RIGHT π-REGULAR SEMIRINGS

VISHNU GUPTA AND J. N. CHAUDHARI

Abstract. We prove the following results (1) If R is a right and left π-regular semiring then R is a π-regular semiring. (2) If R is an additive cancellative semiprime, right Artinian or right π-regular right Noetherian semiring then R is semisimple. (3) Let I be a partitioning ideal of a semiring R such that $Q = (R - I) \cup \{0\}$. If I is a right regular ideal and the quotient semiring R/I is right π-regular then R is a right π-regular semiring.

For the definition of semiring we refer the readers to [2]. \mathbb{Z}^+ will denote the set of all non negative integers. The following lemma is easy to prove.

Lemma 1. Let I be an ideal of a semiring R and let $a, x \in R$ such that $a + I \subseteq x + I$. Then $ar + I \subseteq xr + I, ra + I \subseteq rx + I, a + r + I \subseteq x + r + I$ for all $r \in R$.

An ideal I of a semiring R is called subtractive if $a, a + b \in I, b \in R$ implies $b \in I$. An ideal I of semiring R is called a partitioning ideal if there exists a subset Q of R such that:

1. $R = \cup\{q + I : q \in Q\}$.
2. If $q_1, q_2 \in Q$ then $(q_1 + I) \cap (q_2 + I) \neq \emptyset$ if and only if $q_1 = q_2$.

Lemma 2. If I is a partitioning ideal of a semiring R then I is a subtractive ideal of R.

Proof. See Corollary 7.19 of [8], which holds true for semirings not necessarily with an identity element.

Let I be a partitioning ideal of a semiring R and let $R/I = \{q + I : q \in Q\}$. Then R/I forms a semiring under the binary operations \oplus and \odot defined as follows:

$$(q_1 + I) \oplus (q_2 + I) = q_3 + I$$

2000 Mathematics Subject Classification. 16Y60.

Key words and phrases. Semiring, subtractive ideal, partitioning ideal, quotient semiring, right π-regular semiring, right regular semiring, π-regular semiring, regular semiring, right semiregular right ideal, Jacobson-Bourne radical, semiprime semiring, semisimple semiring, right Artinian semiring, right Noetherian semiring.
where \(q_3 \in Q \) is the unique element such that \(q_1 + q_2 + I \subseteq q_3 + I \).

\[
(q_1 + I) \circ (q_2 + I) = q_4 + I
\]

where \(q_4 \in Q \) is the unique element such that \(q_1q_2 + I \subseteq q_4 + I \).

This semiring \(R/I \) is called the quotient semiring of \(R \) by \(I \). By definition of partitioning ideal, there exists a unique \(q \in Q \) such that \(0 + I \subseteq q + 1 \). Then \(q + I \) is a zero element of \(R/I \).

An element \(a \) of a semiring \(R \) is called right \(\pi \)-regular (resp. \(\pi \)-regular) if there exist \(x, y \in R \) and a positive integer \(n \) such that \(a^n + a^{n+1}x = a^{n+1}y \) (resp. \(a^n + a^nxa^n = a^nya^n \)). A semiring \(R \) is called right \(\pi \)-regular (resp. \(\pi \)-regular) if every element of \(R \) is right \(\pi \)-regular (resp. \(\pi \)-regular). If \(n = 1 \) then \(a \) is called a right regular (resp. regular) element of \(R \). If every element of a semiring \(R \) is right regular (resp. regular) then \(R \) is called a right regular (resp. regular) semiring.

\[\Box\]

Example 3. (i) Let \(R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \{0, 1\} \right\} \). Then \(R \) is a right \(\pi \)-regular, \(\pi \)-regular semiring but not right regular or regular. The element \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) is not right regular or regular.

(ii) Let \(R = \{ (a_{ij})_{2 \times 2} : a_{ij} \in \{0, 1\} \} \). Then \(R \) is a regular semiring but not right, left regular.

(iii) Let \(R = (\mathbb{Z}^+ \cup \{-\infty\}, \oplus, \odot) \) where \(a \oplus b = \max\{a, b\} \) and \(a \odot b = a + b \). Then \(R \) is a commutative regular semiring with \(-\infty \) as a zero element and 0 as an identity element. Let \(a \in R \) where \(a \neq 0, -\infty \). Then there does not exist any \(y \in R \) such that \(a = a \oplus y \oplus a \).

A right ideal \(I \) of a semiring \(R \) is called right semiregular if for every \(a_1, a_2 \in I \) there exist \(r_1, r_2 \in I \) such that \(a_1 + r_1 + a_1r_1 + a_2r_2 = a_2 + r_2 + a_1r_2 + a_2r_1 \). The sum of all right semiregular right ideals of a semiring \(R \) is called the right Jacobson radical of \(R \). The right Jacobson radical of \(R \) is equal to the left Jacobson radical of \(R \). It is called the Jacobson-Bourne radical of \(R \). We denote it by \(J(R) \). It is a right semiregular right ideal of \(R \). It is a two sided ideal of \(R \). A semiring \(R \) is called semisimple if \(J(R) = 0 \) (see [4]). Let \(R = (\mathbb{Z}^+, +, \cdot) \). Then by Theorem 9 of [4] and Theorem 4 of [9], the matrix semiring \(R_{nxn} \) is semisimple. A semiring \(R \) is called semiprime if it has no non-zero nilpotent ideals. Every semisimple semiring is semiprime ([4], Theorem 7). A semiring \(R \) is called right Noetherian (resp. right Artinian) if there exists no infinite properly ascending (resp. descending) sequence of right ideals \(I_1 \subset I_2 \subset I_3 \subset \cdots \) (resp. \(I_1 \supset I_2 \supset I_3 \supset \cdots \)) of \(R \).

Theorem 4. If \(R \) is a right and left \(\pi \)-regular semiring then \(R \) is a \(\pi \)-regular semiring.
Proof. Let $a \in R$. Then there exist $x, y, x', y' \in R$ and positive integers m, n such that
\[a^m + a^{m+1} x = a^{m+1} y \]
(1) \[a^n + x'a^{n+1} = y'a^{n+1}. \]
(2) Multiplying (1) by a from left, by y from right and using (1), we get
\[a^m + a^{m+1} x + a^{m+2} xy = a^{m+2} y^2. \]
(3) Now multiplying (3) by a from left, by x from right and then adding a^m, we get
\[a^m + a^{m+1} x + a^{m+2} x^2 + a^{m+3} xyx = a^m + a^{m+3} y^2 x. \]
(4) By using (1), we can write (4) as
\[a^m + a^{m+1} z_1 = a^{m+1} z_2 \]
where $z_1 = y^2 x$, $z_2 = y + ax^2 + a^2 xyx$.
(5) Multiplying (5) by a from left and by z_2 from right, we get
\[a^{m+1} z_2 + a^{m+2} z_1 z_2 = a^{m+2} z_2^2. \]
(6) By using (5), this can be written as
\[a^m + a^{m+2} w_1 = a^{m+2} w_2 \]
where $w_1 = a z_1 + a^2 z_2 z_2$, $w_2 = z_2^2$.
(7) Repeat the same process. After $n - 1$ steps, we get
\[a^m + a^{m+n} u_1 = a^{m+n} u_2 \]
for some $u_1, u_2 \in R$.
(8) By using (2) and the similar argument as above, we get
\[a^n + v_1 a^{m+n} = v_2 a^{m+n} \]
for some $v_1, v_2 \in R$.
(9) From (8) and (9), we get
\[a^{m+n} + a^m v_1 a^{m+n} + a^m u_1 a^n + a^{m+n} u_1 v_1 a^{m+n} = a^{m+n} u_2 v_2 a^{m+n}. \]
(10) Adding $a^{m+n} u_1 v_1 a^{m+n}$ in both sides of (10), we get
\[a^{m+n} + (a^m + a^{m+n} u_1) v_1 a^{m+n} + a^{m+n} u_1 (a^n + v_1 a^{m+n}) = a^{m+n} (u_2 v_2 + u_1 v_1) a^{m+n}. \]
(11) By using (8) and (9), the equation (11) can be written as
\[a^{m+n} + a^{m+n} (u_1 v_2 + u_2 v_1) a^{m+n} = a^{m+n} (u_1 v_1 + u_2 v_2) a^{m+n}. \]
Therefore R is a π-regular semiring.

A semiring R is called duo if every one sided ideal of R is a two sided ideal of R.

Corollary 5. Let R be a duo semiring. Then R is a right π-regular semiring if and only if it is π-regular semiring.
Let $a \in R$. As in the above theorem, there exist $x, y \in R$ and a positive integer m such that $a^m + a^{m+2}x = a^{m+2}y$. Let $\langle a^{m+1} \rangle_1$ be the left ideal of R generated by a^{m+1}. It is a two-sided ideal of R. So $a^{m+1}x, a^{m+1}y \in \langle a^{m+1} \rangle_1$. Hence $a^{m+1}x = sa^{m+1} + ja^{m+1}$, $a^{m+1}y = ta^{m+1} + ka^{m+1}$ for some $s, t \in R$ and $j, k \in \mathbb{Z}^+$. Hence $a^m + (sa^{m+1} + ja^{m+1}) = a(ta^{m+1} + ka^{m+1})$. So $a^m + ua^{m+1} = va^{m+1}$ for some $u, v \in R$. Therefore R is a left π-semiring. So R is a π-regular semiring. Conversely, let $a \in R$. Then there exist $x, y \in R$ and a positive integer m such that $a^m + a^m xa^m = a^m ya^m$. Let $\langle a^m \rangle$, be the right ideal of R generated by a^m. It is a two-sided ideal of R. So $xa^m, ya^m \in \langle a^m \rangle$. Hence $xa^m = a^m s + a^m j$, $ya^m = a^m t + a^m k$ for some $s, t \in R$ and $j, k \in \mathbb{Z}^+$. Now $a^m + a^m (a^m s + a^m j) = a^m (a^m t + a^m k)$. So $a^m + a^m (s + j) = a^{2m} (t + k)$. If $m > 1$ then $a^m + a^{m+1} w = a^{m+1} z$ for some $w, z \in R$. If $m = 1$ then $a + a^2 (s + j) = a^2 (t + k)$. As in the above theorem, it is easy to see that $a + a^2 u = a^2 v$ for some $u, v \in R$. Therefore R is a right π-regular semiring.

\textbf{Lemma 6.} Let R be a right π-regular semiring and $a \in J(R)$. Then $a^n + w = w$ for some $w \in J(R)$ and positive integer n.

\textbf{Proof.} Let $a \in J(R)$. Then there exist $x, y \in R$ and a positive integer n such that

$$a^n + a^{n+1}x = a^{n+1}y.$$ \hspace{1cm} (1)

Since $ax, ay \in J(R)$, there exist $s_1, s_2 \in J(R)$ such that $ax + s_1 + axs_1 + ays_2 = ay + s_2 + ays_1 + axs_2$. Now multiplying this by a^n from left, we get $a^{n+1}x + a^n s_1 + a^{n+1}xs_1 + a^{n+1}ys_2 = a^{n+1}y + a^n s_2 + a^{n+1}ys_1 + a^{n+1}xs_2$. Using (1), it can be written as $a^{n+1}x + a^{n} s_1 + a^{n+1}xs_1 + (a^n + a^{n+1}x)s_2 = a^n + a^n x + a^n s_2 + (a^n + a_{n+1}x)s_1 + a^{n+1}xs_2$. Now $a^n + w = w$ where $w = a^{n+1}x + a^n s_1 + a^{n+1}xs_1 + a^n s_2 + a^{n+1}xs_2 \in J(R)$. \hfill \Box

\textbf{Theorem 7.} If R is an additive cancellative semiprime, right Artinian or right π-regular right Noetherian semiring then R is semisimple.

\textbf{Proof.} Let R be right Artinian. Easily, R is right π-regular. By Lemma 6, $J(R)$ is a nil ideal. It is easy to see that $J(R)$ is a nilpotent ideal of R. So $J(R) = 0$. Let R be right π-regular right Noetherian semiring. Hence $J(R)$ is a nil ideal. We can see that R has no non-zero nil ideal. So $J(R) = 0$. \hfill \Box

The condition that R is an additive cancellative semiring is essential.

\textbf{Example 8.} Let $R = \{\{0, 1, 2, \ldots, n\}, \text{max}, \text{min}\}$. Then R is a commutative semiprime Noetherian π-regular semiring with an identity element n. It is not an additive cancellative semiring. Let I be an ideal of R and let $a_1, a_2 \in I$. Then we can choose $r_1 = r_2 = \max\{a_1, a_2\} \in I$ such that $a_1 + r_1 + a_1r_1 + a_2r_2 = a_2 + r_2 + a_1r_2 + a_2r_1$ holds. Hence every ideal of R is semiregular. Thus $J(R) = R$. So R is not semisimple.
Example 9. Let $R = (\mathbb{Z}^+ \cup \{\infty\}, \max, \min)$. Then R is a commutative semiprime Artinian semiring with an identity element ∞. It is not an additive cancellative semiring. Every ideal of R is semiregular. So R is not semisimple.

Lemma 10. Let R be a semiring and $a, x \in R$. If $a^n + a^{n+1}x$ is right regular element where $n > 0$ then a is right π-regular element.

Proof. Let $a^n + a^{n+1}x$ be right regular element. Then $a^n + a^{n+1}x + (a^n + a^{n+1}x)^2w = (a^n + a^{n+1}x)^2z$ for some $w, z \in R$. Hence $a^n + a^{n+1}(x + a^{n-1}w + a^n xw + x a^n w + x a^{n+1}xw) = a^{n+1}(a^{n-1} + a^n x + xa^n + xa^{n+1}x)z$. Therefore a is right π-regular.

Proposition 11. Every ideal of a right π-regular semiring is right π-regular.

Proof. Let I be an ideal of a right π-regular semiring R. Let $a \in I$. Then there exist $x, y \in R$ and a positive integer n such that

$$a^n + a^{n+1}x = a^{n+1}y. \quad (1)$$

Multiplying this equation by a from left, by x from right and then adding a^n in both sides, we get

$$a^{n+1}y + a^{n+2}x^2 = a^n + a^{n+1}x + a^{n+2}x^2 = a^n + a^{n+2}yx. \quad (2)$$

Now multiplying (1) by a from left and by y from right and then adding $a^{n+2}x^2$ in both sides, we get $a^{n+2}x^2 + a^{n+1}y + a^{n+2}xy = a^{n+2}x^2 + a^{n+2}y^2$.

Using (2) we have $a^n + a^{n+2}yx + a^{n+2}xy = a^{n+2}x^2 + a^{n+2}y^2$. So $a^n + a^{n+1}u_1 = a^{n+1}u_2$ where $u_1 = ayx + axy, u_2 = ax^2 + ay^2 \in I$. Hence I is a right π-regular ideal.

Proposition 12. A semiring R is right π-regular if and only if R/I is right π-regular for every partitioning ideal I of R.

Proof. Define $f : R \rightarrow R/I$ by $f(a) = q + I$ where $q \in Q$ is the unique element such that $a + I \subseteq q + 1$. Then f is an onto homomorphism. If R is right π-regular semiring then so is R/I. Conversely, since $I = 0$ is a partitioning ideal of R with $Q = R$, we see that $R \cong R/0$ is right π-regular semiring.

Theorem 13. Let I be a partitioning ideal of a semiring R such that $Q = (R - I) \cup \{0\}$. If I is a right regular ideal and the quotient semiring R/I is right π-regular then R is a right π-regular semiring.

Proof. Let $q \in R$. If $q \in I$ then q is right π-regular. Suppose $q \notin I$. Then $q \in Q$ and $q \neq 0$. Since R/I is right π-regular, there exist $q' + I$, $q'' + I \in R/I$ and a positive integer n such that $(q + I)^n \oplus (q + I)^{n+1} \circ (q + I) = (q + I)^{n+1} \circ (q'' + I) = q'' + I$ where $q'' \in Q$ is the unique element such that
1. \(q^{n+1}q'' + I \subseteq q^* + I \).
2. \(q^n + q^{n+1}q' + I \subseteq q^* + I \)

which follows by Lemma 1.

(i) Suppose \(q^{n+1}q'' \in I \). We have \(q^{n+1}q'' = q^* + x \) for some \(x \in I \). Since by Lemma 2, \(I \) is a subtractive ideal of \(R \), \(q^* \in I \). We have \(q^n + q^{n+1}q' \subseteq q^n + q^{n+1}q' + I \subseteq q^* + I \subseteq I \). By Lemma 10, \(q \) is right \(\pi \)-regular. (ii) If \(q^n + q^{n+1}q' \notin I \) then \(q^n + q^{n+1}q' \in Q \). So using (1) and the definition of partitioning ideal, we get \(q^n + q^{n+1}q' = q^* \). Thus \(q^n + q^{n+1}q' + I \subseteq q^* + I = q^{n+1}q'' + I \). If \(q^n + q^{n+1}q' \in Q \) then \(q^n + q^{n+1}q' = q^{n+1}q'' \). Hence \(q \) is right \(\pi \)-regular. If \(q^n + q^{n+1}q' \notin \), then \(q^n + q^{n+1}q' \in I \). Hence by Lemma 10, \(q \) is right \(\pi \)-regular. Now \(R \) is right \(\pi \)-regular.

The following example satisfies all the hypotheses of the above theorem.

Example 14. Let \(R = (\mathbb{Z}^+ \cup \{\infty\}, \text{max, min}) \). Then \(R \) is a commutative semiring with an identity element \(\infty \). Let \(I = \{0, 1, 2, 3, 4, 5\} \). Then \(I \) is a partitioning ideal of \(R \) where \(Q = \{0, 6, 7, 8, \ldots \} \cup \{\infty\} \). Hence \(Q = (R - I) \cup \{0\} \). Clearly \(I, R/I \) and \(R \) are regular.

References

(Received: July 6, 2004)

Vishnu Gupta
Department of Mathematics
University of Delhi
Delhi 110 007, India
vishnu_gupta2k3@yahoo.co.in

J. N. Chaudhari
Department of Mathematics
M.J. College
Jalgaon 425 002, India