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ON THE NON-COMMUTATIVE NEUTRIX PRODUCT OF
THE DISTRIBUTIONS δ(r)(x) AND x−s lnm |x|

BRIAN FISHER, INCI EGE AND EMIN ÖZÇAḠ

Abstract. It is proved that the non-commutative neutrix product of
the distributions δ(r)(x) and x−s lnm |x| exists and

δ(r)(x) ◦ x−s lnm |x| = 0

for r, m = 0, 1, 2, . . . and s = 1, 2, . . . .

In the following, we let D be the space of infinitely differentiable functions
with compact support and let D′ be the space of distributions defined on D.

We now let ρ be a function in D having the following properties:
(i) ρ(x) =0 for |x| ≥ 1,
(ii) ρ(x) ≥ 0,
(iii) ρ(x) = ρ(−x),

(iv)
∫ 1

−1
ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-
function δ(x).

If now f is an arbitrary distribution in D′, we define

fn(x) = (f ∗ δn)(x) = 〈f(t), δn(x− t)〉
for n = 1, 2, . . . . It follows that {fn(x)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(x).

A first extension of the product of a distribution and an infinitely differ-
entiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in D′ for which on the interval
(a, b), f is the k-th derivative of a locally summable function F in Lp(a, b)
and g(k) is a locally summable function in Lq(a, b) with 1/p+1/q = 1. Then
the product fg = gf of f and g is defined on the interval (a, b) by

fg =
k∑

i=0

(
k

i

)
(−1)i[Fg(i)](k−i).
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The distribution x−1 lnm |x| is defined by

x−1 lnm |x| = (lnm+1 |x|)′
m + 1

for m = 0, 1, 2, . . . . The distribution x−s is then defined by

x−s =
(−1)s(ln |x|)(s)

(s− 1)!

for s = 1, 2, . . . and the distribution x−s lnm |x| is then defined inductively
by the equation

(x−s+1 lnm |x|)′ = −(s− 1)x−s lnm |x|+ mx−s lnm−1 |x|
for s,m = 0, 1, 2, . . . .

It follows that

〈x−2s+1 lnm |x|, ϕ(x)〉 =
∫ ∞

0
x−2s+1 lnm x

[
ϕ(x)− ϕ(−x)

− 2
s−2∑

i=0

ϕ(2i+1)(0)
(2i + 1)!

x2i+1
]
dx,

〈x−2s lnm |x|, ϕ(x)〉 =
∫ ∞

0
x−2s lnm x

[
ϕ(x) + ϕ(−x)

− 2
s−1∑

i=0

ϕ(2i)(0)
(2i)!

x2i
]
dx

for s = 1, 2, . . . and m = 0, 1, 2, . . . , where ϕ is an arbitrary function in D,
see Gel’fand and Shilov [4].

The next definition for the non-commutative neutrix product of two dis-
tributions was given in [3] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D′ and let gn(x) = (g∗δn)(x).
We say that the neutrix product f ◦ g of f and g exists and is equal to the
distribution h on the interval (a, b) if

N−lim
n→∞

〈f(x)gn(x), ϕ(x)〉 = 〈h(x), ϕ(x)〉
for all functions ϕ in D with support contained in the interval (a, b), where N
is the neutrix, see van der Corput [1], having domain N ′ = {1, 2, . . . , n, . . .}
and range the real numbers, with negligible functions finite linear sums of
the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the normal sense as n tends to
infinity.
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It is obvious that if the product fg exists, then the neutrix product f ◦ g
exists and fg = f ◦ g.

The following theorem is easily proved.

Theorem 1. Let f and g be distributions in D′ and suppose that the neutrix
product f ◦ g′ (or f ′ ◦ g) exists. Then the neutrix product f ′ ◦ g (or f ◦ g′)
exists and

(f ◦ g)′ = f ◦ g′ + f ′ ◦ g. (1)

Using the neutrix product, the next theorem was proved in [3].

Theorem 2. The neutrix products δ(r)(x) ◦ x−s and x−s ◦ δ(r)(x) exist and

δ(r)(x) ◦ x−s = 0, (2)

x−s ◦ δ(r)(x) =
(−1)sr!
(r + s)!

δ(r+s)(x) (3)

for r = 0, 1, 2, . . . and s = 1, 2, . . . .

We first of all prove the following theorem.

Theorem 3. The neutrix product δ(r)(x) ◦ lnm |x| exists and

δ(r)(x) ◦ lnm |x| = 2cmδ(r)(x), (4)

for r = 0, 1, 2, . . . and m = 1, 2, . . . , where

cm =
∫ 1

0
lnm uδ(u) du

for m = 1, 2, . . . .

Proof. Putting

(lnm |x|)n = lnm |x| ∗ δn(x) =
∫ 1/n

−1/n
lnm |x− t|δn(t) dt,

we have

〈δ(r)(x), xk(lnm |x|)n〉 = (−1)r〈δ(x), [xk(lnm |x|)n](r)〉

= (−1)r
k∑

i=0

(
r

i

)
k!

(k − i)!
〈δ(x), xk−i[(lnm |x|)n](r−i)〉

= (−1)rk!
(

r

k

)∫ 1/n

−1/n
lnm |t|δ(r−k)

n (t) dt

= (−1)kk!nr−k

(
r

k

)∫ 1

−1
lnm |u/n|ρ(r−k)(u) du,
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for k = 0, 1, 2, . . . r − 1. It follows that

N−lim
n→∞

〈δ(r)(x), xk(lnm |x|)n〉 = 0, (5)

for k = 0, 1, 2, . . . , r − 1.
When k = r, we have

〈δ(r)(x), xr(lnm |x|)n〉 = (−1)rr!
∫ 1

−1
lnm |u/n|ρ(u) du

and it follows that

N−lim
n→∞

〈δ(r)(x), xr(lnm |x|)n〉 = (−1)rr!
∫ 1

−1
lnm |u|ρ(u) du = 2(−1)rr!cm.

(6)
When k = r+1, we have for an arbitrary infinitely differentiable function

ψ,

〈δ(r)(x), xr+1(lnm |x|)nψ(x)〉 = (−1)r〈δ(x), [xr+1(lnm |x|)nψ(x)](r)〉
= 0. (7)

If now ϕ is an arbitrary function in D, we have

ϕ(x) =
r∑

k=0

ϕ(k)(0)
k!

xk +
ϕ(r+1)(ξx)
(r + 1)!

xr+1,

where 0 < ξ < 1. It follows that

〈δ(r)(x)(lnm |x|)n, ϕ(x)〉 =
r∑

k=0

ϕ(k)(0)
k!

〈δ(r)(x), xk(lnm |x|)n〉

+
1

(r + 1)!
〈δ(r)(x), xr+1(lnm |x|)nϕ(r+1)(ξx)〉

and it now follows from equations (5) to (7) that

N−lim
n→∞

〈δ(r)(x)(lnm |x|)n, ϕ(x)〉 = 2(−1)rcmϕ(r)(0)

= 2cm〈δ(r)(x), ϕ(x)〉,
proving equation (4) for r = 0, 1, 2, . . . and m = 1, 2, . . . . This completes the
proof of the theorem. ¤

We now prove

Theorem 4. The neutrix product δ(r)(x) ◦ (x−s lnm |x|) exists and

δ(r)(x) ◦ (x−s lnm |x|) = 0, (8)

for r = 0, 1, 2, . . . and s,m = 1, 2, . . . .
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Proof. We first of all prove that

δ(r)(x) ◦ (x−1 lnm |x|) = 0 (9)

for r,m = 0, 1, 2, . . . .
Differentiating the equation

δ(r)(x) ◦ lnm+1 |x| = 2cm+1δ
(r)(x)

and using Theorem 3, we have

δ(r+1)(x) ◦ lnm+1 |x|+ (m + 1)δ(r)(x) ◦ (x−1 lnm |x|) = 2cm+1δ
(r+1)(x)

and equation (9) follows.
Next, suppose that δ(r)(x) ◦ (x−2 lnm |x|) exists and

δ(r)(x) ◦ (x−2 lnm |x|) = 0 (10)

for r = 0, 1, 2, . . . and some m. This is true when m = 0. Differentiating the
equation

δ(r)(x) ◦ (x−1 lnm+1 |x|) = 0

we get

δ(r+1)(x) ◦ (x−1 lnm+1 |x|)− δ(r)(x) ◦ (x−2 lnm+1 |x|) + (m + 1)δ(r)(x)

◦ (x−2 lnm |x|) = −δ(r)(x) ◦ (x−2 lnm+1 |x|) = 0

on using equation (9) and our assumption. Equation (10) follows by induc-
tion for r,m = 0, 1, 2, . . . .

We have therefore proved that

δ(r)(x) ◦ (x−i lnm |x|) = 0 (11)

for i = 1, 2 and r,m = 0, 1, 2, . . . .
We can now prove similarly that

δ(r)(x) ◦ (x−3 lnm |x|) = 0

for r,m = 0, 1, 2, . . . and so on.
In general, suppose that equation (11) holds for i = 1, 2, . . . , s and some

s and r,m = 0, 1, 2, . . . . This is true when s = 1 or 2. Then suppose that

δ(r)(x) ◦ (x−s−1 lnm |x|) = 0, (12)

for r = 0, 1, 2, . . . and some m. This is true when m = 0. From our assump-
tion on equation (11) with i = s and m + 1 for m, we have

δ(r)(x) ◦ (x−s lnm+1 |x|) = 0. (13)
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Differentiating equation (13), we have

δ(r+1)(x) ◦ (x−s lnm+1 |x|)− sδ(r)(x) ◦ (x−s−1 lnm+1 |x|)
+ (m + 1)δ(r)(x) ◦ (x−s−1 lnm |x|) = 0

and it follows from our assumptions that

δ(r)(x) ◦ (x−s−1 lnm+1 |x|) = 0.

Equation (12) follows by induction for r,m = 0, 1, 2, . . . . Equation (11)
therefore holds i = 1, 2, . . . , s + 1 and r,m = 0, 1, 2, . . . and so follows by
induction for r,m = 0, 1, 2, . . . and s = 1, 2, . . . . This completes the proof of
the theorem. ¤

In the next theorem we put

cr,m =
∫ 1

0
ur lnm uρ(r)(u) du

for r = 0, 1, 2, . . . and m = 1, 2, . . . .
Integrating by parts, we have

cr,m = −
∫ 1

0
[mur−1 lnm−1 u + rur−1 lnm u]ρ(r−1)(u) du

= −mcr−1,m−1 − rcr−1,m,

c1,m = −mc0,m−1 − c0,m,

= −mcm−1 − cm.

It follows by induction that

cr,m = −(−1)rr!cm −mr!
r∑

i=1

(−1)icr−i,m−1

(r − i + 1)!

= (−1)rr!cm + (−1)rmr!cm−1 + mr!
r−1∑

i=1

(−1)icr−i,m−1

(r − i + 1)!

and so each cr,m can be expressed as a linear sum of c1, c2, . . . , cm for r,m =
1, 2, . . . .

Theorem 5. The neutrix product lnm |x| ◦ δ(r)(x) exists and

lnm |x| ◦ δ(r)(x) =
2(−1)rcr,m

r!
δ(r)(x) (14)

for r = 0, 1, 2, . . . and m = 1, 2, . . . .
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Proof. We have

〈lnm |x|, xkδ(r)
n (x)〉 =

∫ 1/n

−1/n
lnm |x|xkδ(r)

n (x) dx

= nr−k

∫ 1

−1
lnm |u/n|ukρ(r)(u) du

for k = 0, 1, 2, . . . . It follows that

N−lim
n→∞

〈lnm |x|, xkδ(r)
n (x)〉 = 0, (15)

for k = 0, 1, 2, . . . , r − 1.
When k = r, we have

〈lnm |x|, xrδ(r)
n (x)〉 =

∫ 1

−1
ur lnm |u/n|ρ(r)(u) du

and it follows that

N−lim
n→∞

〈lnm |x|, xrδ(r)
n (x)〉 =

∫ 1

−1
ur lnm |u|ρ(r)(u) du = 2cr,m. (16)

When k = r+1, we have for an arbitrary infinitely differentiable function
ψ,

〈lnm |x|, xr+1δ(r)
n (x)ψ(x)〉 = n−1

∫ 1

−1
ur+1 lnm |u/n|ρ(r)(u)ψ(u/n) du

= O(n−1 lnm n). (17)

If now ϕ is an arbitrary function in D, we have

ϕ(x) =
r∑

k=0

ϕ(k)(0)
k!

xk +
ϕ(r+1)(ξx)
(r + 1)!

xr+1,

where 0 < ξ < 1. It follows that

〈lnm |x|, δ(r)
n (x)ϕ(x)〉 =

r∑

k=0

ϕ(k)(0)
k!

〈lnm |x|, xkδ(r)
n (x)〉

+
1

(r + 1)!
〈lnm |x|, xr+1δ(r)

n (x), ϕ(r+1)(ξx)〉

and it now follows from equations (15) to (17) that

N−lim
n→∞

〈lnm |x|, δ(r)
n (x)ϕ(x)〉 =

2cr,m

r!
ϕ(r)(0)

=
2(−1)rcr,m

r!
〈δ(r)(x), ϕ(x)〉,
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proving equation (14) for r = 0, 1, 2, . . . and m = 1, 2, . . . . This completes
the proof of the theorem. ¤

We finally prove the following generalization of equation (3).

Theorem 6. The neutrix product (x−s lnm |x|)◦δ(r)(x) exists for r = 0, 1, . . .
and s,m = 1, 2, . . . .

In particular,

(x−1 lnm |x|) ◦ δ(r)(x) =
2(−1)r+1cr,m

(r + 1)!
δ(r+1)(x) (18)

for r = 0, 1, 2, . . . and m = 1, 2, . . . .

Proof. We first of all prove equation (18). We have

(m + 1)〈x−1 lnm |x|, xkδ(r)
n (x)〉 = −

∫ 1/n

−1/n
lnm+1 |x|[xkδ(r)

n (x)]′ dx

= −nr−k+1

∫ 1

−1
[ln |u| − ln n]m+1[ukρ(r)(u)]′ du (19)

on making the substitution nx = u. It follows that

N−lim
n→∞

〈x−1 lnm |x|, xkδ(r)
n (x)〉 = 0 (20)

for k = 0, 1, 2, . . . , r,

N−lim
n→∞

〈x−1 lnm |x|, xr+1δ(r+1)
n (x)〉=−(m + 1)−1

∫ 1

−1
lnm+1 |u|[ur+1ρ(r)(u)]′ du

=
∫ 1

−1
ur lnm |u|ρ(r)(u) du

= 2cr,m (21)

when k = r + 1 and

N−lim
n→∞

〈x−1 lnm |x|, xr+1δ(r)
n (x)ψ(x)〉 = 0 (22)

for any infinitely differentiable function ψ(x), when k = r + 2.
If now ϕ is an arbitrary function in D, we have

ϕ(x) =
r+1∑

k=0

ϕ(k)(0)
k!

xk +
ϕ(r+1)(ξx)
(r + 2)!

xr+2,
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where 0 < ξ < 1. It follows that

〈x−1 lnm |x|, δ(r)
n (x)ϕ(x)〉 =

r+1∑

k=0

ϕ(k)(0)
k!

〈x−1 lnm |x|, xkδ(r)
n (x)〉

+
1

(r + 2)!
〈lnm |x|, xr+2δ(r+1)

n (x), ϕ(r+2)(ξx)〉

and it now follows from equations (20) to (22) that

N−lim
n→∞

〈x−1 lnm |x|, δ(r)
n (x)ϕ(x)〉 =

2cr,m

(r + 1)!
ϕ(r+1)(0)

=
2(−1)r+1cr,m

(r + 1)!
〈δ(r+1)(x), ϕ(x)〉,

proving equation (18) for r = 0, 1, 2, . . . and m = 1, 2, . . . .

Next, suppose that (x−2 lnm |x|) ◦ δ(r)(x) exists and

(x−2 lnm |x|) ◦ δ(r)(x) = cr,2,mδ(r+2)(x) (23)

for r = 0, 1, 2, . . . and some m. This is true when m = 0 with cr,2,0 =
r!/(r + 2)!. Differentiating the equation

(x−1 lnm+1 |x|) ◦ δ(r)(x) =
2(−1)r+1cr,m

(r + 1)!
δ(r+1)(x)

we get

(x−1 lnm+1 |x|) ◦ δ(r+1)(x)− (x−2 lnm+1 |x|) ◦ δ(r)(x)

+ (m + 1)(x−2 lnm |x|) ◦ δ(r)(x) =
2(−1)r+1cr,m

(r + 1)!
δ(r+2)(x)

=
2(−1)r+2cr+1,m

(r + 2)!
δ(r+2)(x)− (x−2 lnm+1 |x|) ◦ δ(r)(x)

+ (m + 1)cr,2,mδ(r+2)(x)

on using equation (18) and our assumption. This proves the existence of
(x−2 lnm+1 |x|) ◦ δ(r)(x) and

(x−2 lnm+1 |x|) ◦ δ(r)(x) = cr,2,m+1δ
(r+2)(x)

with

cr,2,m+1 =
2(−1)rcr,m

(r + 1)!
+

2(−1)rcr+1,m

(r + 2)!
+ (m + 1)cr,2,m.

Therefore (x−2 lnm+1 |x|)◦ δ(r)(x) exists and equation (23) follows by induc-
tion for r,m = 0, 1, 2, . . . .
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We have therefore proved that

(x−i lnm |x|) ◦ δ(r)(x) = cr,i,mδ(r+i)(x) (24)

for i = 1, 2 and r,m = 0, 1, 2, . . . .
We can now prove similarly that

(x−3 lnm |x|) ◦ δ(r)(x) = cr,3,mδ(r+3)(x)

for r,m = 0, 1, 2, . . . and so on.
In general, suppose that equation (24) holds for i = 1, 2, . . . , s and some

s and r,m = 0, 1, 2, . . . . This is true when s = 1 or 2. Then suppose that
(x−s−1 lnm |x|) ◦ δ(r)(x) exists and

(x−s−1 lnm |x|) ◦ δ(r)(x) = cr,s+1,mδ(r+s+1)(x), (25)

for r = 0, 1, 2, . . . and some m. This is true with

cr,s+1,0 =
(−1)s+1r!

(r + s + 1)!
,

when m = 0. From our assumption on equation (24) with i = s and m + 1
for m, we have

(x−s lnm+1 |x|) ◦ δ(r)(x) = cr,s,m+1δ
(r+s)(x). (26)

Differentiating equation (26), we have

(x−s lnm+1 |x|) ◦ δ(r+1)(x)− s(x−s−1 lnm+1 |x|) ◦ δ(r)(x)

+ (m + 1)(x−s−1 lnm |x|) ◦ δ(r)(x)

= [cr+1,s,m+1 + (m + 1)cr,s+1,m]δ(r+s+1)(x)− s(x−s−1 lnm+1 |x|) ◦ δ(r)(x)

= cr,s,m+1δ
(r+s+1)(x),

from our assumptions and it follows that

(x−s−1 lnm+1 |x|) ◦ δ(r)(x) = s−1[cr+1,s,m+1 + (m + 1)cr,s+1,m

− cr,s,m+1]δ(r+s+1)(x)

= cr,s+1,m+1δ
(r+s+1)(x).

Equation (25) therefore holds for m + 1, with

cr,s+1,m+1 = s−1[cr+1,s,m+1 + (m + 1)cr,s+1,m − cr,s+1,m],

and so follows by induction for r,m = 0, 1, 2, . . . . Then equation (24) holds
for i = 1, 2, . . . , s+1. Equation (24) follows by induction for r,m = 0, 1, 2, . . .
and s = 1, 2, . . . . This completes the proof of the theorem. ¤
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