ON THE NON-COMMUTATIVE NEUTRIX PRODUCT OF THE DISTRIBUTIONS $\delta^{(r)}(x)$ AND $x^{-s}\ln^m|x|$

BRIAN FISHER, INCI EGE AND EMIN ÖZÇAĞ

Abstract. It is proved that the non-commutative neutrix product of the distributions $\delta^{(r)}(x)$ and $x^{-s}\ln^m|x|$ exists and

$$\delta^{(r)}(x) \circ x^{-s}\ln^m|x| = 0$$

for $r, m = 0, 1, 2, \ldots$ and $s = 1, 2, \ldots$.

In the following, we let D be the space of infinitely differentiable functions with compact support and let D' be the space of distributions defined on D.

We now let ρ be a function in D having the following properties:

(i) $\rho(x) = 0$ for $|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x) = \rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) \, dx = 1$.

Putting $\delta_n(x) = n\rho(nx)$ for $n = 1, 2, \ldots$, it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

If now f is an arbitrary distribution in D', we define

$$f_n(x) = (f \ast \delta_n)(x) = \langle f(t), \delta_n(x - t) \rangle$$

for $n = 1, 2, \ldots$. It follows that $\{f_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution $f(x)$.

A first extension of the product of a distribution and an infinitely differentiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in D' for which on the interval (a, b), f is the k-th derivative of a locally summable function F in $L^p(a, b)$ and $g^{(k)}$ is a locally summable function in $L^q(a, b)$ with $1/p + 1/q = 1$. Then the product $fg = gf$ of f and g is defined on the interval (a, b) by

$$fg = \sum_{i=0}^{k} \binom{k}{i} (-1)^i [Fg^{(i)}]^{(k-i)}.$$
The distribution \(x^{-1} \ln^m |x| \) is defined by
\[
x^{-1} \ln^m |x| = \frac{(\ln^{m+1} |x|)'}{m + 1}
\]
for \(m = 0, 1, 2, \ldots \). The distribution \(x^{-s} \) is then defined by
\[
x^{-s} = \frac{(-1)^s (\ln |x|)^{(s)}}{(s - 1)!}
\]
for \(s = 1, 2, \ldots \) and the distribution \(x^{-s} \ln^m |x| \) is then defined inductively by the equation
\[
(x^{-s+1} \ln^m |x|)' = -(s - 1)x^{-s} \ln^m |x| + mx^{-s} \ln^{m-1} |x|
\]
for \(s, m = 0, 1, 2, \ldots \).

It follows that
\[
\langle x^{-2s+1} \ln^m |x|, \varphi(x) \rangle = \int_0^\infty x^{-2s+1} \ln^m x \left[\varphi(x) - \varphi(-x) \right]
\]
It is obvious that if the product \(fg \) exists, then the neutrix product \(f \circ g \) exists and \(fg = f \circ g \).

The following theorem is easily proved.

Theorem 1. Let \(f \) and \(g \) be distributions in \(D' \) and suppose that the neutrix product \(f \circ g' \) (or \(f' \circ g \)) exists. Then the neutrix product \(f' \circ g \) (or \(f \circ g' \)) exists and

\[
(f \circ g)' = f \circ g' + f' \circ g. \tag{1}
\]

Using the neutrix product, the next theorem was proved in [3].

Theorem 2. The neutrix products \(\delta^{(r)}(x) \circ x^{-s} \) and \(x^{-s} \circ \delta^{(r)}(x) \) exist and

\[
x^{-s} \circ \delta^{(r)}(x) = \frac{(-1)^r r!}{(r+s)!} \delta^{(r+s)}(x) \tag{2}
\]

for \(r = 0, 1, 2, \ldots \) and \(s = 1, 2, \ldots \).

We first of all prove the following theorem.

Theorem 3. The neutrix product \(\delta^{(r)}(x) \circ \ln^m |x| \) exists and

\[
\delta^{(r)}(x) \circ \ln^m |x| = 2c_m \delta^{(r)}(x) \tag{4}
\]

for \(r = 0, 1, 2, \ldots \) and \(m = 1, 2, \ldots \), where

\[
c_m = \int_0^1 \ln^m u \delta(u) \, du
\]

for \(m = 1, 2, \ldots \).

Proof. Putting

\[
(ln^m |x|)_n = \ln^m |x| * \delta_n(x) = \int_{-1/n}^{1/n} \ln^m |x-t| \delta_n(t) \, dt,
\]

we have

\[
\langle \delta^{(r)}(x), x^k (\ln^m |x|)_n \rangle = (-1)^r \int \langle \delta(x), \delta^{(r)}(x) \rangle \delta(x), x^k (\ln^m |x|)_n \rangle \, dx
\]

\[
= (-1)^r \sum_{i=0}^{k} \binom{r}{i} \frac{k!}{(k-i)!} \langle \delta(x), x^{k-i} (\ln^m |x|)_n \rangle \delta^{(r-k)}(t) \, dt
\]

\[
= (-1)^r k! \binom{r}{k} \int_{-1/n}^{1/n} \ln^m |t| \delta^{(r-k)}(t) \, dt
\]

\[
= (-1)^r k! n^{r-k} \binom{r}{k} \int_{-1}^{1} \ln^m |u/n| \rho^{(r-k)}(u) \, du,
\]
for \(k = 0, 1, 2, \ldots r - 1 \). It follows that
\[
N \lim_{n \to \infty} \langle \delta^{(r)}(x), x^k (\ln^m |x|)_n \rangle = 0,
\] (5)
for \(k = 0, 1, 2, \ldots, r - 1 \).

When \(k = r \), we have
\[
\langle \delta^{(r)}(x), x^r (\ln^m |x|)_n \rangle = (-1)^r r! \int_{-1}^{1} \ln^m |u/n| \rho(u) \, du
\]
and it follows that
\[
N \lim_{n \to \infty} \langle \delta^{(r)}(x), x^r (\ln^m |x|)_n \rangle = (-1)^r r! \int_{-1}^{1} \ln^m |u| \rho(u) \, du = 2(-1)^r r! c_m.
\] (6)

When \(k = r + 1 \), we have for an arbitrary infinitely differentiable function \(\psi \),
\[
\langle \delta^{(r)}(x), x^{r+1} (\ln^m |x|)_n \psi(x) \rangle = (-1)^r \langle \delta(x), [x^{r+1} (\ln^m |x|)_n \psi(x)]^{(r)} \rangle = 0.
\] (7)

If now \(\varphi \) is an arbitrary function in \(D \), we have
\[
\varphi(x) = \sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!} x^k + \frac{\varphi^{(r+1)}(\xi x)}{(r+1)!} x^{r+1},
\]
where \(0 < \xi < 1 \). It follows that
\[
\langle \delta^{(r)}(x) (\ln^m |x|)_n, \varphi(x) \rangle = \sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!} \langle \delta^{(r)}(x), x^k (\ln^m |x|)_n \rangle + \frac{1}{(r+1)!} \langle \delta^{(r)}(x), x^{r+1} (\ln^m |x|)_n \varphi^{(r+1)}(\xi x) \rangle
\]
and it now follows from equations (5) to (7) that
\[
N \lim_{n \to \infty} \langle \delta^{(r)}(x) (\ln^m |x|)_n, \varphi(x) \rangle = 2(-1)^r c_m \varphi^{(r)}(0)
= 2c_m \langle \delta^{(r)}(x), \varphi(x) \rangle,
\]
proving equation (4) for \(r = 0, 1, 2, \ldots \) and \(m = 1, 2, \ldots \). This completes the proof of the theorem. \(\square \)

We now prove...

Theorem 4. The neutrix product \(\delta^{(r)}(x) \circ (x^{-s} \ln^m |x|) \) exists and
\[
\delta^{(r)}(x) \circ (x^{-s} \ln^m |x|) = 0,
\] (8)
for \(r = 0, 1, 2, \ldots \) and \(s, m = 1, 2, \ldots \).
Proof. We first of all prove that

$$\delta^{(r)}(x) \circ (x^{-1} \ln^m |x|) = 0$$ \hspace{1cm} (9)

for \(r, m = 0, 1, 2, \ldots \). Differentiating the equation

$$\delta^{(r)}(x) \circ \ln^{m+1} |x| = 2c_{m+1}\delta^{(r)}(x)$$

and using Theorem 3, we have

$$\delta^{(r+1)}(x) \circ \ln^{m+1} |x| + (m + 1)\delta^{(r)}(x) \circ (x^{-1} \ln^m |x|) = 2c_{m+1}\delta^{(r+1)}(x)$$

and equation (9) follows.

Next, suppose that \(\delta^{(r)}(x) \circ (x^{-2} \ln^m |x|) \) exists and

$$\delta^{(r)}(x) \circ (x^{-2} \ln^m |x|) = 0$$ \hspace{1cm} (10)

for \(r = 0, 1, 2, \ldots \) and some \(m \). This is true when \(m = 0 \). Differentiating the equation

$$\delta^{(r)}(x) \circ (x^{-2} \ln^m |x|) = 0$$

we get

$$\delta^{(r+1)}(x) \circ (x^{-1} \ln^{m+1} |x|) - \delta^{(r)}(x) \circ (x^{-2} \ln^{m+1} |x|) + (m + 1)\delta^{(r)}(x)$$

$$\circ (x^{-2} \ln^m |x|) = -\delta^{(r)}(x) \circ (x^{-2} \ln^{m+1} |x|) = 0$$

on using equation (9) and our assumption. Equation (10) follows by induction for \(r, m = 0, 1, 2, \ldots \).

We have therefore proved that

$$\delta^{(r)}(x) \circ (x^{-i} \ln^m |x|) = 0$$ \hspace{1cm} (11)

for \(i = 1, 2 \) and \(r, m = 0, 1, 2, \ldots \).

We can now prove similarly that

$$\delta^{(r)}(x) \circ (x^{-3} \ln^m |x|) = 0$$

for \(r, m = 0, 1, 2, \ldots \) and so on.

In general, suppose that equation (11) holds for \(i = 1, 2, \ldots, s \) and some \(s \) and \(r, m = 0, 1, 2, \ldots \). This is true when \(s = 1 \) or \(2 \). Then suppose that

$$\delta^{(r)}(x) \circ (x^{-s-1} \ln^m |x|) = 0,$$ \hspace{1cm} (12)

for \(r = 0, 1, 2, \ldots \) and some \(m \). This is true when \(m = 0 \). From our assumption on equation (11) with \(i = s \) and \(m + 1 \) for \(m \), we have

$$\delta^{(r)}(x) \circ (x^{-s} \ln^{m+1} |x|) = 0.$$ \hspace{1cm} (13)
Differentiating equation (13), we have
\[
\delta^{(r+1)}(x) \circ (x^{-s} \ln^{m+1} |x|) - s\delta^{(r)}(x) \circ (x^{-s-1} \ln^{m+1} |x|) + (m+1)\delta^{(r)}(x) \circ (x^{-s-1} \ln^m |x|) = 0
\]
and it follows from our assumptions that
\[
\delta^{(r)}(x) \circ (x^{-s-1} \ln^{m+1} |x|) = 0.
\]
Equation (12) follows by induction for \(r, m = 0, 1, 2, \ldots \).

Equation (11) therefore holds \(i = 1, 2, \ldots, s + 1 \) and \(r, m = 0, 1, 2, \ldots \) and so follows by induction for \(r, m = 0, 1, 2, \ldots \) and \(s = 1, 2, \ldots \). This completes the proof of the theorem. \(\square \)

In the next theorem we put
\[
c_{r,m} = \int_0^1 u^r \ln^m u \rho^{(r)}(u) \, du
\]
for \(r = 0, 1, 2, \ldots \) and \(m = 1, 2, \ldots \).

Integrating by parts, we have
\[
c_{r,m} = -\int_0^1 [mu^{r-1} \ln^{m-1} u + ru^{r-1} \ln^m u] \rho^{(r-1)}(u) \, du
\]
\[
= -mc_{r-1,m-1} - r c_{r-1,m},
\]
\[
c_{1,m} = -mc_{0,m-1} - c_{0,m},
\]
\[
= -mc_{m-1} - c_m.
\]

It follows by induction that
\[
c_{r,m} = (-1)^r r! c_m - mr! \sum_{i=1}^{r} \frac{(-1)^i c_{r-i,m-1}}{(r-i+1)!}
\]
\[
= (-1)^r r! c_m + (-1)^r mr! c_{m-1} + mr! \sum_{i=1}^{r-1} \frac{(-1)^i c_{r-i,m-1}}{(r-i+1)!}
\]
and so each \(c_{r,m} \) can be expressed as a linear sum of \(c_1, c_2, \ldots, c_m \) for \(r, m = 1, 2, \ldots \).

Theorem 5. The neutrix product \(\ln^m |x| \circ \delta^{(r)}(x) \) exists and
\[
\ln^m |x| \circ \delta^{(r)}(x) = \frac{2(-1)^r c_{r,m} \delta^{(r)}(x)}{r!} \quad (14)
\]
for \(r = 0, 1, 2, \ldots \) and \(m = 1, 2, \ldots \).
Proof. We have

$$\langle \ln^m |x|, x^k \delta_n^{(r)}(x) \rangle = \int_{-1/n}^{1/n} \ln^m |x| x^k \delta_n^{(r)}(x) \, dx$$

$$= n^{r-k} \int_{-1}^{1} \ln^m |u/n| u^k \rho^{(r)}(u) \, du$$

for $k = 0, 1, 2, \ldots$. It follows that

$$\text{N} - \lim_{n \to \infty} \langle \ln^m |x|, x^k \delta_n^{(r)}(x) \rangle = 0 \quad (15)$$

for $k = 0, 1, 2, \ldots, r - 1$.

When $k = r$, we have

$$\langle \ln^m |x|, x^r \delta_n^{(r)}(x) \rangle = \int_{-1/n}^{1/n} u^r \ln^m |u/n| \rho^{(r)}(u) \, du$$

and it follows that

$$\text{N} - \lim_{n \to \infty} \langle \ln^m |x|, x^r \delta_n^{(r)}(x) \rangle = \int_{-1}^{1} u^r \ln^m |u| \rho^{(r)}(u) \, du = 2c_{r,m} \quad (16)$$

When $k = r + 1$, we have for an arbitrary infinitely differentiable function ψ,

$$\langle \ln^m |x|, x^{r+1} \delta_n^{(r)}(x) \psi(x) \rangle = n^{-1} \int_{-1/n}^{1/n} u^{r+1} \ln^m |u/n| \rho^{(r)}(u) \psi(u/n) \, du$$

$$= O(n^{-1} \ln^m n). \quad (17)$$

If now φ is an arbitrary function in \mathcal{D}, we have

$$\varphi(x) = \sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!} x^k + \frac{\varphi^{(r+1)}(\xi x)}{(r + 1)!} x^{r+1},$$

where $0 < \xi < 1$. It follows that

$$\langle \ln^m |x|, \delta_n^{(r)}(x) \varphi(x) \rangle = \sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!} \langle \ln^m |x|, x^k \delta_n^{(r)}(x) \rangle$$

$$+ \frac{1}{(r + 1)!} \langle \ln^m |x|, x^{r+1} \delta_n^{(r)}(x), \varphi^{(r+1)}(\xi x) \rangle$$

and it now follows from equations (15) to (17) that

$$\text{N} - \lim_{n \to \infty} \langle \ln^m |x|, \delta_n^{(r)}(x) \varphi(x) \rangle = \frac{2c_{r,m}}{r!} \varphi^{(r)}(0)$$

$$= \frac{2(-1)^r c_{r,m}}{r!} \langle \delta^{(r)}(x), \varphi(x) \rangle,$$
proving equation (14) for \(r = 0, 1, 2, \ldots \) and \(m = 1, 2, \ldots \). This completes the proof of the theorem. \(\square \)

We finally prove the following generalization of equation (3).

Theorem 6. The neutrix product \((x^{-s} \ln^m |x|) \circ \delta^{(r)}(x)\) exists for \(r = 0, 1, \ldots \) and \(s, m = 1, 2, \ldots \).

In particular,

\[
(x^{-1} \ln^m |x|) \circ \delta^{(r)}(x) = \frac{2(-1)^{r+1} c_{r,m}}{(r+1)!} \delta^{(r+1)}(x)
\]

for \(r = 0, 1, 2, \ldots \) and \(m = 1, 2, \ldots \).

Proof. We first of all prove equation (18). We have

\[
(m + 1)\langle x^{-1} \ln^m |x|, x^k \delta_n^{(r)}(x) \rangle = - \int_{-1/n}^{1/n} \ln^{m+1} |x|[x^k \delta_n^{(r)}(x)]' \, dx
\]

\[= -n^{-k+1} \int_{-1}^{1} \left[\ln |u| - \ln n \right]^{m+1} [u^k \rho^{(r)}(u)]' \, du
\]

on making the substitution \(nx = u \). It follows that

\[
N\lim_{n \to \infty} \langle x^{-1} \ln^m |x|, x^k \delta_n^{(r)}(x) \rangle = 0
\]

for \(k = 0, 1, 2, \ldots, r, \)

\[
N\lim_{n \to \infty} \langle x^{-1} \ln^m |x|, x^{r+1} \delta_n^{(r+1)}(x) \rangle = -(m + 1)^{-1} \int_{-1}^{1} \ln^{m+1} |u|[u^{r+1} \rho^{(r)}(u)]' \, du
\]

\[= \int_{-1}^{1} u^r \ln^m |u| \rho^{(r)}(u) \, du
\]

\[= 2c_{r,m}
\]

when \(k = r + 1 \) and

\[
N\lim_{n \to \infty} \langle x^{-1} \ln^m |x|, x^{r+1} \delta_n^{(r)}(x) \psi(x) \rangle = 0
\]

for any infinitely differentiable function \(\psi(x) \), when \(k = r + 2 \).

If now \(\varphi \) is an arbitrary function in \(D \), we have

\[
\varphi(x) = \sum_{k=0}^{r+1} \frac{\varphi^{(k)}(0)}{k!} x^k + \frac{\varphi^{(r+1)}(\xi x)}{(r+2)!} x^{r+2},
\]

where \(\xi \) is some constant in \((0, 1) \).
where \(0 < \xi < 1 \). It follows that

\[
\langle x^{-1} \ln^m |x|, \delta_n^{(r)}(x) \phi(x) \rangle = \sum_{k=0}^{r+1} \frac{\varphi^{(k)}(0)}{k!} \langle x^{-1} \ln^m |x|, x^k \delta_n^{(r)}(x) \rangle + \frac{1}{(r+2)!} \langle \ln^m |x|, x^{r+2} \delta_n^{(r+1)}(x), \varphi^{(r+2)}(\xi x) \rangle
\]

and it now follows from equations (20) to (22) that

\[
\text{N-lim}_{n \to \infty} \langle x^{-1} \ln^m |x|, \delta_n^{(r)}(x) \phi(x) \rangle = \frac{2c_{r,m}}{(r+1)!} \varphi^{(r+1)}(0) = \frac{2(-1)^{r+1} c_{r,m}}{(r+1)!} \delta^{(r+1)}(x), \phi(x),
\]

proving equation (18) for \(r = 0, 1, 2, \ldots \) and \(m = 1, 2, \ldots \).

Next, suppose that \((x^{-2} \ln^m |x|) \circ \delta^{(r)}(x) \) exists and

\[
(x^{-2} \ln^m |x|) \circ \delta^{(r)}(x) = c_{r,2m} \delta^{(r+2)}(x)
\]

for \(r = 0, 1, 2, \ldots \) and some \(m \). This is true when \(m = 0 \) with \(c_{r,2,0} = r!/(r+2)! \). Differentiating the equation

\[
(x^{-1} \ln^{m+1} |x|) \circ \delta^{(r)}(x) = \frac{2(-1)^{r+1} c_{r,m}}{(r+1)!} \delta^{(r+1)}(x)
\]

we get

\[
(x^{-1} \ln^{m+1} |x|) \circ \delta^{(r+1)}(x) - (x^{-2} \ln^{m+1} |x|) \circ \delta^{(r)}(x) + (m+1)(x^{-2} \ln^m |x|) \circ \delta^{(r)}(x) = \frac{2(-1)^{r+1} c_{r,m}}{(r+1)!} \delta^{(r+2)}(x)
\]

\[
= \frac{2(-1)^{r+2} c_{r+1,2m}}{(r+2)!} \delta^{(r+2)}(x) - (x^{-2} \ln^{m+1} |x|) \circ \delta^{(r)}(x)
\]

\[
+ (m+1) c_{r,2m} \delta^{(r+2)}(x)
\]

on using equation (18) and our assumption. This proves the existence of \((x^{-2} \ln^{m+1} |x|) \circ \delta^{(r)}(x) \) and

\[
(x^{-2} \ln^{m+1} |x|) \circ \delta^{(r)}(x) = c_{r,2m+1} \delta^{(r+2)}(x)
\]

with

\[
c_{r,2m+1} = \frac{2(-1)^r c_{r,m}}{(r+1)!} + \frac{2(-1)^r c_{r+1,m}}{(r+2)!} + (m+1) c_{r,2m}.
\]

Therefore \((x^{-2} \ln^{m+1} |x|) \circ \delta^{(r)}(x) \) exists and equation (23) follows by induction for \(r, m = 0, 1, 2, \ldots \).
We have therefore proved that
\[(x^{-i} \ln^m |x|) \circ \delta^{(r)}(x) = c_{r,i,m} \delta^{(r+i)}(x)\] (24)
for \(i = 1, 2\) and \(r, m = 0, 1, 2, \ldots\)

We can now prove similarly that
\[(x^{-3} \ln^m |x|) \circ \delta^{(r)}(x) = c_{r,3,m} \delta^{(r+3)}(x)\]
for \(r, m = 0, 1, 2, \ldots\) and so on.

In general, suppose that equation (24) holds for \(i = 1, 2, \ldots, s\) and some \(s\) and \(r, m = 0, 1, 2, \ldots\). This is true when \(s = 1\) or \(2\). Then suppose that \((x^{-s-1} \ln^m |x|) \circ \delta^{(r)}(x)\) exists and
\[(x^{-s-1} \ln^m |x|) \circ \delta^{(r)}(x) = c_{r,s+1,m} \delta^{(r+s+1)}(x),\] (25)
for \(r = 0, 1, 2, \ldots\) and some \(m\). This is true with
\[c_{r,s+1,0} = \frac{(-1)^{s+1} r!}{(r + s + 1)!},\]
when \(m = 0\). From our assumption on equation (24) with \(i = s\) and \(m + 1\) for \(m\), we have
\[(x^{-s} \ln^{m+1} |x|) \circ \delta^{(r)}(x) = c_{r,s,m+1} \delta^{(r+s)}(x).\] (26)

Differentiating equation (26), we have
\[(x^{-s} \ln^{m+1} |x|) \circ \delta^{(r+1)}(x) = x^{-s-1} \ln^{m+1} |x| \circ \delta^{(r)}(x) + (m + 1)(x^{-s-1} \ln^m |x|) \circ \delta^{(r)}(x)\]
\[= [c_{r+1,s,m+1} + (m + 1)c_{r,s+1,m}] \delta^{(r+s+1)}(x) - s(x^{-s-1} \ln^{m+1} |x|) \circ \delta^{(r)}(x)\]
\[= c_{r,s+1,m+1} \delta^{(r+s+1)}(x),\]
from our assumptions and it follows that
\[(x^{-s-1} \ln^{m+1} |x|) \circ \delta^{(r)}(x) = s^{-1}[c_{r+1,s,m+1} + (m + 1)c_{r,s+1,m} - c_{r,s,m+1}] \delta^{(r+s+1)}(x)\]
\[= c_{r,s+1,m+1} \delta^{(r+s+1)}(x).\]
Equation (25) therefore holds for \(m + 1\), with
\[c_{r,s+1,m+1} = s^{-1}[c_{r+1,s,m+1} + (m + 1)c_{r,s+1,m} - c_{r,s,m+1}],\]
and so follows by induction for \(r, m = 0, 1, 2, \ldots\). Then equation (24) holds for \(i = 1, 2, \ldots, s+1\). Equation (24) follows by induction for \(r, m = 0, 1, 2, \ldots\) and \(s = 1, 2, \ldots\). This completes the proof of the theorem. \(\square\)
Acknowledgement. The authors would like to thank the referee for his help in the improvement of this paper.

REFERENCES