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ON UPPER DINI’S SYSTEMS AND U.S.C. FUNCTIONS
WITH CONVEX LIMIT SETS

DUŠAN HOLÝ AND LADISLAV MATEJIČKA

Abstract. We give an answer to the question in [HN] as to which up-
per Dini’s systems of functions induces a Hausdorff metric topology on
U0(X). We show that if X is a locally connected metric space then
the Hausdorff metric topology on U0(X) induces as an upper Dini’s sys-
tem of functions the set of all bounded upper semicontinuous functions
vanishing at infinity with convex limit sets.

1. Introduction

For a topological space X denote by C(X), U(X), the space of all con-
tinuous, upper semicontinuous (u.s.c.) real functions on X, respectively.
A function f : X → R (where R denotes the set of all real numbers) is
said to be vanishing at infinity, if for any ε > 0 there exists a compact set
Kε ⊂ X such that |f(x)| < ε for every x /∈ Kε [HN]. By C0(X) and U0(X)
we denote the space of all continuous functions vanishing at infinity and of
all upper semicontinuous functions vanishing at infinity, respectively. The
Dini’s theorem [R] says that if X is a compact space and {fn; n ∈ Z+}
(where Z+ = {1, 2, 3, . . . }) a decreasing sequence of functions belonging to
U(X) pointwise converges to f ∈ C(X) then the sequence {fn; n ∈ Z+} is
uniformly convergent to f .

Definition 1.1. [Be1] Let X be a compact metric space and Ω ⊂ U(X). If
τ is a topology on U(X), then Ω is called a Dini’s class of functions induced
by τ if

(1) Ω is τ -closed,
(2) C(X) ⊂ Ω,
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(3) for each f ∈ Ω whenever {fn; n ∈ Z+} is a decreasing sequence
of functions belonging to U(X) and pointwise converges to f then
{fn; n ∈ Z+} τ -converges to f .

In this sense, if X is a compact space then C(X) as a subclass of U(X) is a
Dini’s class of functions induced by the topology of the uniform convergence
on U(X).

Beer in [Be1] showed that if X is a locally connected compact metric
space then the Hausdorff metric topology on U(X) obtained by identifying
each u.s.c. function with the closure of its graph induces as a Dini’s class
of functions the set of all bounded u.s.c. functions with convex limit sets.
The limit set for a function f from X to R at x ∈ X is the set of all real
r such that (x, r) belongs to the closure of the graph of f . There exists at
most one Dini’s class Ω induced by τ [Be1].

In [HN] a type of Dini’s theorem for spaces that are not necessarily com-
pact is presented.

Theorem A. [HN] Let X be a topological space. Let {fn; n ∈ Z+} be a de-
creasing sequence of functions belonging to U0(X) and converging pointwise
to a function f ∈ C0(X). Then the convergence is uniform.

In [HN] is presented a more general definition of Dini’s class (Dini’s sys-
tem).

Definition 1.2. [HN] Let X be a topological space. Let F ⊂ U(X) and τ
be a topology on F . A collection Ω ⊂ F is called an upper Dini’s system for
F induced by the topology τ , if the following are satisfied:

(1) Ω is τ -closed,
(2) Ω ⊂ F ,
(3) If {fn; n ∈ Z+} is a decreasing sequence of functions belonging to F

and pointwise converging to f ∈ Ω then {fn; n ∈ Z+} τ -converges
to f .

In [HN] the question is posed as to which upper Dini’s system of functions
induces a Hausdorff metric topology on U0(X). We show that if X is a
locally connected metric space, then the Hausdorff metric topology on U0(X)
induces as an upper Dini’s system of functions the set of all bounded u.s.c.
functions vanishing at infinity with convex limit sets.

If X is a perfectly normal T1-space and F ⊂ U(X) and τ is a topology on
F , then there exists at most one upper Dini’s system Ω for F induced by the
topology τ such that Ω ⊃ C(X) [HN]. Similarly for functions vanishing at
infinity we have [HN]: If X is a perfectly normal locally compact Hausdorff
space, F ⊂ U0(X) and τ is a topology on F , then there exists at most one
upper Dini’s system Ω for F induced by the topology τ such that Ω ⊃ C0(X).
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2. Preliminaries

(Z, d) will denote a metrizable space Z with a compatible metric d. The
open d–ball with the center z0 ∈ Z and a radius ε > 0 will be denoted by
Sε(z0) and the ε–parallel body ∪{Sε(a); a ∈ A} for a subset A of Z will be
denoted by Sε(A). We denote by 2Z the space of all closed subsets of Z and
by CL(Z) the space of all nonempty closed subsets of Z. The symbol B will
stand for the closure of B ⊂ Z. If A ∈ CL(Z), the distance functional

d(., A) : Z 7→ [0,∞)

is described by the familiar formula:

d(z,A) = inf{d(z, a); a ∈ A}.
The Hausdorff metric Hd on 2Z is defined as follows:

Hd(A,B) = max{sup{d(a,B); a ∈ A}, sup{d(b, A); b ∈ B}}
if A and B are nonempty. If A 6= ∅ we take Hd(A, ∅) = Hd(∅, A) = ∞. On
CL(Z) we can use for Hausdorff distance the following equality:

Hd(A,B) = inf{ε > 0; A ⊂ Sε(B) and B ⊂ Sε(A)}.
Hd defines an (extended-valued) metric on 2Z . The generated topology is
called the Hausdorff metric topology.

Now let (X, d) be a metric space, consider the product X × R metrized
in the following way (box metric).

ρ((x1, r1), (x2, r2)) = max{d(x1, x2), |r1 − r2|}.
Denote the closure of the graph of the function f : X 7→ R by Grf and the
restriction of f to a subset A of X by f ¹ A.

If f and g are in U(X) denote the Hausdorff distance generated by ρ from
Grf to Grg by h(f, g). Thus h is an extended valued metric on U(X) [Be1].

In what follows X will be a metric space with a compatible metric d. Let
f be a function from X to R. For each x ∈ X let:

L(f, x) = {r ∈ R; (x, r) ∈ Grf}
(see in [Be1]).

Notice that f(x) ∈ L(f, x), it is the largest element of L(f, x) if f is u.s.c.
and the smallest if f is lower semicontinuous (l.s.c.).

Denote by Ω the space of all bounded u.s.c. functions from X to R with
convex L(f, x) for all x ∈ X. If f ∈ Ω and x ∈ X then L(f, x) is the closed
line segment [lim infy 7→x f(y), f(x)].

Let F be a multifunction from X to R. We say that F is upper semicon-
tinuous at x0 ∈ X if whenever V is an open subset of R containing F (x0),
then V contains F (x) for each x in some neighborhood of x0. We say that
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F is bounded on A ⊂ X provided that the set F (A) = ∪{F (x); x ∈ A}
is a bounded subset of R. Then F is locally bounded provided that each
point of X has a neighborhood on which F is bounded [Ho]. We say that a
multifunction F from X to R has a closed graph if the set {(x, y); y ∈ F (x)}
is a closed set in X × R.

Denote by A the space of all nonempty valued locally bounded multifunc-
tion from X to R with closed graphs.

Let F ∈ A. We define the functions αF (x), βF (x) as follows:

αF (x) = max{F (x)}, βF (x) = min{F (x)}.
Remark 2.1. It is easy to verify that if F ∈ A then the function αF is u.s.c.
and the function βF is l.s.c..

Let f ∈ Ω. The closure of the graph of f in X × R can be considered as
a multifunction from X to R, which maps x to {y ∈ R; (x, y) ∈ Grf}. We
denote this multifunction by f . It is clear that if f ∈ Ω then f ∈ A and
αf (x) = f(x). For every x ∈ X we have that

f(x) = [lim inf
y 7→x

f(y), f(x)] = [βf (x), αf (x)] = L(f, x).

3. Main results

Remark 3.1. It is easy to see that if a function f : X → R is locally bounded
then f is upper semicontinuous multifunction. In [Be2] (Proposition 6.2.12)
it is shown that if multifunction F from X to R is upper semicontinuous
with connected values then for each connected subset C of X the image set
F (C) is connected.

The proof of the next lemma follows from Remark 3.1.

Lemma 3.2. Let (X, d) be a connected metric space. Let f be a locally
bounded u.s.c. function from X to R, such that L(f, x) is convex for all
x ∈ X and let there exist x1, x2 ∈ X such that αf (x1) < βf (x2). Let
αf (x1) < a < βf (x2). Then there exists x3 ∈ X such that a ∈ f(x3).

Immediately from Lemma 3.2. we have the following two results.

Proposition 3.3. Let (X, d) be a connected metric space. Let f be a locally
bounded u.s.c. function from X to R, such that L(f, x) is convex for all
x ∈ X. Then f(X) is a convex set in R.

Proposition 3.4. Let (X, d) be a connected metric space. Let f ∈ Ω. Then
f(X) is a bounded, convex set in R.

Proposition 3.5. Let (X, d) be a connected compact metric space. Let
f ∈ Ω. Then f(X) is a compact, convex set in R.
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Proof. By Proposition 3.4. it is sufficient to prove that f(X) is a closed
set in R. Let {yn; n ∈ Z+} be a sequence in f(X) convergent to y0 in
R. We claim that y0 ∈ f(X). For every yn there is xn ∈ X such that
βf (xn) ≤ yn ≤ αf(xn). Since X is a compact by passing to a subsequence
we can assume {xn; n ∈ Z+} converges to a some point x0. Since f ∈ A by
Remark 2.1. the function αf is u.s.c. and the function βf is l.s.c. and thus
βf (x0) ≤ y0 ≤ αf (x0) and thus y0 ∈ f(X). ¤

Theorem 3.6. Let (X, d) be a locally connected metric space. Then Ω is a
closed subspace of (U(X), h).

Proof. Let f be in the closure of Ω in (U(X), h). It is easy to show that f is
bounded. Fix x ∈ X. We claim that L(f, x) is convex. If not, there exists
a ∈ R where lim infy 7→x f(y) < a < f(x) such that (x, a) /∈ Grf . Since Grf

is closed set in (X×R, ρ) then there exist ε > 0 such that Sε(x, a)∩Grf = ∅.
Let C be a connected neighborhood of x in S ε

2
(x). Let δ > 0 be such that

Sδ(x) ⊂ C. Consider the open neighborhood Sδ(f) of f in (U(X), h). There
is g ∈ Ω such that g ∈ Sδ(f). Since h(f, g) < δ and since Hausdorff distance
is generated by ρ there exist points (x1, y1) ∈ Grg and (x2, y2) ∈ Grg
such that ρ((x, βf (x)), (x1, y1)) < δ and ρ((x, αf (x)), (x2, y2)) < δ. Thus
d(x, x1) < δ and d(x, x2) < δ. Thus x1 ∈ C and x2 ∈ C. It is easy to
see that αg(x1) < a and βg(x2) > a. Otherwise we get a contradiction
of the fact that g ∈ Sδ(f) is in (U(X), h). By Lemma 3.2. there exists
x3 ∈ X such that a ∈ g(x3). It follows that ρ((x3, a), Grf) > ε

2 where
ρ((x3, a), Grf) = inf{ρ((x3, a), (x, y)); (x, y) ∈ Grf}. Since δ < ε

2 we have a
contradiction of the fact that h(f, g) < δ. ¤

Denote by Ω0 the set of all functions belonging to Ω and vanishing at in-
finity. By using of the previous Theorem we have the following Proposition.

Proposition 3.7. Let (X, d) be a locally connected metric space. Then Ω0

is a closed subspace of (U0(X), h).

Remark 3.8. It is easy to show that if A is a subset of X and f , g are
functions from X to R then the inequalities h(f ¹ A, g ¹ A) < ε and h(f ¹
(X \A), g ¹ (X \A)) < ε implies the inequality h(f, g) < ε.

Theorem 3.9. Let (X, d) be a metric space. Let f ∈ Ω0 and let {fn; n ∈
Z+} be a decreasing sequence of functions belonging to U0(X) convergent
pointwise to f . Then {fn; n ∈ Z+} h-converges to f .

Proof. We start the proof similarly as the proof of Theorem 1 in [HN]. The
functions f and f1 are vanishing at infinity. Then for ε > 0 there is a
compact set K ⊂ X such that | f(x) |< ε

2 if x /∈ K and | f1(x) |< ε
2 if
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x /∈ K. Since {fn; n ∈ Z+} is decreasing we have for each n ∈ Z+ and each
x ∈ X \K

| fn(x)− f(x) |≤| f1(x)− f(x) |< ε

2
+

ε

2
= ε.

Then by Theorem A in [Be1] h(fn ¹ (X \K), f ¹ (X \K)) < ε for each
n ∈ Z+. By Theorem 1 in [Be1] there is n0 such that h(fn ¹ K, f ¹ K) < ε
for all n > n0. Then by using Remark 3.8. we have h(fn, f) < ε for all
n > n0. ¤

Proposition 3.7. and Theorem 3.9. show that Ω0 is a Dini’s system of
functions induced by Hausdorff metric topology on U0(X).
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