BANACH-MAZUR DISTANCE BETWEEN TWO DIMENSIONAL BANACH SPACES

S. A. AL-MEZEL

ABSTRACT. The purpose of the present paper is to investigate geometric properties of two-dimensional Banach spaces. We are also concerned with the Banach-Mazur distance between Banach spaces. For real or complex spaces $d(l_1^2, l_p^2) = 2^{1-\frac{1}{p}}$, if $1 \le p \le 2$ and if $1 \le p \le \infty$ and l_p^2 is two-dimensional real space, then $d(l_1^2, l_p^2) = 2^{\frac{1}{p}}$.

1. INTRODUCTION

For isomorphic Banach spaces E and F, d(E, F) measures how far the unit ball of E is from an image of the unit ball of F.

In general, it can be rather difficult to compute the Banach-Mazur distance between two given spaces. The main problem lies in finding isomorphisms with small norms. Let us recall the definition of the Banach-Mazur distance.

Definition 1. Let E and F be Banach spaces. We define the Banach-Mazur distance between E and F by

$$d(E,F) = \inf \left\{ \|T\| \| \|T^{-1}\| : T: E \to F \text{ isomorphism} \right\}.$$
(1)

Geometrically, let B_E and B_F denote the unit balls of the spaces E and F respectively. Then d(E, F) < d, if there exists an isomorphism $T : E \to F$ such that

$$B_F \subset T(B_E) \subset dB_F.$$

Obviously, for Banach spaces E, F and G one has

$$d(E,F) \le d(E,G) \, d(G,F). \tag{2}$$

If E and F are finite-dimensional and dim $E = \dim F$, then there exists an isomorphism $T : E \to F$ such that $||T|| ||T^{-1}|| = d(E, F)$. For infinite dimensional spaces this may not be true.

¹⁹⁹¹ Mathematics Subject Classification. 46B03, 46B03.

Key words and phrases. Banach spaces, Banach-Mazur distance.

If E and F are not isomorphic, then one defines their Banach-Mazur distance to be infinity.

Example 1. If $E = (V, \|.\|)$ is an *n*-dimensional normed space, then

 $d(E, l_1^n) \le n.$

In 1948 for finite dimensional spaces Fritz John [2] proved an essentially best-possible upper bound for d(E, F) by first bounding the distance of an *n*-dimensional space from l_2^n . The following theorem of John shows that one can obtain a good upper bound for $d(E, l_2^n)$ be taking the ellipsoid D of minimal volume containing B_E . An ellipsoid is the set of the form $\{x : \langle x, x \rangle \leq 1\}$ for some inner product $\langle ., . \rangle$ on \mathbb{R}^n .

Theorem 1 (John's theorem). Let E be a normed space with unit ball B_E . Then there is a unique ellipsoid D of minimal (Euclidean) volume containing B_E . Furthermore,

$$n^{-\frac{1}{2}}D \subset B_E \subset D.$$

In particular, $d(E, l_2^n) \le n^{\frac{1}{2}}$.

Let E and F be n-dimensional normed spaces by Theorem 1. Then

 $d(E,F) \le d(E,l_2^n) d(l_2^n,F) \le n^{\frac{1}{2}} n^{\frac{1}{2}} = n.$

The following lemma was proved by J. Lamperti [3].

Lemma 1. If x and y are complex numbers, then if 2 , then

$$x + y|^{p} + |x - y|^{p} \ge 2|x|^{p} + 2|y|^{p}.$$
(3)

If $1 \le p < 2$, then

$$|x+y|^p + |x-y|^p \le 2|x|^p + 2|y|^p.$$
(4)

For p = 2, of course, we get equality for any x and y.

The two-dimensional real spaces l_{∞}^2 and l_1^2 are isometric because the unit balls in both l_{∞}^2 and l_1^2 are square. We can see that by rotating l_1^2 into l_{∞}^2 . Define a map $T: l_1^2 \to l_{\infty}^2$ by

$$T(x,y) = \begin{pmatrix} (x+y)\\ (x-y) \end{pmatrix}.$$

Then T is an isometry, since $\max(|x+y|, |x-y|) = |x| + |y|$, for all $x, y \in \mathbb{R}$. But in three-dimensional spaces l_{∞}^3 and l_1^3 are not isometric because the unit balls in both l_{∞}^3 and l_1^3 are different, the unit ball in l_1^3 is octahedron while the unit ball in l_{∞}^3 is a cube. From these results we calculate the Banach-Mazur distance between l_1^2 and l_p^2 for the real (complex) two-dimensional spaces.

Theorem 2. Let l_p^2 be the real or complex two-dimensional space. Then

$$d(l_1^2, l_p^2) = 2^{1 - \frac{1}{p}}, \text{ for } 1 \le p \le 2.$$
(5)

Proof. Let $T \colon l_p^2 \to l_1^2$ be the identity map

$$T : (x_1, x_2) \to (x_1, x_2).$$

By Holder's inequality:

$$|x_1| + |x_2| \le (1^q + 1^q)^{\frac{1}{q}} (|x_1|^p + |x_2|^p)^{\frac{1}{p}}$$

= $2^{1 - \frac{1}{p}} ||(x_1, x_2)||_p.$ (6)

But if $x_1 = x_2 = 2^{-\frac{1}{p}}$, ||x|| = 1. Then

$$||T(x)|| = ||(x_1, x_2)||_1 = |x_1| + |x_2| = 2^{1 - \frac{1}{p}}.$$
(7)

Hence, $||T|| = 2^{1-\frac{1}{p}}$. Next, we show that $||T^{-1}|| = 1$. Let $T^{-1}: l_1^2 \to l_p^2$ and let $y = (y_1, y_2) \in l_1^2$, then $||y||_1 = |y_1| + |y_2|$. Since $(|y_1|^p + |y_2|^p)^{\frac{1}{p}} \le |y_1| + |y_2|$, then $||T^{-1}|| \le 1$. But if $y_1 = 1$ and $y_2 = 0$, then $||T^{-1}y||_1 = 1 = ||y||_1$. Therefore $||T^{-1}|| = 1$. Hence,

$$d(l_1^2, l_p^2) \le 2^{1-\frac{1}{p}}, \text{ for all } p.$$
 (8)

Let $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in L(l_1^2, l_p^2)$ be an isomorphism with $||T^{-1}|| = 1$ such that $a, b, c, d \in \mathbb{R}$ or \mathbb{C} and (e_i) be the unit vector in l_1^2 , for i = 1, 2.

We show that $||T|| \ge 2^{1-\frac{1}{p}}$, when $1 \le p < 2$. Then $T(x_1, x_2) = \begin{pmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{pmatrix}$ and in particular

$$T(e_1) = \begin{pmatrix} a \\ c \end{pmatrix}$$
 and $T(e_2) = \begin{pmatrix} b \\ d \end{pmatrix}$ (9)

 $T(1,1) = \begin{pmatrix} a+b\\c+d \end{pmatrix} \text{ and } T(1,-1) = \begin{pmatrix} a-b\\c-d \end{pmatrix}.$ Since $||T^{-1}|| = 1$, $||T(1,1)|| \ge 2$ and $||T(1,-1)|| \ge 2$ i.e., $|a+b|^p + |c+d|^p \ge 2^p,$

$$a+b|^{p}+|c+d|^{p} \ge 2^{p},$$
 (10)

$$|a - b|^p + |c - d|^p \ge 2^p.$$
(11)

Adding (10) and (11) we get that

$$|a+b|^p + |a-b|^p + |c+d|^p + |c-d|^p \ge 2^{p+1}.$$

Therefore,

$$2|a|^p + 2|b|^p + 2|c|^p + 2|d|^p \ge 2^{p+1}$$
, (from (4))

S. A. AL-MEZEL

 $|a|^{p} + |b|^{p} + |c|^{p} + |d|^{p} \ge 2^{p}.$ Then either $|a|^p + |c|^p \ge 2^{p-1}$ or $|b|^p + |d|^p \ge 2^{p-1}$. In the first case $||T(e_1)|| = (|a|^p + |c|^p)^{\frac{1}{p}} \ge (2^{p-1})^{\frac{1}{p}} = 2^{1-\frac{1}{p}}$. Similarly, the second case gives $||T(e_2)|| \ge 2^{1-\frac{1}{p}}$. Hence

$$||T|| \ge 2^{1-\frac{1}{p}}.$$
(12)

Therefore, $d(l_1^2, l_p^2) = 2^{1-\frac{1}{p}}$, when $1 \le p \le 2$.

In the next theorem, we calculate the Banach-Mazur distance between the real spaces l_1^2 and l_p^2 , when $p \ge 2$.

Theorem 3. Let $l_p^2 (2 \le p \le \infty)$ be two-dimensional real space. Then

$$d(l_1^2, l_p^2) = 2^{\frac{1}{p}}$$

If $l_p^2(p>2)$ is the complex two-dimensional space. Then

$$d(l_1^2, l_p^2) = \sqrt{2}$$

Proof. Since $d(E, F) = d(E^*, F^*)$ we have that

$$d(l_1^2, l_p^2) = d(l_\infty^2, l_q^2)$$
 where $\frac{1}{p} + \frac{1}{q} = 1$

But l_{∞}^2 is isometric to l_1^2 and so $d(l_{\infty}^2, l_q^2) = d(l_1^2, l_q^2) = 2^{1-\frac{1}{q}}$ since q < 2. Therefore, $d(l_1^2, l_p^2) = 2^{1-\frac{1}{q}} = 2^{\frac{1}{p}}$, for $p \ge 2$. In the complex case, if we define $T : l_1^2 \to l_p^2$ by

$$(\alpha, \beta) \to (\alpha + \beta, \alpha\beta).$$

Then

$$\|T(\alpha,\beta)\|_{p} = \|(\alpha+\beta,\alpha-\beta)\|_{p} = (|\alpha+\beta|^{p}+|\alpha-\beta|^{p})^{\frac{1}{p}}$$
$$\leq (2(|\alpha|+|\beta|)^{p})^{\frac{1}{p}}$$
$$= 2^{\frac{1}{p}}\|(\alpha,\beta)\|_{p}.$$

Hence, $||T|| \leq 2^{\frac{1}{p}}$. But if $\alpha = 1$ and $\beta = 0$, then $||T(\alpha, \beta)||_p = 2^{\frac{1}{p}}$. Therefore,

$$||T|| = 2^{\overline{p}}.$$
 (13)

Now, $T^{-1}: l_n^2 \to l_1^2$ and $(u, v) \to (\frac{1}{2}(u+v), \frac{1}{2}(u-v)).$ $||T^{-1}(u,v)||_1 = \frac{1}{2}|u+v| + \frac{1}{2}|u-v| \le (2)^{-\frac{1}{2}} (|u+v|^2 + |u-v|^2)^{\frac{1}{2}}$

$$\leq (|u|^2 + |v|^2)^{\frac{1}{2}} \leq (2)^{\frac{1}{2}} \left(\frac{|u|^p + |v|^p}{2}\right)^{\frac{1}{p}}.$$

Hence, $||T^{-1}|| \le 2^{\frac{1}{2} - \frac{1}{p}}$. But if (u, v) = (1, i), then

$$||T^{-1}(1,i)||_1 = \frac{1}{2}|1+i| + \frac{1}{2}|1-i| = \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2} = \sqrt{2}$$

and $||(1,i)||_p = 2^{\frac{1}{p}}$. Therefore,

$$||T^{-1}|| = 2^{\frac{1}{2} - \frac{1}{p}}.$$
(14)

From (13) and (14) we deduce that $||T|| ||T^{-1}|| = 2^{\frac{1}{2}}$.

This suggests that $d(l_1^2, l_p^2) = \sqrt{2}$ for all p > 2. Estimates for $d(l_1^2, l_p^2)$ are given in [5], but there the precise values in the complex case are not given.

Now, we will estimate the Banach-Mazur distance between the spaces l_p^2 and l_q^2 .

Lemma 2. Let
$$1 \le p \le q < 2$$
, or $2 \le p \le q \le \infty$, then $d(l_p^2, l_q^2) = 2^{\frac{1}{p} - \frac{1}{q}}$.
Proof. Let $id: l_p^2 \to l_q^2$ denotes the identity operator. Then

$$d(l_p^2, l_q^2) \le \| \text{ id } \| \| \text{ id}^{-1} \| = 2^{\frac{1}{p} - \frac{1}{q}}.$$
 (15)

Now we need to show that

$$d(l_p^2, l_q^2) \ge 2^{\frac{1}{p} - \frac{1}{q}}.$$

First, if $1 \le p \le q < 2$, from Theorem 2 we have that

$$d(l_1^2, l_p^2) = 2^{1-\frac{1}{p}}$$
 and $d(l_1^2, l_q^2) = 2^{1-\frac{1}{q}}$.

Next using the property (2) one gets

$$\begin{aligned} 2^{1-\frac{1}{q}} &= d(l_1^2, l_q^2) \leq d(l_1^2, l_p^2) \, d(l_p^2, l_q^2) \\ 2^{1-\frac{1}{q}} &\leq d(l_p^2, l_q^2) \, 2^{1-\frac{1}{p}}. \end{aligned}$$

It follows that

$$2^{\frac{1}{p}-\frac{1}{q}} \le d(l_p^2, l_q^2).$$

We have proved $d(l_p^2, l_q^2) = 2^{\frac{1}{p} - \frac{1}{q}}$. Second, if $2 \le p \le q \le \infty$, from [5] we have

$$d(l_2^2, l_p^2) = 2^{\frac{1}{2} - \frac{1}{p}}$$
 and $d(l_2^2, l_q^2) = 2^{\frac{1}{2} - \frac{1}{q}}$.

Then

$$2^{\frac{1}{2} - \frac{1}{q}} = d(l_2^2, l_q^2) \le d(l_2^2, l_p^2) \ d(l_p^2, l_q^2)$$

209

S. A. AL-MEZEL

$$2^{\frac{1}{2} - \frac{1}{q}} \le 2^{\frac{1}{2} - \frac{1}{p}} d(l_q^2, l_p^2).$$

Hence $d(l_p^2, l_q^2) \ge 2^{\frac{1}{p} - \frac{1}{q}}$, if $2 \le p \le q \le \infty$. From (15) we deduce that $d(l_p^2, l_q^2) = 2^{\frac{1}{p} - \frac{1}{q}}$.

Acknowledgment. The results of this paper were obtained during my M.Phil [4] studies at Swansea University. The author also thanks the referee for his/her valuable suggestions for the improvement of this paper.

References

- H. Cohen, A Bound-two isomorphism between C(X) Banach spaces, Proc. Amer. Math. Soc., 50 (1975), 215–217.
- [2] F. John, Extreme problems with inqualities as subsidiary conditions, Courant Anniversary volume, (1948), 187–204, Interscience, New York.
- [3] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math., 8 (1958), 459–466.
- [4] S. Al-mezel, Generalisation of the Banach-Stone theorem, M.Phil Thesis, Mathematics Department, University of Wales Swansea, United Kingdom, 2000.
- [5] V. E. Mazaev, V. E. Gurari and M. E. Kadec, On the distance between isomorphic L_p spaces of finite dimension (Russian), Matematiceskii Sbornik 70 (112) 4 (1966), 481–489.

(Received: February 20, 2006) (Revised: July 8, 2006) Department of Mathematics King Abdulaziz University P.O.Box 80203 Jeddah 21589, Saudi Arabia E-mail: mathsaleh@yahoo.com