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BANACH-MAZUR DISTANCE BETWEEN TWO
DIMENSIONAL BANACH SPACES

S. A. AL-MEZEL

Abstract. The purpose of the present paper is to investigate geometric
properties of two-dimensional Banach spaces. We are also concerned
with the Banach-Mazur distance between Banach spaces. For real or

complex spaces d(l21, l
2
p) = 2

1− 1
p , if 1 ≤ p ≤ 2 and if 1 ≤ p ≤ ∞ and l2p

is two-dimensional real space, then d(l21, l
2
p) = 2

1
p .

1. Introduction

For isomorphic Banach spaces E and F , d(E, F ) measures how far the
unit ball of E is from an image of the unit ball of F .

In general, it can be rather difficult to compute the Banach-Mazur dis-
tance between two given spaces. The main problem lies in finding isomor-
phisms with small norms. Let us recall the definition of the Banach-Mazur
distance.

Definition 1. Let E and F be Banach spaces . We define the Banach-Mazur
distance between E and F by

d( E, F ) = inf
{
‖T ‖ ‖T−1 ‖ : T : E → F isomorphism

}
. (1)

Geometrically, let BE and BF denote the unit balls of the spaces E and F
respectively. Then d(E, F ) < d, if there exists an isomorphism T : E → F
such that

BF ⊂ T (BE) ⊂ dBF .

Obviously, for Banach spaces E, F and G one has

d(E, F ) ≤ d(E, G) d(G,F ). (2)

If E and F are finite-dimensional and dim E = dim F , then there exists
an isomorphism T : E → F such that ‖T‖ ‖T−1‖ = d(E,F ). For infinite
dimensional spaces this may not be true.
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If E and F are not isomorphic, then one defines their Banach-Mazur
distance to be infinity.

Example 1. If E = (V, ‖ . ‖) is an n-dimensional normed space, then

d(E, ln1 ) ≤ n.

In 1948 for finite dimensional spaces Fritz John [2] proved an essentially
best-possible upper bound for d(E,F ) by first bounding the distance of an
n-dimensional space from ln2 . The following theorem of John shows that
one can obtain a good upper bound for d(E, ln2 ) be taking the ellipsoid
D of minimal volume containing BE . An ellipsoid is the set of the form
{x : 〈x, x〉 ≤ 1} for some inner product 〈., .〉 on Rn.

Theorem 1 (John’s theorem). Let E be a normed space with unit ball BE.
Then there is a unique ellipsoid D of minimal (Euclidean) volume containing
BE. Furthermore,

n−
1
2 D ⊂ BE ⊂ D.

In particular, d(E, ln2 ) ≤ n
1
2 .

Let E and F be n-dimensional normed spaces by Theorem 1. Then

d(E, F ) ≤ d(E, ln2 ) d(ln2 , F ) ≤ n
1
2 n

1
2 = n.

The following lemma was proved by J. Lamperti [3].

Lemma 1. If x and y are complex numbers, then if 2 < p ≤ ∞, then

|x + y|p + |x− y|p ≥ 2|x|p + 2|y|p. (3)

If 1 ≤ p < 2, then

|x + y|p + |x− y|p ≤ 2|x|p + 2|y|p. (4)

For p = 2, of course, we get equality for any x and y .

The two-dimensional real spaces l2∞ and l21 are isometric because the unit
balls in both l2∞ and l21 are square. We can see that by rotating l21 into l2∞.
Define a map T : l21 → l2∞ by

T (x, y) =
(

(x + y)
(x− y)

)
.

Then T is an isometry, since max(|x+y|, |x−y|) = |x|+ |y|, for all x, y ∈ R.
But in three-dimensional spaces l3∞ and l31 are not isometric because the unit
balls in both l3∞ and l31 are different, the unit ball in l31 is octahedron while
the unit ball in l3∞ is a cube. From these results we calculate the Banach-
Mazur distance between l21 and l2p for the real (complex) two-dimensional
spaces.
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Theorem 2. Let l2p be the real or complex two-dimensional space. Then

d(l21, l
2
p) = 21− 1

p , for 1 ≤ p ≤ 2. (5)

Proof. Let T : l2p → l21 be the identity map

T : (x1, x2) → (x1, x2).

By Holder’s inequality:

|x1|+ |x2| ≤ (1q + 1q)
1
q (|x1|p + |x2|p)

1
p

= 21− 1
p ‖(x1, x2)‖p. (6)

But if x1 = x2 = 2−
1
p , ‖x‖ = 1. Then

‖T (x)‖ = ‖(x1, x2)‖1 = |x1|+ |x2| = 21− 1
p . (7)

Hence, ‖T‖ = 21− 1
p . Next, we show that ‖T−1 ‖ = 1.

Let T−1 : l21 → l2p and let y = (y1, y2) ∈ l21, then ‖y‖1 = |y1| + |y2|. Since

(|y1|p + |y2|p)
1
p ≤ |y1|+ |y2|, then ‖T−1‖ ≤ 1. But if y1 = 1 and y2 = 0, then

‖T−1y‖1 = 1 = ‖y‖1. Therefore ‖T−1‖ = 1. Hence,

d(l21, l
2
p) ≤ 21− 1

p , for all p. (8)

Let T =
(

a b
c d

)
∈ L(l21, l

2
p) be an isomorphism with ‖T−1‖ = 1 such that

a, b, c, d ∈ R or C and (ei) be the unit vector in l21, for i = 1, 2.

We show that ‖T‖ ≥ 21− 1
p , when 1 ≤ p < 2 .

Then T (x1, x2) =
(

ax1 + bx2

cx1 + dx2

)
and in particular

T (e1) =
(

a
c

)
and T (e2) =

(
b
d

)
(9)

T (1, 1) =
(

a + b
c + d

)
and T (1,−1) =

(
a− b
c− d

)
.

Since ‖T−1‖ = 1, ‖T (1, 1)‖ ≥ 2 and ‖T (1,−1)‖ ≥ 2 i.e.,

|a + b|p + |c + d|p ≥ 2p, (10)

|a− b|p + |c− d|p ≥ 2p. (11)
Adding (10) and (11) we get that

|a + b|p + |a− b|p + |c + d|p + |c− d|p ≥ 2p+1.

Therefore,

2|a|p + 2|b|p + 2|c|p + 2|d|p ≥ 2p+1, ( from (4) )
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|a|p + |b|p + |c|p + |d|p ≥ 2p.

Then either |a|p + |c|p ≥ 2p−1 or |b|p + |d|p ≥ 2p−1.

In the first case ‖T (e1)‖ =
(|a|p + |c|p)

1
p ≥ (2p−1)

1
p = 21− 1

p .

Similarly, the second case gives ‖T (e2)‖ ≥ 21− 1
p . Hence

‖T‖ ≥ 21− 1
p . (12)

Therefore, d(l21, l
2
p) = 21− 1

p , when 1 ≤ p ≤ 2. ¤

In the next theorem, we calculate the Banach-Mazur distance between
the real spaces l21 and l2p, when p ≥ 2.

Theorem 3. Let l2p(2 ≤ p ≤ ∞) be two-dimensional real space. Then

d(l21, l
2
p) = 2

1
p .

If l2p(p > 2) is the complex two-dimensional space. Then

d(l21, l
2
p) =

√
2.

Proof. Since d(E, F ) = d(E∗, F ∗) we have that

d(l21, l
2
p) = d(l2∞, l2q) where

1
p

+
1
q

= 1

But l2∞ is isometric to l21 and so d(l2∞, l2q) = d(l21, l
2
q) = 21− 1

q since q < 2.

Therefore, d(l21, l
2
p) = 21− 1

q = 2
1
p , for p ≥ 2.

In the complex case, if we define T : l21 → l2p by

(α, β) → (α + β, αβ).

Then

‖T (α, β)‖p = ‖(α + β, α− β)‖p = (|α + β|p + |α− β|p) 1
p

≤ (2(|α|+ |β|)p)
1
p

= 2
1
p ‖(α, β)‖p.

Hence, ‖T‖ ≤ 2
1
p . But if α = 1 and β = 0, then ‖T (α, β)‖p = 2

1
p . Therefore,

‖T‖ = 2
1
p . (13)

Now, T−1 : l2p → l21 and (u, v) → (
1
2(u + v), 1

2(u− v)
)
.

‖T−1(u, v)‖1 =
1
2
|u + v|+ 1

2
|u− v| ≤ (2)−

1
2
(|u + v|2 + |u− v|2)

1
2
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≤ (|u|2 + |v|2) 1
2 ≤ (2)

1
2

( |u|p + |v|p
2

) 1
p

.

Hence, ‖T−1‖ ≤ 2
1
2
− 1

p . But if (u, v) = (1, i), then

‖T−1(1, i) ‖1 =
1
2
|1 + i|+ 1

2
|1− i| = 1

2

√
2 +

1
2

√
2 =

√
2

and ‖(1, i)‖p = 2
1
p . Therefore,

‖T−1‖ = 2
1
2
− 1

p . (14)

From (13) and (14) we deduce that ‖T‖‖T−1‖ = 2
1
2 . ¤

This suggests that d(l21, l
2
p) =

√
2 for all p > 2. Estimates for d(l21, l

2
p) are

given in [5], but there the precise values in the complex case are not given.
Now, we will estimate the Banach-Mazur distance between the spaces l2p

and l2q .

Lemma 2. Let 1 ≤ p ≤ q < 2, or 2 ≤ p ≤ q ≤ ∞, then d(l2p, l
2
q) = 2

1
p
− 1

q .

Proof. Let id : l2p → l2q denotes the identity operator. Then

d(l2p, l
2
q) ≤ ‖ id ‖ ‖ id−1‖ = 2

1
p
− 1

q . (15)

Now we need to show that

d(l2p, l
2
q) ≥ 2

1
p
− 1

q .

First, if 1 ≤ p ≤ q < 2, from Theorem 2 we have that

d(l21, l
2
p) = 21− 1

p and d(l21, l
2
q) = 21− 1

q .

Next using the property (2) one gets

21− 1
q = d(l21, l

2
q) ≤ d(l21, l

2
p) d( l2p, l

2
q )

21− 1
q ≤ d(l2p, l

2
q) 21− 1

p .

It follows that
2

1
p
− 1

q ≤ d( l2p, l
2
q ).

We have proved d( l2p, l
2
q ) = 2

1
p
− 1

q .
Second, if 2 ≤ p ≤ q ≤ ∞, from [5] we have

d( l22, l
2
p ) = 2

1
2
− 1

p and d( l22, l
2
q ) = 2

1
2
− 1

q .

Then

2
1
2
− 1

q = d( l22, l
2
q ) ≤ d( l22, l

2
p ) d( l2p, l

2
q )
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2
1
2
− 1

q ≤ 2
1
2
− 1

p d( l2q , l
2
p ).

Hence d( l2p, l
2
q ) ≥ 2

1
p
− 1

q , if 2 ≤ p ≤ q ≤ ∞. From (15) we deduce that

d( l2p, l
2
q ) = 2

1
p
− 1

q .

¤
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