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FOURTH-ORDER BLOCK METHODS FOR THE
NUMERICAL SOLUTION OF FIRST ORDER INITIAL

VALUE PROBLEMS

SALMAN H. ABBAS

Abstract. Block methods of order two and three for the numerical so-
lution of initial value problems are extended to four order. The proposed
two fourth order block methods might be efficient for implementation in
multiprocessor computers. The matrix coefficients like block methods of
order two and three of these methods are chosen so that lower powers of
blocksize appear in the principle local truncation errors. The stability
polynomial is shown to be a perturbation of the (p + 1)th order explicit
Runge-Kutta method, scaled according to block size. In order to show
the linear stability properties of the block predictor corrector methods,
the maximum absolute errors using Type I and Type II methods with
blocksize k = 10 and various step sizes are investigated numerically.

1. Introduction

Numerical methods for parallel solution of the initial value problem (IVP)
are well established techniques in literature. In the last two decades a num-
ber of papers have appeared on this topic (see, for example [1]-[14] and
references there in). One such technique is the block method which by
means of a single application of a calculation unit, yields a sequence of new
estimates for y in the differentiation equation:

y′ = f(t, y), y(t0) = y0 (1)

with y, f ∈ Rs.
If the block size k ≥ 1, then in simple cases the values of t for which

solutions are computed would be evenly separated. In other words, each
basic cycle of calculation has the potential to advance the solution by k new
points in the t direction. Each such block can therefore, be considered as a
unit of calculation. Let yn denote the approximation to the exact solution
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y(tn) at t = tn and let fn denote the value of f(tn, yn), the approximation
for y′(tn). For n = mk, a block of solutions can be represented by the vector
Ym = (yn+1, yn+2, . . . , yn+k)T with yn+j (1 ≤ j ≤ k), the generated solution
for tn+j = tn + jh, where tn is the right-hand end point of the preceding
block and h is the uniform spacing between solution values. Adopting the
notation of [7], the formula for the block method can be expressed as

Ym = eyn + hdfn + hBF (Ym) (2)

where e and d are k−vectors, B is a k × k matrix, and F is a k−vector
whose jth entry is fn+j = f(tn+j , yn+j), 1 ≤ j ≤ k. Eq. (2) is implicit in
Ym, it has to be solved by iteratively using, in the first instance, predicted
solution values. A predictor equation for Y can be expressed in the form

Y (0)
m = eyn + hd̃fn (3)

where e and d̃ are k−vectors. Substitution of Y
(0)
m into the right-hand side

of Eq. (2) yields the block predictor-corrector (BPC) method

Ym = eyn + hdfn + hBF
(
eyn + hd̃fn

)
. (4)

In accordance with the terminology used in the linear multi-step case,
this application is called the PEC mode. One can continue this process by
substituting the result of Eq. (4) into the right-hand side of (2) arriving
at P (EC)νE1−γ mode, in which γ = 0 indicates that a final evaluation is
done before proceeding to the next block. Voss and Abbas [4] consider this
approach using an explicit Euler predictor and then correcting it four times
by a Simpson corrector applied in the composition. This method can be
computed in the following steps for each equidistant step point r = 1, . . . , k
as

y
(0)
n+r = yn + rhf(tn, yn),

y
(1)
n+1 = yn +

h

24

[
9f(tn, yn) + 19f(tn+1, y

(0)
n+1)− 5f(tn+2, y

(0)
n+2)

+ f(tn+3, y
(0)
n+3)

]
,

y
(i)
n+r = yn +

h

3

[
f(tn, yn) + 4

r∑

h=1

f(tn+j , y
(0)
n+j) + 2

r−1∑

j=1

f (tn+2j , y
(0)
n+2j)

+ f(tn+2r, y
(0)
n+2r)

]
, r = 2, 4, 6, . . . (even) (5)

y
(i)
n+3 = yn+

3h

8

[
f(tn, yn)+ 3f(tn+1, y

(0)
n+1)+ 3f(tn+2, y

(0)
n+2)+ f(tn+3, y

(0)
n+3)

]
,
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y
(i)
n+r = yn +

h

3

[
f(tn, yn) + 4

r∑

j=1

f(tn+j , y
(0)
n+j) + 2

r−1∑

j=1

f(tn+2j , y
(0)
n+2j)

]

+
17h

24
f(tn+(r−3), y

(0)
n+(r−2) +

3h

8

[
3f(tn+(r−2), y

(0)
n+(r−2))

+ 3f(tn+(r−1), y
(0)
n+(r−1))

]
, r = 5, 7, . . . (odd); i = 1, 2, 3, 4.

(6)

With Y
(0)
m given by Eq. (3), method (5) has P (EC)4 form Y

(0)
m = eyn+hd̃fn,

Y 1+1
m = eyn + hdfn + hBF (Y l

m), l = 0, 1, 2 and 3

eT = (1, 1, 1, . . . , 1)

d̃T = (1, 2, 3, . . . , k)

dT = (
3
8
,
1
3
,
3
8

. . . ,
1
3
)

B =



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8 0 0 0

4
3

2
3

4
3

2
3

4
3

2
3

4
3

1
3 0 0

4
3

2
3

4
3

2
3

4
3

17
24

9
8

9
8

3
8 0

4
3

2
3

4
3

2
3

4
3

2
3

4
3

2
3
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3

1
3




. (7)

The local error of Eq. (6) has the form −kh5

180 y(5)(tn) + O (h6). (7)
The main purpose of this paper is to form fourth order block methods

for solving IVP’s which are appropriate for an arbitrary blocksize k ≥ 1.
Additionally, the knowledge of the stability properties gives us the opportu-
nity to choose well-organized methods which have large stability intervals.
Furthermore, we prefer methods where the principle error term includes a
small power of the blocksize. It is very useful to carry on this idea to create
different methods in which the principal error term does not depend on the
bloksize or a power that appears in the denominator of the error term. It
is suggested in the conclusion that the scheme can be used to solve a large
number of systems of differential equations for some models in the field of
quantum optics.
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2. A block predictor-corrector method

In this section, we consider a block method in which the order is fixed
but the block length may be any value at the cost of increasing the trunca-
tion error. The method developed uses Eq. (3) to predict solutions to the
problem and then applies a corrector in P (EC)νE mode. The method can
be written as

Y
(0)
m+1 = e⊗ yn + h(Ap ⊗ I)F

(
Y (v)

m

)
,

Y
(1+1)
m+1 = e⊗ yn + h(A⊗ I)F

(
Y

(1)
m+1

)
, l = 0, . . . , v − 1,

ym+1 = eT
k+1 Y

(v)
m+1, (8)

where

Ap =




0 0 . . . . . . . . . 0
0 0 . . . . . . . . . 1
0 0 . . . . . . . . . 2
...

...
...

...
...

...
0 0 . . . . . . . . . k




is the (k + 1)(k + 1) prediction matrix and A = (αi,j)0 ≤ i , j ≤ k is the
(k +1)(k +1) Runge-Kutta matrix of coefficients. For starting purposes, we
also take Y

(v)
0 to be the vector wherein, each (k +1) component is y0. With

A =



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


(9)

the matrix Eq. (9) is based on the Simpson rule and in the sequel we refer
to it as SBPC when applied in P (EC)4E mode.

Our main objective is to produce a fourth-order block method which might
be very efficient for implementing in multiprocessor computers. In order
to satisfy the condition that these methods have order four, the matrix
of coefficients A in Eq. (9) must satisfy the following equations for r =
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1, 2, . . . , k:
k∑

j=0

αr,j = r,

k∑

j=0

jαr,j =
r2

2
,

k∑

j=0

j2αr,j =
r3

3
,

k∑

j=0

j3αr,j =
r4

4
.

3. Types of block methods

In the present section, we give two block methods of fourth order that are
applicable for arbitrary blocksizes. These methods are developed by using
predictor Eq. (3) to predict solutions to the problem and then a corrector
in P (EC)4E mode is applied.

The local truncation errors for these methods are approximately equal to
−k3h5

120 y(5)(tn) and −k2h5

720 y5(tn) respectively.
(a) TYPE I block method
The coefficients of the matrix A are given by

A=




0 0 0 0 0 0 0 0 0 0
9
24

19
24

−5
24

1
24 0 0 0 0 0 0

8
24
9
24

32
24
27
24

8
24
27
24

0
9
24

0
0

0
0

0
0

0
0

0
0

0
0

0 8
3

−4
3

8
3 0 0 0 0 0 0

−55
24

275
24

−325
24

75
8 0 0 0 0 0 0

−9 36 −45 24 0 0 0 0 0 0
−189

8−152
3

2107
24

544
3

−2597
24−656
3

1225
24

96
0
0

0
0

0
0

0
0

0
0

0
0

−765
8

2673
8

−3159
8

1323
8 0 0 0 0 0 0

−165 1700
3

−1975
3

800
3 0 0 0 0 0 0




.

The next term of the error of the corrector depends on O(h6). In order to
obtain good results and better accuracy, it is recommended that the number
of corrections be increased.

The linear stability properties of the block corrector Eq. (8) are deter-
mined through application of the test equation

y′ = λy λ < 0

and by setting z = λh, in the case k = 10, Eq. (8) can be written in the
form

Qy = byn

where
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Q =




1− 19
24z 5

24z − 1
24z 0 0 . . . . .

−32
24z 1− 1

3z 0 0 . . . . . .
−9

8z −9
8z 1− 3

8z 0 . . . . . .
−8

3z 4
3z −8

3z 1 0 . . . . .
−275

24 z +325
24 z −75

8 z 0 1 0 . . . .
−36z 45z −24z 0 0 1 0 . . .
−2107

24 z −2597
24 z −1225

24 z 0 0 0 1 0 . .
−544

3 z 656
3 z −96z 0 0 0 0 1 0 0

−2673
3 z 3159

8 z 1323
8 z 0 0 0 0 0 1 0

−1700
3 z +1975

3 z −800
3 z 0 . . . . . 1




,

y =




yn+1

yn+2

yn+3

yn+4

yn+5

yn+6

yn+7

yn+8

yn+9

yn+10




b=




1 + 3
8z

1 + 1
3z

1 + 3
8z

1
1− 55

24z
1− 9z
1− 189

8 z
1− 152

3 z
1− 765

8 z
1− 65z




.

(b) TYPE II block method
The coefficients of the matrix A are given by

A =




0 0 0 0 0 0 0 0 0 0 0
1
50 0 0 . . . . 0 −1

100
21
50

29
50

− 1
25 0 0 . . . . 0 3

25
137
100

14
25

− 29
100 0 0 . . . . 0 11

20
49
20

29
100

− 79
100 0 0 . . . . 0 7

5
167
50

1
20

−153
100 0 0 . . . . 0 267

100
381
100

1
20

−243
100 0 0 . . . . 0 429

100
371
100

43
100

−67
20 0 0 . . . . 0 153

25
74
25

32
25

−407
100 0 0 . . . . 0 791

100
157
100

259
100

− 43
100 0 0 . . . . 0 934

100
−34
100

432
100

−376
100 0 0 . . . . 0 501

50
−131
50

127
20




The next term of the error of the corrector also depends on O(h6).
To analyze the stability, we apply the block corrector formula Eq. (8) to

the test problem Eq. (10), and setting z = λh , for k = 10, yields Eq. (8):
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Qy = byn (10)

with Q =




1 0 0 0 0 0 0 1
100z −21

50z 29
50z

0 1 0 0 0 0 0 − 3
25z −137

100z −14
25z

0 0 1 0 0 0 0 −11
20z −49

20z − 29
100z

0 0 0 1 0 0 0 −7
5 −167

50 z − 1
20z

0 0 0 0 1 0 0 267
100z −381

100z − 1
20z

0 0 0 0 0 1 0 −429
100z −371

100z − 43
100z

0 0 0 0 0 0 1 −153
25 z −74

25z −32
25z

0 0 0 0 0 0 0 1− 791
100z −157

100z −259
100z

0 0 0 0 0 0 0 −934
100z 1 + 34

100z −432
100z

0 0 0 0 0 0 0 −501
50 z +131

50 z 1− 137
20 z




and

b =




1 + 1
50z

1− 1
25z

1− 29
100z

1− 79
100z

1− 153
100z

1− 243
100z

1− 67
20z

1− 407
100z

1− 43
100z

1− 376
100z




.

4. Stability analysis

Using Cramer’s rule, we find that

yn+r =
Dr(z)
D(z)

yn r = 1, 2, . . . , 10 (11)

where D(z) = det(Q) and Dr(z) = det(Qr) and Qr is obtained from Q by
replacing the rth column by the vector b. Absolute stability requires

∣∣∣∣
Dr(z)
D(z)

∣∣∣∣ < 1.

In general, absolute stability properties depend on the predictor and the
mode of implementation. Applying Eq. (8) with corrections to the standard
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linear test problem Eq. (10), yields Y v
m+1 = Tm(z)Y v

0 , with

E =




0 0 · · · · · · · · · 1
0 0 · · · · · · · · · 1
0 0 · · · · · · · · · 1
...

...
...

...
...

...
0 0 · · · · · · · · · 1




,

and the stability matrix T (z) is given by [3]

T (z) = E +
v∑

j=1

AjEzj + zv+1AvAp. (12)

Consequently, the stability boundary is the largest number α such that if
z ∈ (−α, 0), then ρ(T (z)) < 1, where ρ(T (z)) denotes the spectral radius of
T (z).

Since AνAp = ueT
k+1, it follows that

ρ(T (z)) =
∣∣∣∣ 1 + k z + · · ·+ (k z)v

v !
+ uk+1(k z)v+1

∣∣∣∣ . (13)

Taking v = p, where p is the order of the block method, it is easy to show
that

ρ(T (z)) =

∣∣∣∣∣ 1 + kz + · · ·+ (kz)p

p !
+

(
1

(p + 1) !
− Ck

p+1

kp+1

)
(kz)p+1

∣∣∣∣∣ , (14)

where Ck
p+1 is the error constant of the method at the kth point in the

block. In this case, the stability polynomial is simply a perturbation of that
corresponding to the (p + 1)th order explicit Runge-Kutta method scaled
according to blocksize.

Table 1. Stability boundaries

k v αTY PEI αTY PEII

10

2 0.2501 0.2513
4 0.3027 0.3116
6 0.3812 0.3843
8 0.4318 0.4655
∞ 3.0011 3.0024

Table 1 contains the values of αTYPEI and αTYPEII block predictor-co-
rrector methods in P (EC)vE mode, based on TYPE I and TYPE II block
methods respectively. Corresponding to v = ∞, Table 1 also contains the
stability boundaries of the correctors obtained from Eq. (14).
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The error constants for TYPE I and TYPE II are Ck
5 = − k3

120 and Ck
5 =

− k2

720 respectively.

5. Numerical results

We first consider the linear IVP

y′ = −y3

2
, y(0) = 1, (15)

for t ∈ [0, 4] with exact solution y = 1/
√

t + 1. We use TYPE I and TYPE
II methods with block size k = 10 and various step sizes. We set e1 and e2

to be the maximum absolute errors at t = 4, we use step sizes h1 and h2,
and we assume that ei = Chp

i .
Table 2 also includes the observed rates of convergence calculated using

p = (lne1/e2)/ (lnh1/he2).
Table 2. Approximate rate of convergence

k h TYPE I p TYPE II p

10

0.2 0.9412 E-01 - 0.8346 E-01 -
0.1 0.1269E-01 2.89 0.8659 E-03 3.27
0.05 0.1129E-02 3.49 0.5964E-03 3.86
0.04 0.5144E-03 4.12 0.2147E-03 4.56
0.02 0.1979E-04 4.70 0.6005E-05 5.16

To numerically investigate the linear stability properties of the block
predictor-corrector methods we consider the linear IVP

y′ = −100(y − sin(t)) + cos(t), y(0) = 0 (16)

for t ∈ [0, 1] with exact solution y = sin t. Table 3 contains the maximum
absolute errors using the proposed method with block size k = 10.

6. Comparison with other methods

In this section, we compare our 4th order block methods (Type I & Type
II) which are mentioned in Section 3 and the fourth order Adams predictor-
Corrector method [15] regarding the behavior of the global error.

The numerical results presented here are those produced by the above
methods when applied to the following test problems:

(i) y′ = (20y − y2)/80, y′(0) = 1 0 ≤ x ≤ 20

(ii) y′ = y cosx, y′(0) = 1 0 ≤ x ≤ 1
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Table 3. Maximum absolute error

h TYPE I TYPE II
1

400 0.6049E-04 0.2410E-04
1

360 0.1256E-03 0.5821E-04
1

320 0.7829E-03 0.9849E-03
1

300 0.2456E-02 0.1123E-03
1

280 0.7913E+02 0.2789E+02

Table 4. Test Problem (I)

Global Error
Number of Steps Stepsize Adams p-c BM Type I BM Type II

100 0.2 4.73 × 10−7 2.14× 10−5 6.64× 10−6

200 0.1 4.18× 10−8 1.38× 10−6 2.21× 10−6

300 0.06667 9.14× 10−9 2.74× 10−7 8.89× 10−7

400 0.05 3.03× 10−9 8.72× 10−8 4.19× 10−7

500 0.04 1.28× 10−9 3.58× 10−8 1.22× 10−7

600 0.03333 6.28× 10−10 1.73× 10−8 7.76× 10−8

700 0.02857 3.43× 10−10 9.34× 10
−9

3.99× 10−8

800 0.025 2.03× 10−10 5.48× 10−9 6.98× 10−9

900 0.0222 1.28× 10−10 3.42× 10−9 2.25× 10−9

1000 0.02 8.44× 10−11 2.25× 10−9 8.67× 10−10

Table (5). Test Problem (II)

Number of Steps Stepsize
Global Error

Adams p-c BM Type I BM Type II
100 0.01 6.35× 10−10 1.55× 10−8 8.21× 10−9

200 0.005 3.79× 10−11 9.57× 10−10 3.41× 10−9

300 0.00333 7.37× 10−12 1.89× 10−10 6.24× 10−10

400 0.0025 2.31× 10−12 5.96× 10−11 1.32× 10−10

500 0.002 9.41× 10−13 2.44× 10−11 7.53× 10−11

600 0.001667 4.53× 10−13 1.18× 10−11 2.24× 10−11

700 0.0014286 2.44× 10−13 6.33× 10−12 6.44× 10−12

800 0.00125 1.46× 10−13 3.72× 10−12 3.21× 10−12

900 0.001111 8.84× 10−14 2.32× 10−12 8.78× 10−13

1000 0.001 5.51× 10−14 1.52× 10−12 4.21× 10−13
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We observe from the above tables that the numerical results are satisfac-
tory since there is no real difference in accuracy between Adams PC and the
presented block methods.

7. Conclusion

In this paper we have presented two fourth order block methods for solv-
ing ordinary differential equations with their principal error having a small
power of blocksize. These methods appear to have a rich behavior very
similar to the Simpson block method (SBPC) [4]. Moreover, it would be
interesting to implement these methods on multiprocessor computers in the
future.

Acknowledgement. The author greatly appreciates the valuable sugges-
tions of the referees.
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