ON UPPER DINI'S SYSTEMS AND U.S.C. FUNCTIONS WITH CONVEX LIMIT SETS

DUŠAN HOLÝ AND LADISLAV MATEJIČKA

ABSTRACT. We give an answer to the question in [HN] as to which upper Dini's systems of functions induces a Hausdorff metric topology on $U_0(X)$. We show that if X is a locally connected metric space then the Hausdorff metric topology on $U_0(X)$ induces as an upper Dini's system of functions the set of all bounded upper semicontinuous functions vanishing at infinity with convex limit sets.

1. INTRODUCTION

For a topological space X denote by $C(X)$, $U(X)$, the space of all continuous, upper semicontinuous (u.s.c.) real functions on X , respectively. A function $f: X \to \mathbb{R}$ (where $\mathbb R$ denotes the set of all real numbers) is said to be vanishing at infinity, if for any $\epsilon > 0$ there exists a compact set $K_{\epsilon} \subset X$ such that $|f(x)| < \epsilon$ for every $x \notin K_{\epsilon}$ [HN]. By $C_0(X)$ and $U_0(X)$ we denote the space of all continuous functions vanishing at infinity and of all upper semicontinuous functions vanishing at infinity, respectively. The Dini's theorem [R] says that if X is a compact space and $\{f_n; n \in \mathbb{Z}^+\}$ (where $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$) a decreasing sequence of functions belonging to $U(X)$ pointwise converges to $f \in C(X)$ then the sequence $\{f_n; n \in \mathbb{Z}^+\}$ is uniformly convergent to f .

Definition 1.1. [Be1] Let X be a compact metric space and $\Omega \subset U(X)$. If τ is a topology on $U(X)$, then Ω is called a Dini's class of functions induced by τ if

(1) Ω is τ -closed,

 (2) $C(X) \subset \Omega$,

²⁰⁰⁰ Mathematics Subject Classification. Primary: 54C35; secondary: 54C60. Key words and phrases. Upper semicontinuous functions, Dini's systems, Hausdorff metric, convex limit sets.

(3) for each $f \in \Omega$ whenever $\{f_n; n \in \mathbb{Z}^+\}$ is a decreasing sequence of functions belonging to $U(X)$ and pointwise converges to f then { f_n ; $n \in \mathbb{Z}^+$ } τ -converges to f.

In this sense, if X is a compact space then $C(X)$ as a subclass of $U(X)$ is a Dini's class of functions induced by the topology of the uniform convergence on $U(X)$.

Beer in $[Bel]$ showed that if X is a locally connected compact metric space then the Hausdorff metric topology on $U(X)$ obtained by identifying each u.s.c. function with the closure of its graph induces as a Dini's class of functions the set of all bounded u.s.c. functions with convex limit sets. The limit set for a function f from X to R at $x \in X$ is the set of all real r such that (x, r) belongs to the closure of the graph of f. There exists at most one Dini's class Ω induced by τ [Be1].

In [HN] a type of Dini's theorem for spaces that are not necessarily compact is presented.

Theorem A. [HN] Let X be a topological space. Let $\{f_n; n \in \mathbb{Z}^+\}$ be a decreasing sequence of functions belonging to $U_0(X)$ and converging pointwise to a function $f \in C_0(X)$. Then the convergence is uniform.

In [HN] is presented a more general definition of Dini's class (Dini's system).

Definition 1.2. [HN] Let X be a topological space. Let $\mathcal{F} \subset U(X)$ and τ be a topology on F. A collection $\Omega \subset \mathcal{F}$ is called an upper Dini's system for F induced by the topology τ , if the following are satisfied:

- (1) Ω is τ -closed,
- (2) $\Omega \subset \mathcal{F}$,
- (3) If $\{f_n; n \in \mathbb{Z}^+\}$ is a decreasing sequence of functions belonging to $\mathcal F$ and pointwise converging to $f \in \Omega$ then $\{f_n; n \in \mathbb{Z}^+\}\$ τ -converges to f.

In [HN] the question is posed as to which upper Dini's system of functions induces a Hausdorff metric topology on $U_0(X)$. We show that if X is a locally connected metric space, then the Hausdorff metric topology on $U_0(X)$ induces as an upper Dini's system of functions the set of all bounded u.s.c. functions vanishing at infinity with convex limit sets.

If X is a perfectly normal T_1 -space and $\mathcal{F} \subset U(X)$ and τ is a topology on F, then there exists at most one upper Dini's system Ω for F induced by the topology τ such that $\Omega \supset C(X)$ [HN]. Similarly for functions vanishing at infinity we have $[HN]$: If X is a perfectly normal locally compact Hausdorff space, $\mathcal{F} \subset U_0(X)$ and τ is a topology on \mathcal{F} , then there exists at most one upper Dini's system Ω for F induced by the topology τ such that $\Omega \supset C_0(X)$.

2. Preliminaries

 (Z, d) will denote a metrizable space Z with a compatible metric d. The open d–ball with the center $z_0 \in Z$ and a radius $\epsilon > 0$ will be denoted by $S_{\epsilon}(z_0)$ and the ϵ –parallel body $\cup \{S_{\epsilon}(a); a \in A\}$ for a subset A of Z will be denoted by $S_{\epsilon}(A)$. We denote by 2^{Z} the space of all closed subsets of Z and by $CL(Z)$ the space of all nonempty closed subsets of Z. The symbol \overline{B} will stand for the closure of $B \subset Z$. If $A \in CL(Z)$, the distance functional

$$
d(., A) : Z \mapsto [0, \infty)
$$

is described by the familiar formula:

$$
d(z, A) = \inf \{ d(z, a); \ a \in A \}.
$$

The Hausdorff metric H_d on 2^Z is defined as follows:

$$
H_d(A, B) = \max\{\sup\{d(a, B); a \in A\}, \sup\{d(b, A); b \in B\}\}\
$$

if A and B are nonempty. If $A \neq \emptyset$ we take $H_d(A, \emptyset) = H_d(\emptyset, A) = \infty$. On $CL(Z)$ we can use for Hausdorff distance the following equality:

$$
H_d(A, B) = \inf \{ \epsilon > 0; \ A \subset S_{\epsilon}(B) \text{ and } B \subset S_{\epsilon}(A) \}.
$$

 H_d defines an (extended-valued) metric on 2^Z . The generated topology is called the Hausdorff metric topology.

Now let (X, d) be a metric space, consider the product $X \times \mathbb{R}$ metrized in the following way (box metric).

$$
\rho((x_1,r_1),(x_2,r_2)) = \max\{d(x_1,x_2),|r_1-r_2|\}.
$$

Denote the closure of the graph of the function $f: X \mapsto \mathbb{R}$ by \overline{Grf} and the restriction of f to a subset A of X by $f \restriction A$.

If f and g are in $U(X)$ denote the Hausdorff distance generated by ρ from \overline{Grf} to \overline{Grg} by $h(f,g)$. Thus h is an extended valued metric on $U(X)$ [Be1].

In what follows X will be a metric space with a compatible metric d . Let f be a function from X to R. For each $x \in X$ let:

$$
L(f, x) = \{ r \in \mathbb{R}; (x, r) \in \overline{Grf} \}
$$

(see in $[Be1]$).

Notice that $f(x) \in L(f, x)$, it is the largest element of $L(f, x)$ if f is u.s.c. and the smallest if f is lower semicontinuous (l.s.c.).

Denote by Ω the space of all bounded u.s.c. functions from X to R with convex $L(f, x)$ for all $x \in X$. If $f \in \Omega$ and $x \in X$ then $L(f, x)$ is the closed line segment $[\liminf_{y\mapsto x} f(y), f(x)].$

Let F be a multifunction from X to R. We say that F is upper semicontinuous at $x_0 \in X$ if whenever V is an open subset of R containing $F(x_0)$, then V contains $F(x)$ for each x in some neighborhood of x_0 . We say that

F is bounded on $A \subset X$ provided that the set $F(A) = \bigcup \{F(x); x \in A\}$ is a bounded subset of $\mathbb R$. Then F is locally bounded provided that each point of X has a neighborhood on which F is bounded [Ho]. We say that a multifunction F from X to R has a closed graph if the set $\{(x, y); y \in F(x)\}\$ is a closed set in $X \times \mathbb{R}$.

Denote by A the space of all nonempty valued locally bounded multifunction from X to $\mathbb R$ with closed graphs.

Let $F \in \mathcal{A}$. We define the functions $\alpha_F(x), \beta_F(x)$ as follows:

$$
\alpha_F(x) = \max\{F(x)\}, \ \beta_F(x) = \min\{F(x)\}.
$$

Remark 2.1. It is easy to verify that if $F \in \mathcal{A}$ then the function α_F is u.s.c. and the function β_F is l.s.c..

Let $f \in \Omega$. The closure of the graph of f in $X \times \mathbb{R}$ can be considered as a multifunction from X to R, which maps x to $\{y \in \mathbb{R}; (x, y) \in \overline{Grf}\}.$ We denote this multifunction by \overline{f} . It is clear that if $f \in \Omega$ then $\overline{f} \in \mathcal{A}$ and $\alpha_{\overline{f}}(x) = f(x)$. For every $x \in X$ we have that

$$
f(x) = [\liminf_{y \to x} f(y), f(x)] = [\beta_{\overline{f}}(x), \alpha_{\overline{f}}(x)] = L(f, x).
$$

3. MAIN RESULTS

Remark 3.1. It is easy to see that if a function $f: X \to \mathbb{R}$ is locally bounded then f is upper semicontinuous multifunction. In $[Be2]$ (Proposition 6.2.12) it is shown that if multifunction F from X to $\mathbb R$ is upper semicontinuous with connected values then for each connected subset C of X the image set $F(C)$ is connected.

The proof of the next lemma follows from Remark 3.1.

Lemma 3.2. Let (X,d) be a connected metric space. Let f be a locally bounded u.s.c. function from X to R, such that $L(f, x)$ is convex for all $x \in X$ and let there exist $x_1, x_2 \in X$ such that $\alpha_{\overline{f}}(x_1) < \beta_{\overline{f}}(x_2)$. Let $\alpha_{\overline{f}}(x_1) < a < \beta_{\overline{f}}(x_2)$. Then there exists $x_3 \in X$ such that $a \in \overline{f}(x_3)$.

Immediately from Lemma 3.2. we have the following two results.

Proposition 3.3. Let (X, d) be a connected metric space. Let f be a locally bounded u.s.c. function from X to R, such that $L(f, x)$ is convex for all $x \in X$. Then $\overline{f}(X)$ is a convex set in \mathbb{R} .

Proposition 3.4. Let (X, d) be a connected metric space. Let $f \in \Omega$. Then $f(X)$ is a bounded, convex set in \mathbb{R} .

Proposition 3.5. Let (X,d) be a connected compact metric space. Let $f \in \Omega$. Then $\overline{f}(X)$ is a compact, convex set in \mathbb{R} .

Proof. By Proposition 3.4. it is sufficient to prove that $\overline{f}(X)$ is a closed set in R. Let $\{y_n; n \in \mathbb{Z}^+\}$ be a sequence in $\overline{f}(X)$ convergent to y_0 in R. We claim that $y_0 \in \overline{f}(X)$. For every y_n there is $x_n \in X$ such that $\beta_{\overline{f}}(x_n) \leq y_n \leq \alpha_{\overline{f}(x_n)}$. Since X is a compact by passing to a subsequence we can assume $\{x_n; n \in \mathbb{Z}^+\}$ converges to a some point x_0 . Since $\overline{f} \in \mathcal{A}$ by Remark 2.1. the function $\alpha_{\overline{f}}$ is u.s.c. and the function $\beta_{\overline{f}}$ is l.s.c. and thus $\beta_{\overline{f}}(x_0) \leq y_0 \leq \alpha_{\overline{f}}(x_0)$ and thus $y_0 \in \overline{f}(X)$.

Theorem 3.6. Let (X, d) be a locally connected metric space. Then Ω is a closed subspace of $(U(X), h)$.

Proof. Let f be in the closure of Ω in $(U(X), h)$. It is easy to show that f is bounded. Fix $x \in X$. We claim that $L(f, x)$ is convex. If not, there exists $a \in \mathbb{R}$ where $\liminf_{y \to x} f(y) < a < f(x)$ such that $(x, a) \notin Grf$. Since Grf is closed set in $(X \times \mathbb{R}, \rho)$ then there exist $\epsilon > 0$ such that $S_{\epsilon}(x, a) \cap \overline{Grf} = \emptyset$. Let C be a connected neighborhood of x in $S_{\frac{\epsilon}{2}}(x)$. Let $\delta > 0$ be such that $S_{\delta}(x) \subset C$. Consider the open neighborhood $S_{\delta}(f)$ of f in $(U(X), h)$. There is $g \in \Omega$ such that $g \in S_\delta(f)$. Since $h(f, g) < \delta$ and since Hausdorff distance is generated by ρ there exist points $(x_1, y_1) \in \overline{Grg}$ and $(x_2, y_2) \in \overline{Grg}$ such that $\rho((x,\beta_{\overline{f}}(x)),(x_1,y_1)) < \delta$ and $\rho((x,\alpha_{\overline{f}}(x)),(x_2,y_2)) < \delta$. Thus $d(x, x_1) < \delta$ and $d(x, x_2) < \delta$. Thus $x_1 \in C$ and $x_2 \in C$. It is easy to see that $\alpha_{\overline{q}}(x_1) < a$ and $\beta_{\overline{q}}(x_2) > a$. Otherwise we get a contradiction of the fact that $g \in S_\delta(f)$ is in $(U(X), h)$. By Lemma 3.2. there exists $x_3 \in X$ such that $a \in \overline{g}(x_3)$. It follows that $\rho((x_3, a), \overline{Grf}) > \frac{\epsilon}{2}$ where $\rho((x_3, a), \overline{Grf}) = \inf \{ \rho((x_3, a), (x, y)); (x, y) \in \overline{Grf} \}.$ Since $\delta < \frac{\epsilon}{2}$ we have a contradiction of the fact that $h(f, g) < \delta$.

Denote by Ω_0 the set of all functions belonging to Ω and vanishing at infinity. By using of the previous Theorem we have the following Proposition.

Proposition 3.7. Let (X, d) be a locally connected metric space. Then Ω_0 is a closed subspace of $(U_0(X), h)$.

Remark 3.8. It is easy to show that if A is a subset of X and f, g are functions from X to R then the inequalities $h(f \upharpoonright A, g \upharpoonright A) < \epsilon$ and $h(f \upharpoonright A)$ $(X \setminus A), g \restriction (X \setminus A)) < \epsilon$ implies the inequality $h(f, g) < \epsilon$.

Theorem 3.9. Let (X, d) be a metric space. Let $f \in \Omega_0$ and let $\{f_n; n \in$ \mathbb{Z}^+ be a decreasing sequence of functions belonging to $U_0(X)$ convergent pointwise to f. Then $\{f_n; n \in \mathbb{Z}^+\}$ h-converges to f.

Proof. We start the proof similarly as the proof of Theorem 1 in [HN]. The functions f and f_1 are vanishing at infinity. Then for $\epsilon > 0$ there is a compact set $K \subset X$ such that $|f(x)| < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$ if $x \notin K$ and $| f_1(x) | < \frac{\epsilon}{2}$ $rac{\epsilon}{2}$ if

 $x \notin K$. Since $\{f_n; n \in \mathbb{Z}^+\}$ is decreasing we have for each $n \in \mathbb{Z}^+$ and each $x \in X \setminus K$

 $| f_n(x) - f(x) | \leq | f_1(x) - f(x) | < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}+\frac{\epsilon}{2}$ $\frac{c}{2} = \epsilon.$

Then by Theorem A in [Be1] $h(f_n \restriction (X \setminus K), f \restriction (X \setminus K)) < \epsilon$ for each $n \in \mathbb{Z}^+$. By Theorem 1 in [Be1] there is n_0 such that $h(f_n \upharpoonright K, f \upharpoonright K) < \epsilon$ for all $n > n_0$. Then by using Remark 3.8. we have $h(f_n, f) < \epsilon$ for all $n > n_0$.

Proposition 3.7. and Theorem 3.9. show that Ω_0 is a Dini's system of functions induced by Hausdorff metric topology on $U_0(X)$.

REFERENCES

- [Be1] G. Beer, On Dini's theorem and metric on $C(X)$ topologically equivalent to the uniform metric, Proc. Am. Math. Soc., 86 (1982), 75–80.
- [Be2] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publisher, 1993.
- [Ho] L. Holá, Spaces of densily continuous forms, USCO and minimal USCO maps, Set-Valued Anal., 2 (2003), 135–151.
- [HN] L. Holá and T. Neubrunn, A remark of functions vanishing at infinity, Rad. Mat., 7 (1991), 185-189.
- [R] R. Royden, Real Analysis, Macmillan, New York, 1968.

(Received: June 13, 2005) D. Holý and L. Matejička

(Revised: May 25, 2006) Department of Physical Engineering of Materials Faculty of Industrial Technologies in Púchov Trenčín University of Alexander Dubček Trenčín I. Krasku 491/30 02001 Púchov Slovak Republic

> E–mail: holy@fpt.tnuni.sk E–mail: matejicka@tnuni.sk