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ON THE NON-EXISTENCE OF CERTAIN TYPES OF
WEAKLY SYMMETRIC MANIFOLD

AMALENDU GHOSH

ABSTRACT. An expression for the curvature tensor of a weakly sym-
metric manifold is obtained. Next it is shown that an Einstein weakly
symmetric manifold of dimension > 2 does not exist. Further it is proved
that a conformally flat weakly symmetric manifold of dimension > 3 is a
quasi Einstein manifold. Finally a couple of results on conformally flat
weakly symmetric manifold are presented.

1. INTRODUCTION

In [1] Chaki introduces a type of non-flat Riemannian manifold (M™, g)
(n > 2) whose curvature tensor R satisfies the condition

VxR)(Y, Z)W = 2A(X)R(Y, Z)W + A(Y)R(X, Z)W + A(Z)R(Y, X)W
+ A(W)R(Y, Z)X + g[R(Y. Z)W, X]p (L.1)

where A is a non zero 1-form defined by ¢g(X, p) = A(X) for any vector field
X and V denotes the operator of covariant differentiation with respect to the
metric tensor g. Such a manifold is called a pseudo symmetric manifold and
is denoted by (PS);,. Generalizing the notion of (PS),, the authors in [7]
introduce a non flat Riemannian manifold (M", g), (n > 2) whose curvature
tensor satisfies the condition

(VxR)(Y,Z2)W = A(X)R(Y,Z)W + B(Y)R(X, Z)W + D(Z)R(Y, X)W
+ B(W)R(Y, Z)X + g[R(Y, )W, X}u (1.2)
where A, B, D and E are 1-forms and p is a vector field associated to a

certain 1-form. Such a manifold is called weakly symmetric manifold and
is denoted by (WS),. Recently in [5] and [6] it has been shown that the
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defining condition (1.2) of a (W.S),, can always be expressed in the following
form:

9g(VxR)(Y, Z)W,U) = A(X)g(R(Y, Z)W,U) + B(Y)g(R(X, Z)W,U)

+ B(Z)g(R(Y, X)W, U) + E(W)g(R(Y, Z)X,U) + E(U)g(R(Y, Z)W, X).
(1.3)

It may be mentioned in this connection that although the definition of a
(WS),, is similar to that of a generalized pseudo symmetric space studied by
Chaki [2], the defining condition of a (W.S),, is weaker than that of a general-
ized pseudo symmetric space. A reduction in generalized pseudo symmetric
space has been obtained in [4] and a reduction in (W.S),is obtained in [5]
and [6]. In this paper we have studied a weakly symmetric manifold whose
defining condition satisfies (1.3). In the study of (W), an important role
is played by the 1-form § defined by

g(X,v) = 8(X) = A(X) — 2B(X) #£ 0. (1.4)

It is shown that if § # 0, then the curvature tensor of a (W), is deter-
mined by the Ricci tensor S and the non-zero 1-form T associated to a unit
vector field a defined by

6(X)
5(v)
Next we have considered an Einstein (W.S),, and have shown that such
manifold does not exist. In the last section we have studied conformally
flat (W.S),,. First we have proved that a conformally flat (W.S),, is a quasi
Einstein (see[3]). Further it is shown that a conformally flat (WS),, does

not exist if either its scalar curvature is constant or the unit vector field «
(defined above) is geodesic.

T(X) =g(X,a) =

(1.5)

2. PRELIMINARIES

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature
respectively and () denote the symmetric endomorphism of the tangent space
at each point corresponding to the Ricci tensor, i.e.

S(X,Y) = g(QX,Y). (2.1)

Let the vector fields p, A and p associated to the 1-forms A, B and E be
defined by

9(X,p) = A(X )
g(X,\) = B(X
9(X,p) = E(X)
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for all X € M. Contracting (1.3) at Z, W and writing Z in place of U we
get,

(VxS)(Y, Z) = A(X)S(Y, Z) + B(Y)S(X, Z)
+ B(R(X,Y)Z) + E(R(X,Z)Y) + E(Z)S(X,Y). (2.5)

Permuting cyclically (1.3) twice over X,Y,Z and adding these permuted
equations with (1.3) we obtain

[A(X) = 2B(X)]g(R(Y, Z)W,U) + [A(Y) = 2B(Y)]g(R(Z, X)W, U)
+[A(Z) -2B(Z)]g(R(X,Y)W,U) =0. (2.6)
Contracting at Z and W and writing Z in place of U, (2.6) reduces to
AR(X,Y)Z) — 2B(R(X,Y)Z) = [A(X) — 2B(X)]|S(Y, Z)
—[A(Y) = 2B(Y)]|S(X, Z). (2.7)
Further contracting (2.7) over Y and Z we get
S(X,p) =25(X, ) = [ (X) = 2B(X)]. (2.8)
As (VxS)(Y,Z) = (VxS)(Z,Y) equation (2.2) provides
B(R(X,Y)Z) - E(R(X,Y)Z) = [B(X) - E(X)]S(Y,2)
—[B(Y) - E(Y)]5(X, Z)). (29)
Contracting (2.9) over Y and Z yields

g[B(X) — E(X). (2.10)

An example of weakly symmetric manifold exists. For instance the metric
g in the coordinate space R™(n > 4) defined by the formula

ds® = p(dz')? + Kypdx®da® + 2datdz™; a,b=2,3,...(n—1)

S(X,\) — S(X, ) =

where K, is a symmetric, non-singular matrix consisting of constants and
 is independent of ™ is a weakly symmetric manifold. For details we refer
to [5]. Now we give the definition of Weyl conformal curvature tensor. The
Weyl conformal curvature tensor C on an n-dimensional (n > 3) Riemannian

manifold is defined by (see [8])

b
(n—1)

(n—1)(n—2)

C(X,Y)Z=R(X,Y)Z — {S(Y,2)X — 5(X,Z)Y +g(Y, Z)QX

9(X, 2)QY} + {9(V,2)X —g(X,2)Y}. (2.11)
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For dimension (n > 3), conformal flatness implies C' = 0. Moreover for di-
mension (n > 3), the condition C' = 0 implies div C' = 0, which is equivalent
to

(VxS)(Y.2) — (VyS)(X, Z) =

2(n—1)

{(Xr)g(Y,Z) — (Yor)g(X, Z)}.
(2.12)

3. CURVATURE TENSOR OF (WS),

In this article we have obtained an expression of the curvature tensor of
a (WS),, which we have shown in the following theorem.

Theorem 1. The curvature tensor of a (WS)y, can be expressed as
g(R(X, Y)W, U) =T(Y)[T(W)S(X,U) = T(U)S(X, W)]
—T(X)[TW)SY,U) =TU)SY, W)l (3.1)
Proof. Since by (1.4) 6(X) # 0, (2.7) assumes the form

S(R(X,Y)Z)=46(X)S(Y,Z) - 6(Y)S(X, Z2). (3.2)
Contracting (3.1) over Y and Z we get
S(X,v) = gé(X). (3.3)

This shows that § is an eigenvalue of the Ricci tensor S corresponding to
the eigen vector v. Further through (1.4), (2.6) can be written as

S(X)g(R(Y, Z)W,U) + 6(Y)g(R(Z, X)W, U) + 6(Z)g(R(X,Y)W,U) = 0.
(3.4)
Setting Z = v in (3.3) and using (3.1), (1.5) we get

g(R(X, Y)W, U) =T(Y)[T(W)S(X,U) = T(U)S(X, W)]
—TX)ITW)SY,U) -TU)SY, W)l (3.5)
O
4. EINSTEIN (W.S),,
In this section we have considered Einstein (WWS),, and prove the following
Theorem 2. An Einstein (W.S),, (n > 2) does not exist.

Proof. By hypothesis
S(X,Y) = %g(X, Y). (4.1)
Using this in (2.8) and (2.10) respectively, we get
rl[A(X) —2B(X)] =0, r[B(X)—- E(X)]=0. (4.2)
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If r = 0, then by (4.1) we see that S = 0 and hence by the Theorem 1,
R = 0 which is inadmissible by definition. So we assume r # 0 in some open
neighborhood N of (WS),,. Thus from (4.2) we see that A(X) = 2B(X)
and E(X) = B(X), for all X in (WS),. Using these, (1.4) takes the form
G((VxR)(Y, Z)W,U) = 2B(X)g(R(Y, Z)W,U) + B(Y)g(R(X, Z)W, X)
+B(Z)g(R(Y, X)W, U) + BIW)g(R(Y, 2)X,U)

LBU)g(R(Y, )W, X). (4.3)
This shows that IV is a (PS),, with B as its associated 1-form. Contracting
(4.3) over Z and W we get

(Vx9)(Y,U) =2B(X)S(Y,U) + B(Y)S(X,U)
+BU)S(X,Y)+ B(R(X,Y)U)+ B(R(X,U)Y).
Further contracting over Y and U the last equation reduces to
X.r=2rB(X)+4S(X, ). (4.4)

Now since N is Einstein the scalar curvature r is constant and hence (4.4)
shows that 7B(X) = 0. But by the definition of a (PS),, (see[1]) the 1-form B
is non-zero and hence r = 0. Consequently we arrive at a contradiction. [

5. CONFORMALLY FLAT (WS),

The notion of a quasi Einstein manifold was introduced by Chaki and
Maity in [3]. According to them a non-flat Riemannian manifold (M™", g)
(n > 3) is said to be a quasi Einstein manifold if there exists a non zero
1-form associated to a unit vector field such that its Ricci tensor is not
identically zero and satisfies the condition

S(X,Y) =ag(X,Y) + bp(X)p(Y)

where a, b are scalars and b # 0.
In this section we prove the following theorems:

Theorem 3. A conformally flat (WS), (n > 3) with 6 # 0 is a quasi
Einstein manifold of non zero scalar curvature.

Theorem 4. A conformally flat (WS), (n > 3) with § # 0 does not exist
if the scalar curvature is constant.

Theorem 5. A conformally flat (WS),, (n > 3) with § # 0 does not exist
if the vector field a defined by (1.5) is geodesic.
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Proof of Theorem 3. As C=0, we have by (2.11)

1

(n—2)
- S(X,Z)g(Y,W) +S(X7W)9(Y7Z) - S(K W)g(Xa Z)}

~ o) =) W A W) —g(X, Z)g(Y, W)} (5.1)

Setting W = p and W = X in (5.1) respectively we get
_
(n—2)
- S(Y7:0>g(X7 Z)} -

g(R(X,Y)Z, W) =

{5y, 2)g(X, W)

A(R(X,Y)Z) = [A(X)S(Y. Z) — A(Y)S(X. Z) + S(X. p)g(Y. Z)

r

m{A(X)Q(K Z) - AY)g(X,2)} (5:2)

and

1
n—2)

B(R(X,Y)Z) =

{B(X)S(Y,2) - B(Y)S(X, Z) + S(X,\)g(Y, Z)
(n—1)(n—2)
Taking into account (5.2), (5.3) and (2.7) we obtain
(n =3){A(X) = 2B(X)}S(Y, Z) - {A(Y) = 2B(Y)}S(X, Z2)] =
[S(X,p) = 25(X, N)]g(Y, Z) = [S(Y, p) = 25(Y, N)]g(X, Z)

~ g (AG) = 2B}, 2) + I {AY) —2B0)}a(X. 2)
(5.4)

{B(X)g(Y,2) - B(Y)g(X, 2)}. (5.3)

Recalling (2.8) and since (n > 3), (5.4) provides

[A(X) = 2B(X)][S(Y, Z) - 9(Y, Z)]

2(n—1)

— [A(Y) = 2B(YV)][S(X, Z) — =—

2(n—1)
Since 0(X) = A(X) —2B(X) # 0, (5.5) can be written as

9(X,2)]=0. (5.5)

S(X)S(Y, Z) - 9(Y, 2)]

2(n—1)

—3MISX.2) — 50

9(X,2)]=0. (5.6)

Putting X = v in (5.6) and using (3.2) we get
T (n—2)r

S(Y.2) = 2(n—1)g(Y’Z)+2(n—1)

T(Y)T(Z) (5.7)
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where T'(X) = g(X,a) and « is unit. This shows that the manifold is quasi
Einstein. If possible, let » = 0, then from (5.7) we see that S = 0 and hence
by Theorem 1, R = 0, which is inadmissible by the definition. ([l

Proof of Theorem /. Differentiating covariently (5.7) along an arbitrary vec-
tor field X, we get

(VxS)Y. 2) = 500 oY, 2) 4 (0 = DTOT(2)
+ H{T(Z)(VXT)Y L TY)(VXT)Z). (5.8)

Since C' =0, div C' = 0 and hence using (5.8) in (2.12) we obtain

{(Xn)T(Y)T(Z) — (Yr)T(X)T(2)} + r[T(Z2){(VxT)Y — (VyT)X}
+T(Y)VxT)Z —T(X)(VyT)Z] = 0. (5.9)

Putting Y = Z = ¢; in (5.9) and summing over i, 1 <17 < n, we find

[(X.r) = (ar)] = r[(V D)X + T(X)(Ve,T)e;] = 0. (5.10)
Setting X = « in (5.10) and since « is unit, we have
r(Ve,T)e; = 0. (5.11)
Thus in view of (5.11), (5.10) assumes the form
r(VoI)X = (X.r) — (a.r)T(X). (5.12)
Further taking ¥ = « in (5.9) and recalling (5.12) we at once obtain
r(VxT)Z = (Z.r)T(X) — (a.r)T(X)T(2). (5.13)

Now we assume that r is constant. If r = 0 the manifold becomes flat.
So we assume that r is non-zero in some open neighborhood N of (W.S5),.
Hence on N, r is a non-zero constant. Thus from (5.13) we see that Vxa = 0,
which implies that R(X,Y)a = 0 and we obtain S(X, a) = 0. By using this
in (5.7) it shows that » = 0, and consequently it follows that N becomes
flat. Therefore we arrive at a contradiction. g

Proof of Theorem 5. By hypothesis the unit vector field « is geodesic i.e.
Vaa = 0. Hence by (5.12) we have

Xor=(ar)T(X). (5.14)
Therefore taking into account (5.14) and (5.13) we see that
r(VxT)Z = 0. (5.15)

If r = 0, then the manifold becomes flat and which is inadmissible by defini-
tion. So we assume that r # 0 in a neighborhood N of (WS),,. Thus (5.15)
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shows that Vxa = 0 and as before it follows that » = 0 in N, which is a
contradiction. O
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