, . . . , m− 1
}

is well defined and kerA = 0.
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A is a Hermitian operator and its domain, in general, is not dense in H.
Therefore A∗ is a linear relation. Note that

mulA∗ = Hª domA, kerA∗ = Hª ranA.

Put
L =

{
φ̂ : φ ∈ CN

}
.

Proposition 3.2. Let a linear relation Ã be an L-minimal self-adjoint ex-
tension of the operator A in a Hilbert space H̃ ⊃ H and let Et = Et(Ã) be
the spectral measure of Ã. Then there exist some self-adjoint matrices X
and Y obeying

0 ≤ X ≤ S2m, 0 ≤ Y ≤ S−2m

such that the equalities
∫ +∞

−∞
tk d(Etφ̂, ψ̂) = ψ∗Skφ (k = 0,±1, . . . ,±(2m− 1)), (11)

∫ +∞

−∞
t2m d(Etφ̂, ψ̂) = ψ∗(S2m −X)φ, (12)

∫ +∞

−∞
t−2m d(Etφ̂, ψ̂) = ψ∗(S−2m − Y )φ (13)

hold for any φ, ψ ∈ CN . Moreover,

X = 0 if and only if mul Ã = 0,

Y = 0 if and only if ker Ã = 0.

Proof. First, let us prove equality (11) for k = 0, 1, . . . , 2m− 1 and equality
(12). Note that

mul Ã ⊂ mulA∗ ⊕ (H̃ª H) = (Hª domA)⊕ (H̃ª H).

Since the extension Ã is L-minimal, mul Ã = 0 if and only if mul Ã ⊥
(Hª domA).

The relation Ã can be uniquely represented in the form

Ã = A′ ⊕ m̂ul Ã,

where A′ is the operator part of Ã. In particular, A′f ⊥ mul Ã for any
f ∈ domA′.

Put PM = P
mul Ã

. Let us show that

(A′)kφ̂ = Akφ̂ = zkφ̂ (φ ∈ CN , k = 0, 1, . . . , m− 1). (14)

Indeed, assume that this assertion is proven for k ≤ n < m− 1. Then

(A′)n+1φ̂ = A′Anφ̂ = An+1φ̂− PMAn+1φ̂ = An+1φ̂
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since An+1φ̂ = zn+1φ̂ ∈ domA ⊥ mul Ã for 0 < n + 1 < m. Finally, the
vector (A′)mφ̂ has the form

(A′)mφ̂ = A′Am−1φ̂ = Amφ̂− PMAmφ̂.

Now it is clear that conditions (11) hold for k = 0, 1, . . . , 2m− 1. Let us
show that (12) is valid. Indeed,

∫ +∞

−∞
t2m d(Etφ̂, ψ̂) = ((A′)mφ̂, (A′)mψ̂)

= (Amφ̂−PMAmφ̂, Amψ̂−PMAmψ̂) = (Amφ̂, Amψ̂)− (PMAmφ̂, PMAmψ̂)

= ψ∗S2mφ− ψ∗Xφ,

where X is a self-adjoint matrix defined by

ψ∗Xφ = (PMAmφ̂, PMAmψ̂) (φ, ψ ∈ CN ).

It is clear that 0 ≤ X ≤ S2m and X = 0 if and only if

AmL =
{

φ̂zm : φ ∈ CN
}
⊥ mul Ã.

Since H = domA + AmL and domA ⊥ mul Ã, this implies that X = 0 if
and only if mul Ã = 0.

Now we will prove equality (11) for k = −1,−2, . . . ,−2m+1 and equality
(13). Since the extension Ã is L-minimal and

ker Ã ⊂ kerA∗ ⊕ (H̃ª H) = (Hª ranA)⊕ (H̃ª H),

ker Ã = 0 if and only if ker Ã ⊥ (Hª ranA).
The relation Ã can be uniquely represented in the form

Ã = A′′ ⊕ k̂er Ã,

where
kerA′′ = 0, k̂er Ã =

{
{f, 0} ∈ H⊕ H : f ∈ ker Ã

}
.

In particular, domA′′ ⊥ ker Ã.
Put PK = P

ker Ã
. Now let us show that

(A′′)−kφ̂ = A−kφ̂ = z−kφ̂ (φ ∈ CN , k = 0, 1, . . . , m− 1). (15)

Indeed, assume that this assertion is proven for k ≤ n < m− 1. Then

(A′′)−n−1φ̂ = (A′′)−1A−nφ̂ = A−n−1φ̂− PKA−n−1φ̂ = A−n−1φ̂

since A−n−1φ̂ = z−n−1φ̂ ∈ ranA ⊥ ker Ã for 0 < n + 1 < m. Finally, the
vector (A′′)−mφ̂ has the form

(A′′)−mφ̂ = (A′′)−1A−m+1φ̂ = A−mφ̂− PMA−mφ̂.
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It is clear that conditions (11) hold for k = −1,−2, . . . ,−2m + 1. Let us
show that (13) is valid. Indeed,

∫ +∞

−∞
t−2m d(Etφ̂, ψ̂) = ((A′′)−mφ̂, (A′′)−mψ̂)

= (A−mφ̂− PKA−mφ̂, A−mψ̂ − PKA−mψ̂)

= (A−mφ̂, A−mψ̂)− (PKA−mφ̂, PKA−mψ̂) = ψ∗S−2mφ− ψ∗Y φ,

where Y is a self-adjoint matrix defined by

ψ∗Y φ = (PKA−mφ̂, PKA−mψ̂) (φ, ψ ∈ CN ).

It is clear that 0 ≤ Y ≤ S−2m and Y = 0 if and only if A−mL ⊥ ker Ã. This
implies that Y = 0 if and only if ker Ã = 0. ¤

Now combining Proposition 3.1 and Proposition 3.2, we obtain a solvabil-
ity criterion for the moment problem (1).

Theorem 3.3. The moment problem (1) is solvable if and only if the con-
ditions (8) and (9) hold.

Elaborating Proposition 3.2, we can describe all the solutions of (1).

Theorem 3.4. There exists a one-to-one correspondence between the set of
all solutions dΣ of the moment problem (1) and the set of all L-minimal
self-adjoint extensions Ã of the operator A obeying the conditions

mul Ã = 0, ker Ã = 0. (16)

This correspondence is given by

ψ∗Σ(t)φ = (Et(Ã)φ̂, ψ̂) (φ, ψ ∈ CN ), (17)

where Et(Ã) is the spectral measure of Ã.

Proof. It follows from Proposition 3.2 that (17) is a solution of the moment
problem (1) if Ã is an L-minimal self-adjoint extension satisfying (16) and
Et is the spectral measure of Ã. Thus we only need to prove the converse
assertion of the theorem.

Suppose that dΣ(t) is a solution of the moment problem (1). Let us define
a linear bounded self-adjoint operator e(t) in L by

(e(t)φ̂, ψ̂) = ψ∗Σ(t)φ.

Then e(t) obeys the conditions

e(−∞) = 0L, e(+∞) = IL, e(t− 0) = e(t) (t ∈ R).



192 K.K. SIMONOV

By the Naimark dilation theorem (see [2, 4]), there exists a Hilbert space
H̃ ⊃ L and a resolution of identity Et : H̃ → H̃ such that

e(t) = PLEt|L, span
{

Etφ̂ : φ̂ ∈ L
}

= H̃.

The resolution of identity Et defines the self-adjoint operator

Ã =
∫ +∞

−∞
t dEt

in the space H̃. By construction, Ã is L-mininal. Let us show that there
exists an isometric embedding V : H → H̃ such that V AV −1 ⊂ Ã. Indeed,

∫ +∞

−∞
t±2k d(Etφ̂, φ̂) =

∫ +∞

−∞
t±2k d(e(t)φ̂, φ̂) = φ∗S±2kφ < ∞,

and therefore L ⊂ dom Ãk for each k = 0,±1, . . . ,±m. Put

V (zkφ̂) = V (Akφ̂) = Ãkφ̂ (φ̂ ∈ L, k = 0,±1, . . . ,±m).

Note that V maps the space L onto itself. The mapping V is isometric since

(V (ziφ̂), V (zjψ̂))
H̃

= (Ãiφ̂, Ãjψ̂)
H̃

=
∫ +∞

−∞
ti+j d(Etφ̂, ψ̂)

=
∫ +∞

−∞
ti+j ψ∗dΣ(t)φ = ψ∗Si+jφ = (ziφ̂, zjψ̂)

for φ, ψ ∈ CN , i, j = 0,±1, . . . ,±2m, and the inclusion V AV −1 ⊂ Ã holds
by construction.

Obviously, mul Ã = 0 since Ã is an operator. It follows from Proposi-
tion 3.2 that ker Ã = 0. ¤

Corollary 3.4.1. The moment problem (1) has a unique solution if and
only if the operator A is self-adjoint.

4. Orthogonal Laurent polynomials

Definition 4.1. A sequence of self-adjoint N×N -matrices {Sk}2m
−2m is called

strictly positive if the quadratic form
m∑

i,j=−m

ξ∗j Si+jξi ({ξk}m
−m ⊂ CN )

is strictly positive definite.
A strictly positive sequence {Sk}2m

−2m is called normalized if S0 = I.
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Any strictly positive sequence {S̃k}2m
−2m can be normalized by the rule

Sk = S̃
− 1

2
0 S̃kS̃

− 1
2

0 (k = 0,±1, . . . ,±2m).

Definition 4.2. The moment problem (1) is called nondegenerate if the
given sequence of moments {Sk}2m

−2m is strictly positive.

The following assertion is well known.

Proposition 4.1. If a sequence {Sk}2m
−2m is strictly positive, then there exist

self-adjoint matrices

S−2m−2, S−2m−1, S2m+1, S2m+2

such that the sequence {Sk}2m+2
−2m−2 is also strictly positive.

In the rest of the paper, we assume that the given sequence {Sk}2m
−2m is

strictly positive and normalized. Proposition 4.1 allows us to regard {Sk}2m
−2m

as a part of some infinite positive bisequence {Sk}+∞
−∞. Further we will use

the extended coefficients S±(2m+1), S±(2m+2), . . . in our calculations. While
the bisequence {Sk}+∞

−∞ is not uniquely determined by the original matrices
{Sk}2m

−2m, its variation does not significantly change the final result.
Consider the Hilbert space of N -vector Laurent polynomials

Ĥ = span
{

φzk : φ ∈ CN , k = 0,±1,±2, . . .
}

with the inner product

(φzi, ψzj) = ψ∗Si+jφ (φ, ψ ∈ CN , i, j = 0,±1,±2, . . .).

The finite-dimentional Hilbert spaces H and L introduced in Section 3 are
subspaces of Ĥ. Since the bisequence {Sk}+∞

−∞ is normalized, the subspace
L is naturally isomorphic to the space CN . Further we will use L and CN

interchangeably.

Definition 4.3 (see [24]). A sequence of N×N -matrix Laurent polynomials
{Pk(z)}∞0 of the form

P2k(z) =
k∑

j=−k

P
(j)
2k zj , P2k+1(z) =

k∑

j=−k−1

P
(j)
2k+1z

j (P (j)
k ∈ CN×N )

is called the sequence of orthogonal Laurent polynomials of the first kind if
the following conditions hold:

(A) The coefficients P
(k)
2k and P

(−k−1)
2k+1 are strictly positive matrices.
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(B) The Laurent polynomials {Pk(z)}∞0 are orthonormal, i. e.,

(Pi(z)ξ, Pj(z)η) = 0, (Pk(z)ξ, Pk(z)η) = η∗ξ

(ξ, η ∈ CN , i, j, k = 0, 1, . . . , i 6= j).

Conditions (A) and (B) uniquely determine the sequence {Pk(z)}∞0 .

Definition 4.4 (see [24]). The sequence of N×N -matrix Laurent polyno-
mials {Qk(z)}∞0 defined by

η∗Qk(z)ξ = (Rk(·, z)ξ, η) (ξ, η ∈ CN , k = 0, 1, 2, . . .),

where

Rk(ζ, z) =
Pk(ζ)− Pk(z)

ζ − z
(k = 0, 1, 2, . . .),

is called the sequence of Laurent polynomials of the second kind.

Extending Definitions 4.3 and 4.4, put

P−2(z) = 0, P−1(z) = 0, Q−2(z) = −I, Q−1(z) = 0.

If we denote by {εj}N
1 the standard basis in CN , then the sequence

{Pi(z)εj}∞i=0 = {P0(z)ε1, . . . , P0(z)εN , P1(z)ε1, . . . , P1(z)εN , . . .}
forms an orthonormal basis in the space Ĥ. Therefore, any element f ∈ Ĥ
can be uniquely represented as a Fourier series

f(z) =
∞∑

k=0

Pk(z)φk, (18)

where the Fourier coefficients φk ∈ CN are determined by the equalities

ε∗jφk = (f(z), Pk(z)εj) (j = 1, . . . , N).

The coefficients {φk}∞0 obey the condition

‖f‖2 =
∞∑

k=0

‖φk‖2
CN < ∞. (19)

Conversely, any vector f of the form (18) satistying (19) belongs to the space
Ĥ.

Theorem 4.2 (see [24]). The Laurent polynomials {Pk(z)}∞0 and {Qk(z)}∞0
obey the following recurrence relations:
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zP2k(z) = P2k−2(z)C∗
2k−2 + P2k−1(z)B∗

2k−1

+ P2k(z)A2k + P2k+1(z)B2k + P2k+2(z)C2k,

zQ2k(z) = Q2k−2(z)C∗
2k−2 + Q2k−1(z)B∗

2k−1

+ Q2k(z)A2k + Q2k+1(z)B2k + Q2k+2(z)C2k,

zP2k+1(z) = P2k(z)B∗
2k + P2k+1(z)A2k+1 + P2k+2(z)B2k+1,

zQ2k+1(z) = Q2k(z)B∗
2k + Q2k+1(z)A2k+1 + Q2k+2(z)B2k+1

(k = 0, 1, 2, . . .) (20)

with the initial conditions

P−2(z) = 0, P0(z) = I, Q−2(z) = −I, Q0(z) = 0, (21)

where the coefficients {Ak}∞0 , {Bk}∞−1 , {Ck}∞−2 are some N×N -matrices.

Proposition 4.3 (see [24]). The coefficients {Ak}∞0 , {Bk}∞−1 , {Ck}∞−2 of
the recurrence relations (20) obey the following conditions.

(i) C−2 = I, B−1 = 0, C2k−1 = 0 (k = 0, 1, 2, . . .);
(ii) The following matrices are well defined:

C−1
2k , B̃0 = (B∗

0 −A0C
−1
0 B1)−1,

C̃2k+1 = −
[
(
B2k B∗

2k+1

)(
C2k A2k+2

0 C2k+2

)−1 (
B∗

2k+2
B2k+3

)]−1 (k = 0, 1, 2 . . .);

(iii) The following inequalities hold:

C2kC2k−2 · · ·C0 > 0, C̃2k+1C̃2k−1 · · · C̃1B̃0 > 0 (k = 0, 1, 2, . . .);

(iv) The matrices Ak are self-adjoint and obey the identities

A2k+1 = B2kC
−1
2k B2k+1 (k = 0, 1, 2, . . .).

Theorem 4.4 (see [24]). Let {Ak}∞0 , {Bk}∞−1 , {Ck}∞−2 be arbitrary ma-
trices satisfying conditions (i)–(iv). Then there exists a unique positive
and normalized bisequence of moments {Sk}+∞

−∞ such that the correspond-
ing Laurent polynomials {Pk(z)}∞0 and {Qk(z)}∞0 obey (20) with the given
coefficients.

The sequence

{Pi(z)εj}2m
i=0 = {P0(z)ε1, . . . , P0(z)εN , . . . , P2m(z)ε1, . . . , P2m(z)εN}

forms an orthonormal basis in the space H. Any element f ∈ H can be
uniquely represented as a finite sum

f(z) =
2m∑

k=0

Pk(z)φk. (22)
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Recall that the linear operator A was given by

domA = span
{

φzk : φ ∈ CN , k = −m,−m + 1, . . . , m− 1
}

,

Af(z) = zf(z) (f ∈ domA).

In the basis {Pi(z)εj}2m
i=0, the operator A has the following block-matrix

form 


A0 B∗
0 C∗

0 ∗
B0 A1 B∗

1 ∗
C0 B1 A2 ∗

. . .
...

A2m−2 B∗
2m−2 ∗

B2m−2 A2m−1 ∗
C2m−2 B2m−1 ∗




By the symbol ∗ we denote undefined values.
Denote by Ã1 the self-adjoint extension of A in H given by

Ã1P2m(z)ξ = P2m−2(z)C∗
2m−2ξ + P2m−1(z)B∗

2m−1ξ + P2m(z)A2mξ. (23)

The operator Ã1 has the following block-matrix form



A0 B∗
0 C∗

0

B0 A1 B∗
1

C0 B1 A2

. . .
A2m−2 B∗

2m−2 C∗
2m−2

B2m−2 A2m−1 B∗
2m−1

C2m−2 B2m−1 A2m




5. Solutions of the moment problem

In this section we continue to study the Hermitian operator A in the
Hilbert space H, which was defined in Section 3, assuming that the bise-
quence {Sk}+∞

−∞ is strictly positive and normalized. Since H is finite dimen-
sional, the deficiency indices of A are equal to dim(Hª domA) = N .

Theorem 5.1. The adjoint relation A∗ has the form

A∗ =
{{

f, Ã1f + P2mδ
}

: f ∈ H, δ ∈ L
}

, (24)
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where Ã1 is the self-adjoint extension of the operator A defined by (23). The
deficiency subspaces of A has the form

Nλ =

{
fλ,φ(z) =

2m∑

k=0

Pk(z)Pk(λ)∗φ : φ ∈ L

}
(λ ∈ C \ {0}),

N∞ = {P2m(z)φ : φ ∈ L} .

(25)

Proof. A vector f̂ = {f, f ′} belongs to A∗ if and only if it obeys the equalities

(f(z), APk(z)εj) = (f ′(z), Pk(z)εj) (k = 0, 1, . . . , 2m− 1, j = 1, . . . , N).
(26)

Suppose the Laurent polynomials f(z) and f ′(z) have the form

f(z) =
2m∑

k=0

Pk(z)fk, f ′(z) =
2m∑

k=0

Pk(z)f ′k.

Then the equalities (26) can be expressed as

f ′2k = C2k−2f2k−2 + B2k−1f2k−1

+ A2kf2k + B∗
2kf2k+1 + C∗

2kf2k+2,

f ′2k+1 = B2kf2k + A2k+1f2k+1 + B∗
2k+1f2k+2

(k = 0, 1, . . . , m−1), (27)

assuming that f−2 = f−1 = 0. Note that the leading coefficient f ′2m is not
constrained by (27). Put

δ = f ′2m − C2m−2f2m−2 −B2m−1f2m−1 −A2mf2m.

Then (27) can be expressed in the form

f ′(z) = Ã1f(z) + P2m(z)δ. (28)

Conversely, any vector f̂ = {f, f ′} satisfying (28) for some δ ∈ CN

obeys (26), and hence it belongs to A∗.
Now let us prove (25). The form of N∞ is obvious, so we only need to

find Nλ for λ ∈ C \ {0}.
Let us show that any Laurent polynomial fλ,φ belongs to Nλ = ker(A∗ −

λ). In other words, it means that any vector f̂λ,φ = {fλ,φ, λfλ,φ} belongs to
A∗. Using (26), this condition can be expressed in the form of recurrence
relations

λP2k(λ)∗ = C2k−2P2k−2(λ)∗ + B2k−1P2k−1(λ)∗

+ A2kP2k(λ)∗ + B∗
2kP2k+1(λ)∗ + C∗

2kP2k+2(λ)∗,

λP2k+1(λ)∗ = B2kP2k(λ)∗ + A2k+1P2k+1(λ)∗ + B∗
2k+1P2k+2(λ)∗

(k = 0, 1, . . . , m− 1),

which follow from Theorem 4.2. Therefore fλ,φ ∈ Nλ.
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Since the set {fλ,φ(z) : φ ∈ L} is an N -dimensional linear subspace in H,
it coincides with Nλ. ¤
Corollary 5.1.1. The operator A is simple, i. e.,⋂

λ∈C\R
Mλ = {0} .

Proof. Let f ∈ H be a Laurent polynomial satisfying

(f, fλ,φ) = 0 (λ ∈ C \ R, φ ∈ L). (29)

Suppose that f has the form

f(z) =
2m∑

k=0

Pk(z)fk ({fk}2m
0 ⊂ CN ).

Then (29) is transformed to

Pk(λ)fk = 0 (λ ∈ C \ R, k = 0, 1, . . . , 2m).

Hence fk = 0 for k = 0, 1, . . . , 2m, and f = 0. ¤
Proposition 5.2. The following condition holds:

L ∩ ran(A− λ) = {0} (λ ∈ C \ {0}).
Proof. Suppose that α is the angle between the subspaces L and ran(A−λ).
We claim that α > 0. Indeed,

sinα = inf
‖φ‖L=1
f∈dom A

{‖φ− (A− λ)f‖} = inf
‖φ‖L=1
g(λ)=0

{‖φ− g‖} = inf
‖φ‖L=1
h(λ)=φ

{‖h‖}

= inf
h∈H

{ ‖h‖
‖h(λ)‖L

}
= inf
{hk}2m

0 ⊂CN





(∑2m
k=0 ‖hk‖2

L

) 1
2

∥∥∥∑2m
k=0 Pk(λ)hk

∥∥∥
L





.

Using Cauchy’s inequality, we obtain

sinα ≥ 1
(∑2m

k=0 ‖Pk(λ)‖2
L

) 1
2

> 0. ¤

The operator A is a simple Hermitian operator with deficiency indices
(N, N), the decomposition

H = Mλ u L (λ ∈ C \ {0})
holds, and the set of L-regular points of A coincides with the domain C\{0}.
Let us construct the representation of A with the module L. Denote by P(λ)
the skew projection onto L parallel Mλ in the space H. Put

Q(λ) = PL(A− λ)−1(I −P(λ)).
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Then any vector

f(z) =
2m∑

k=0

Pk(z)fk ∈ H

obeys

P(λ)f = f(λ) =
2m∑

k=0

Pk(λ)fk, Q(λ)f =
2m∑

k=0

Qk(λ)fk.

Proposition 5.3. The following equalities hold:

(P(λ)∗φ) (z) =
2m∑

k=0

Pk(z)Pk(λ)∗φ,

(Q(λ)∗φ) (z) =
2m∑

k=0

Pk(z)Qk(λ)∗φ

(φ ∈ L).

Proof. Let us prove the first equality, the second equality can be proved
similarly. Expand the vector P(λ)∗φ as a Fourier series

P(λ)∗φ =
2m∑

k=0

Pk(z)fk.

Then the coefficients fk are determined from the equalities

ε∗jfk = (P(λ)∗φ, Pk(z)εj) = (φ,P(λ)Pk(z)εj)

= (φ, Pk(λ)εj)CN
= ε∗jPk(λ)∗φ (k = 0, 1, . . . , 2m, j = 1, . . . , N).

¤
Now let us introduce a boundary triplet of A∗.

Theorem 5.4 (cf. [7, Proposition 10.1]). Let

f̂ =
{

f, Ã1f + P2mδ
}
∈ A∗, f =

2m∑

k=0

Pkfk ∈ H.

The triplet Π = {L, Γ0,Γ1} given by

Γ0f̂ = f2m, Γ1f̂ = δ

is a boundary triplet of the operator A∗.

Proof. The proof is a straightforward check of the Green formula (4). ¤
The boundary triplet Π = {L,Γ0, Γ1} defines two self-adjoint extensions

Ã0 = ker Γ0 and Ã1 = ker Γ1. Note that the extension Ã0 = ker Γ0 obeys
the condition Ã0 = A ⊕ N̂∞ and the extension Ã1 = ker Γ1 coincides with
the extension Ã1 defined by (23).
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Theorem 5.5 (cf. [7, Proposition 10.1]). Let Π = {L, Γ0,Γ1} be the bound-
ary triplet of A defined in Theorem 5.4. Then the matrix function

W (λ) =
(

w11(λ) w12(λ)
w21(λ) w22(λ)

)

=
(−Q2m(λ) −Q2m+1(λ)B2m −Q2m+2(λ)C2m

P2m(λ) P2m+1(λ)B2m + P2m+2(λ)C2m

)
(30)

is the corresponding ΠL-resolvent matrix.

Proof. It is easy to check that

Ã1

2m∑

k=0

Pk(z)Pk(λ)∗φ

= λ
2m∑

k=0

Pk(z)Pk(λ)∗φ− P2m(z)(P2m+1(λ)B2m + P2m+2(λ)C2m)∗φ,

Ã1

2m∑

k=0

Pk(z)Qk(λ)∗φ

= λ
2m∑

k=0

Pk(z)Qk(λ)∗φ + φ− P2m(z)(Q2m+1(λ)B2m + Q2m+2(λ)C2m)∗φ

for any φ ∈ L. Therefore

P̂(λ)∗φ =
{ 2m∑

k=0

Pk(z)Pk(λ)∗φ, λ
2m∑

k=0

Pk(z)Pk(λ)∗φ
}

=

{ 2m∑

k=0

Pk(z)Pk(λ)∗φ, Ã1

2m∑

k=0

Pk(z)Pk(λ)∗φ

+ P2m(z)(P2m+1(λ)B2m + P2m+2(λ)C2m)∗φ
}

,

Q̂(λ)∗φ =
{ 2m∑

k=0

Pk(z)Qk(λ)∗φ, λ
2m∑

k=0

Pk(z)Qk(λ)∗φ + φ

}

=
{ 2m∑

k=0

Pk(z)Qk(λ)∗φ, Ã1

2m∑

k=0

Pk(z)Qk(λ)∗φ

+ P2m(z)(Q2m+1(λ)B2m + Q2m+2(λ)C2m)∗φ
}

.
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Thus

w11(λ)∗ = −Γ0Q̂(λ)∗ = −Q2m(λ)∗,

w12(λ)∗ = −Γ1Q̂(λ)∗ = −(Q2m+1(λ)B2m + Q2m+2(λ)C2m)∗,

w21(λ)∗ = Γ0P̂(λ)∗ = P2m(λ)∗,

w22(λ)∗ = Γ1P̂(λ)∗ = (P2m+1(λ)B2m + P2m+2(λ)C2m)∗. ¤

Corollary 5.5.1. Let Π = {L, Γ0, Γ1} be the boundary triplet of A defined
in Theorem 5.4. The corresponding Weyl function M(λ) has the form

M(λ) = (P2m+1(λ)B2m + P2m+2(λ)C2m) P2m(λ)−1. (31)

Using Theorems 2.5, 3.4, and 5.5, we obtain our main result.

Theorem 5.6. There exists a one-to-one correspondence between the set
of all the solutions dΣ of the moment problem (1) and the set of all the
functions τ ∈ ÑCN obeying

lim
y→∞

τ(iy)
y

= 0, lim
y→0

y(M(iy) + τ(iy))−1 = 0,

where the function M(λ) is defined by (31). The correspondence is given by
the following Nevanlinna type formula

∫ +∞

−∞

dΣ(t)
t− λ

= (w11(λ)τ(λ) + w12(λ)) (w21(λ)τ(λ) + w22(λ))−1 , (32)

where the functions (wij(λ))21 are defined by (30).

6. An example

In this section we consider a simple example, which illustrates the ap-
proach developed in the previous sections.

Denote by {Uk(z)}∞0 the sequence of Chebyshev polynomials of the second
kind on [−1, 1]. The polynomials {Uk(z)}∞0 obey the recurrence relations

U0(z) = 1, 2zUk(z) = Uk−1(z) + Uk+1(z) (k = 1, 2, . . .)

and can be expressed explicitly in the form

Uk(x) =
sin(n + 1)θ

sin θ
when x = cos θ.



202 K.K. SIMONOV

The polynomials {Uk(z)}∞0 are orthogonal polynomials of the first kind cor-
responding to the Jacobi matrix




0 1
2

1
2 0 1

2
1
2 0 1

2
. . . . . . . . .


 .

Now consider a generalized Jacobi matrix for the strong moment problem



0 I I
I 0 0
I 0 0 I I

I 0 0
. . .

I 0 0
. . .

. . . . . . . . .




(33)

with the coefficients
Ak = 0, B2k+1 = 0, C2k+1 = 0,

B2k = I, C2k = I
(k = 0, 1, 2, . . .).

In view of Theorem 4.4, the matrix (33) uniquely determines a bisequence
of moments {Sk}+∞

−∞.
The Laurent polynomials of the first kind {Pk(z)}∞0 corresponding to (33)

satisfy the conditions

P−2(z) = P−1(z) = 0, P0(z) = I,(
z − 1

z

)
P2k(z) = P2k−2(z) + P2k+2(z),

P2k+1 =
1
z
P2k(z)

(k = 0, 1, 2, . . .).

Therefore,

P2k(z) = Uk

(
1
2

(
z − 1

z

))
,

P2k+1(z) =
1
z
Uk

(
1
2

(
z − 1

z

)) (k = 0, 1, 2, . . .).

The sequence of Laurent polynomials of the second kind {Qk(z)}∞0 coin-
cides with the sequence {Pk(z)}∞0 shifted left by 2 positions, that is,

Qk(z) = Pk−2(z) (k = 0, 1, 2, . . .).
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Now using Theorem 5.5 we can obtain the resolvent matrix W (λ) and the
Weyl function M(λ) corresponding to the strong truncated moment prob-
lem (1) with the moments {Sk}2m

−2m determined by the generalized Jacobi
matrix (33). They have the form

W (λ) =
(

w11(λ) w12(λ)
w21(λ) w22(λ)

)
=

(−Um−1(ω) − 1
λUm−1(ω)− Um(ω)

Um(ω) 1
λUm(ω) + Um+1(ω)

)
,

(34)

M(λ) =
1
λ

I + Um+1(ω)Um(ω)−1,

where ω =
1
2

(
λ− 1

λ

)
. It is easy to check that the point λ = 0 is a regular

point of M(λ) and M(0) = 0.
Finally we can describe the set of the solutions dΣ of the moment problem

using Theorem 5.6. The formula (32), where wij(λ) are elements of the
resolvent matrix (34), gives a one-to-one correspondence between the set
of the solutions dΣ of the strong truncated moment problem given by the
Jacobi matrix (33) and the set of matrix functions τ ∈ NCN obeying the
conditions

lim
y→∞ y−1τ(iy) = 0, lim

y→0
yτ(iy)−1 = 0.

References

[1] V. M. Adamyan and I. M. Tkachenko, Solutions of the truncated matrix Hamburger
moment problem according to M.G.Krein, Oper. Theory Adv. Appl., 118 (2000),
33–51.

[2] N. I. Ahiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Izdat.
“Nauka”, Moscow, 1966.
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