ON THE NON-EXISTENCE OF CERTAIN TYPES OF WEAKLY SYMMETRIC MANIFOLD

AMALENDU GHOSH

Abstract. An expression for the curvature tensor of a weakly symmetric manifold is obtained. Next it is shown that an Einstein weakly symmetric manifold of dimension > 2 does not exist. Further it is proved that a conformally flat weakly symmetric manifold of dimension > 3 is a quasi Einstein manifold. Finally a couple of results on conformally flat weakly symmetric manifold are presented.

1. Introduction

In [1] Chaki introduces a type of non-flat Riemannian manifold (M^n, g) $(n \geq 2)$ whose curvature tensor R satisfies the condition

$$\nabla_X R(Y, Z)W = 2A(X)R(Y, Z)W + A(Y)R(X, Z)W + A(Z)R(Y, X)W + A(W)R(Y, Z)X + g[R(Y, Z)W, X] \rho$$ (1.1)

where A is a non zero 1-form defined by $g(X, \rho) = A(X)$ for any vector field X and ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. Such a manifold is called a pseudo symmetric manifold and is denoted by $(PS)_n$. Generalizing the notion of $(PS)_n$, the authors in [7] introduce a non flat Riemannian manifold $(M^n, g), (n \geq 2)$ whose curvature tensor satisfies the condition

where A, B, D and E are 1-forms and μ is a vector field associated to a certain 1-form. Such a manifold is called weakly symmetric manifold and is denoted by $(WS)_n$. Recently in [5] and [6] it has been shown that the

2000 Mathematics Subject Classification. 53B35, 53B05.

Key words and phrases. Weakly symmetric manifold, quasi Einstein manifold, conformally flat Riemannian manifold.
defining condition (1.2) of a \((WS)_n \) can always be expressed in the following form:

\[
g((\nabla \nabla R)(Y, Z)W, U) = A(X)g(R(Y, Z)W, U) + B(Y)g(R(X, Z)W, U) \\
+ B(Z)g(R(Y, X)W, U) + E(W)g(R(Y, Z)X, U) + E(U)g(R(Y, Z)W, X). \\
(1.3)
\]

It may be mentioned in this connection that although the definition of a \((WS)_n \) is similar to that of a generalized pseudo symmetric space studied by Chaki [2], the defining condition of a \((WS)_n \) is weaker than that of a generalized pseudo symmetric space. A reduction in generalized pseudo symmetric space has been obtained in [4] and a reduction in \((WS)_n \) is obtained in [5] and [6]. In this paper we have studied a weakly symmetric manifold whose defining condition satisfies (1.3). In the study of \((WS)_n \) an important role is played by the 1-form \(\delta \) defined by

\[
g(X, \nu) = \delta(X) = A(X) - 2B(X) \neq 0. \\
(1.4)
\]

It is shown that if \(\delta \neq 0 \), then the curvature tensor of a \((WS)_n \) is determined by the Ricci tensor \(S \) and the non-zero 1-form \(T \) associated to a unit vector field \(\alpha \) defined by

\[
T(X) = g(X, \alpha) = \frac{\delta(X)}{\sqrt{\delta(\nu)}}. \\
(1.5)
\]

Next we have considered an Einstein \((WS)_n \), and have shown that such manifold does not exist. In the last section we have studied conformally flat \((WS)_n \). First we have proved that a conformally flat \((WS)_n \) is a quasi Einstein (see[3]). Further it is shown that a conformally flat \((WS)_n \) does not exist if either its scalar curvature is constant or the unit vector field \(\alpha \) (defined above) is geodesic.

2. Preliminaries

Let \(S \) and \(r \) denote the Ricci tensor of type \((0,2)\) and the scalar curvature respectively and \(Q \) denote the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor, i.e.

\[
S(X, Y) = g(QX, Y). \\
(2.1)
\]

Let the vector fields \(\rho, \lambda \) and \(\mu \) associated to the 1-forms \(A, B \) and \(E \) be defined by

\[
g(X, \rho) = A(X) \\
g(X, \lambda) = B(X) \\
g(X, \mu) = E(X) \\
(2.4)
\]
for all $X \in M$. Contracting (1.3) at Z, W and writing Z in place of U we get

$$
(\nabla_X S)(Y, Z) = A(X)S(Y, Z) + B(Y)S(X, Z) \\
+ B(R(X, Y)Z) + E(R(X, Z)Y) + E(Z)S(X, Y). \tag{2.5}
$$

Permuting cyclically (1.3) twice over X, Y, Z and adding these permuted equations with (1.3) we obtain

$$
\begin{align*}
[A(X) - 2B(X)]g(R(Y, Z)W, U) + [A(Y) - 2B(Y)]g(R(Z, X)W, U) \\
+ [A(Z) - 2B(Z)]g(R(X, Y)W, U) &= 0. \tag{2.6}
\end{align*}
$$

Contracting at Z and W and writing Z in place of U, (2.6) reduces to

$$
\begin{align*}
A(R(X, Y)Z) - 2B(R(X, Y)Z) &= [A(X) - 2B(X)]S(Y, Z) \\
- [A(Y) - 2B(Y)]S(X, Z). \tag{2.7}
\end{align*}
$$

Further contracting (2.7) over Y and Z we get

$$
S(X, \rho) - 2S(X, \lambda) = \frac{r}{2}[A(X) - 2B(X)]. \tag{2.8}
$$

As $(\nabla_X S)(Y, Z) = (\nabla_X S)(Z, Y)$ equation (2.2) provides

$$
\begin{align*}
B(R(X, Y)Z) - E(R(X, Y)Z) &= [B(X) - E(X)]S(Y, Z) \\
- [B(Y) - E(Y)]S(X, Z). \tag{2.9}
\end{align*}
$$

Contracting (2.9) over Y and Z yields

$$
S(X, \lambda) - S(X, \mu) = \frac{r}{2}[B(X) - E(X)]. \tag{2.10}
$$

An example of weakly symmetric manifold exists. For instance the metric g in the coordinate space $R^n (n \geq 4)$ defined by the formula

$$
ds^2 = \varphi(dx^1)^2 + K_{ab}dx^a dx^b + 2dx^1 dx^n; \quad a, b = 2, 3, \ldots (n-1)
$$

where K_{ab} is a symmetric, non-singular matrix consisting of constants and φ is independent of x^n is a weakly symmetric manifold. For details we refer to [5]. Now we give the definition of Weyl conformal curvature tensor. The Weyl conformal curvature tensor C on an n-dimensional ($n > 3$) Riemannian manifold is defined by (see [8])

$$
C(X, Y)Z = R(X, Y)Z - \frac{1}{(n-1)}\{S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX \\
- g(X, Z)QY\} + \frac{r}{(n-1)(n-2)}\{g(Y, Z)X - g(X, Z)Y\}. \tag{2.11}
$$
For dimension \((n > 3)\), conformal flatness implies \(C = 0\). Moreover for dimension \((n > 3)\), the condition \(C = 0\) implies \(\text{div } C = 0\), which is equivalent to
\[
(\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z) = \frac{1}{2(n - 1)} \{(X.r)g(Y, Z) - (Y.r)g(X, Z)\}.
\]
\[(2.12)\]

\[3.\] Curvature tensor of \((WS)_n\)

In this article we have obtained an expression of the curvature tensor of a \((WS)_n\) which we have shown in the following theorem.

Theorem 1. The curvature tensor of a \((WS)_n\) can be expressed as
\[
g(R(X, Y)W, U) = T(Y)[T(W)S(X, U) - T(U)S(X, W)] - T(X)[T(W)S(Y, U) - T(U)S(Y, W)]. \tag{3.1}
\]

Proof. Since by (1.4) \(\delta(X) \neq 0\), (2.7) assumes the form
\[
\delta(R(X, Y)Z) = \delta(X)S(Y, Z) - \delta(Y)S(X, Z). \tag{3.2}
\]
Contracting (3.1) over \(Y\) and \(Z\) we get
\[
S(X, \nu) = \frac{r}{2} \delta(X). \tag{3.3}
\]
This shows that \(\frac{r}{2}\) is an eigenvalue of the Ricci tensor \(S\) corresponding to the eigen vector \(\nu\). Further through (1.4), (2.6) can be written as
\[
\delta(X)g(R(Y, Z)W, U) + \delta(Y)g(R(Z, X)W, U) + \delta(Z)g(R(X, Y)W, U) = 0. \tag{3.4}
\]
Setting \(Z = \nu\) in (3.3) and using (3.1), (1.5) we get
\[
g(R(X, Y)W, U) = T(Y)[T(W)S(X, U) - T(U)S(X, W)] - T(X)[T(W)S(Y, U) - T(U)S(Y, W)]. \tag{3.5}
\]
\[
\Box
\]

\[4.\] **Einstein** \((WS)_n\)

In this section we have considered Einstein \((WS)_n\) and prove the following

Theorem 2. An Einstein \((WS)_n\), \((n > 2)\) does not exist.

Proof. By hypothesis
\[
S(X, Y) = \frac{r}{n} g(X, Y). \tag{4.1}
\]
Using this in (2.8) and (2.10) respectively, we get
\[
r[A(X) - 2B(X)] = 0, \quad r[B(X) - E(X)] = 0. \tag{4.2}
\]
If \(r = 0 \), then by (4.1) we see that \(S = 0 \) and hence by the Theorem 1, \(R = 0 \) which is inadmissible by definition. So we assume \(r \neq 0 \) in some open neighborhood \(N \) of \((WS)_{n}\). Thus from (4.2) we see that
\[
A(X) = 2B(X) \quad \text{and} \quad E(X) = B(X), \quad \text{for all} \quad X \in (WS)_{n}.
\]
Using these, (1.4) takes the form
\[
g((\nabla X)R(Y,Z)W,U) = 2B(X)g(R(Y,Z)W,U) + B(Y)g(R(X,Z)W,X) \\
+ B(Z)g(R(Y,X)W,U) + B(W)g(R(Y,Z)X,U) \\
+ B(U)g(R(Y,Z)W,X).
\]
(4.3)
This shows that \(N \) is a \((PS)_{n}\) with \(B \) as its associated 1-form. Contracting (4.3) over \(Z \) and \(W \) we get
\[
(\nabla X)S(Y,U) = 2B(X)S(Y,U) + B(Y)S(X,U) \\
+ B(U)S(X,Y) + B(R(X,Y)U) + B(R(X,U)Y).
\]
Further contracting over \(Y \) and \(U \) the last equation reduces to
\[
X.r = 2rB(X) + 4S(X,\lambda).
\]
(4.4)
Now since \(N \) is Einstein the scalar curvature \(r \) is constant and hence (4.4) shows that \(rB(X) = 0 \). But by the definition of a \((PS)_{n}\) (see[1]) the 1-form \(B \) is non-zero and hence \(r = 0 \). Consequently we arrive at a contradiction. □

5. Conformally flat \((WS)_{n}\)

The notion of a quasi Einstein manifold was introduced by Chaki and Maity in [3]. According to them a non-flat Riemannian manifold \((M^n,g)\) \((n \geq 3)\) is said to be a quasi Einstein manifold if there exists a non zero 1-form associated to a unit vector field such that its Ricci tensor is not identically zero and satisfies the condition
\[
S(X,Y) = ag(X,Y) + bp(X)p(Y)
\]
where \(a,b\) are scalars and \(b \neq 0\).

In this section we prove the following theorems:

Theorem 3. A conformally flat \((WS)_{n}\) \((n > 3)\) with \(\delta \neq 0\) is a quasi Einstein manifold of non zero scalar curvature.

Theorem 4. A conformally flat \((WS)_{n}\) \((n > 3)\) with \(\delta \neq 0\) does not exist if the scalar curvature is constant.

Theorem 5. A conformally flat \((WS)_{n}\) \((n > 3)\) with \(\delta \neq 0\) does not exist if the vector field \(\alpha\) defined by (1.5) is geodesic.
Proof of Theorem 3. As $C=0$, we have by (2.11)

$$g(R(X, Y)Z, W) = \frac{1}{(n-2)} \{S(Y, Z)g(X, W) - S(X, Z)g(Y, W) + S(X, W)g(Y, Z) - S(Y, W)g(X, Z)\}$$

$$- \frac{r}{(n-2)(n-1)} \{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)\}. \tag{5.1}$$

Setting $W = \rho$ and $W = \lambda$ in (5.1) respectively we get

$$A(R(X, Y)Z) = \frac{1}{(n-2)} \{A(X)S(Y, Z) - A(Y)S(X, Z) + S(X, \rho)g(Y, Z) - S(Y, \rho)g(X, Z)\}$$

$$- \frac{r}{(n-1)(n-2)} \{A(X)g(Y, Z) - A(Y)g(X, Z)\} \tag{5.2}$$

and

$$B(R(X, Y)Z) = \frac{1}{(n-2)} \{B(X)S(Y, Z) - B(Y)S(X, Z) + S(X, \lambda)g(Y, Z) - S(Y, \lambda)g(X, Z)\}$$

$$- \frac{r}{(n-1)(n-2)} \{B(X)g(Y, Z) - B(Y)g(X, Z)\}. \tag{5.3}$$

Taking into account (5.2), (5.3) and (2.7) we obtain

$$(n - 3)\{[A(X) - 2B(X)]S(Y, Z) - [A(Y) - 2B(Y)]S(X, Z)\} =$$

$$[S(X, \rho) - 2S(X, \lambda)]g(Y, Z) - [S(Y, \rho) - 2S(Y, \lambda)]g(X, Z)$$

$$- \frac{r}{(n-1)} \{A(X) - 2B(X)\}g(Y, Z) + \frac{r}{(n-1)} \{A(Y) - 2B(Y)\}g(X, Z). \tag{5.4}$$

Recalling (2.8) and since $(n > 3)$, (5.4) provides

$$[A(X) - 2B(X)][S(Y, Z) - \frac{r}{2(n-1)} g(Y, Z)]$$

$$- [A(Y) - 2B(Y)][S(X, Z) - \frac{r}{2(n-1)} g(X, Z)] = 0. \tag{5.5}$$

Since $\delta(X) = A(X) - 2B(X) \neq 0$, (5.5) can be written as

$$\delta(X)[S(Y, Z) - \frac{r}{2(n-1)} g(Y, Z)]$$

$$- \delta(Y)[S(X, Z) - \frac{r}{2(n-1)} g(X, Z)] = 0. \tag{5.6}$$

Putting $X = \nu$ in (5.6) and using (3.2) we get

$$S(Y, Z) = \frac{r}{2(n-1)}g(Y, Z) + \frac{(n-2)r}{2(n-1)}T(Y)T(Z) \tag{5.7}$$
where $T(X) = g(X, \alpha)$ and α is unit. This shows that the manifold is quasi Einstein. If possible, let $r = 0$, then from (5.7) we see that $S = 0$ and hence by Theorem 1, $R = 0$, which is inadmissible by the definition. □

Proof of Theorem 4. Differentiating covariantly (5.7) along an arbitrary vector field X, we get

$$(\nabla_X S)(Y, Z) = \frac{(X.r)}{2(n-1)} \{ g(Y, Z) + (n-2)T(Y)T(Z) \} + \frac{(n-2)r}{2(n-1)} \{ T(Z)(\nabla_X T)Y + T(Y)(\nabla_X T)Z \}. \quad (5.8)$$

Since $C = 0$, $\text{div} \ C = 0$ and hence using (5.8) in (2.12) we obtain

$$\{(X.r)T(Y)T(Z) - (Y.r)T(X)T(Z)\} + r[T(Z) \{ (\nabla_X T)Y - (\nabla_Y T)X \} + T(Y)(\nabla_X T)Z - T(X)(\nabla_Y T)Z] = 0. \quad (5.9)$$

Putting $Y = Z = e_i$ in (5.9) and summing over i, $1 \leq i \leq n$, we find

$$[(X.r) - (\alpha.r)] - r[\nabla_\alpha X + T(X)(\nabla_{e_i} T)e_i] = 0. \quad (5.10)$$

Setting $X = \alpha$ in (5.10) and since α is unit, we have

$$r(\nabla_{e_i} T)e_i = 0. \quad (5.11)$$

Thus in view of (5.11), (5.10) assumes the form

$$r(\nabla_{\alpha} T)X = (X.r) - (\alpha.r)T(X). \quad (5.12)$$

Further taking $Y = \alpha$ in (5.9) and recalling (5.12) we at once obtain

$$r(\nabla_X T)Z = (Z.r)T(X) - (\alpha.r)T(X)T(Z). \quad (5.13)$$

Now we assume that r is constant. If $r = 0$ the manifold becomes flat. So we assume that r is non-zero in some open neighborhood N of $(WS)_n$. Hence on N, r is a non-zero constant. Thus from (5.13) we see that $\nabla_X \alpha = 0$, which implies that $R(X, Y)\alpha = 0$ and we obtain $S(X, \alpha) = 0$. By using this in (5.7) it shows that $r = 0$, and consequently it follows that N becomes flat. Therefore we arrive at a contradiction. □

Proof of Theorem 5. By hypothesis the unit vector field α is geodesic i.e. $\nabla_\alpha \alpha = 0$. Hence by (5.12) we have

$$X.r = (\alpha.r)T(X). \quad (5.14)$$

Therefore taking into account (5.14) and (5.13) we see that

$$r(\nabla_X T)Z = 0. \quad (5.15)$$

If $r = 0$, then the manifold becomes flat and which is inadmissible by definition. So we assume that $r \neq 0$ in a neighborhood N of $(WS)_n$. Thus (5.15)
shows that $\nabla_X \alpha = 0$ and as before it follows that $r = 0$ in N, which is a contradiction. □

Acknowledgement. The author expresses his gratitude to the referee for his valuable comments.

References

(Received: February 11, 2006) Shambazar A.V. School
(Revised: April 14, 2006) 88. Shambazar Street
Kolkata-700 005
India
E-mail: aghosh_70@yahoo.com