SARAJEVO JOURNAL OF MATHEMATICS Vol.2 (14) (2006), 3–9

RIGHT π -REGULAR SEMIRINGS

VISHNU GUPTA AND J. N. CHAUDHARI

ABSTRACT. We prove the following results (1) If R is a right and left π -regular semiring then R is a π -regular semiring. (2) If R is an additive cancellative semiprime, right Artinian or right π -regular right Noetherian semiring then R is semisimple. (3) Let I be a partitioning ideal of a semiring R such that $Q = (R - I) \cup \{0\}$. If I is a right regular ideal and the quotient semiring R/I is right π -regular then R is a right π -regular semiring.

For the definition of semiring we refer the readers to [2]. Z^+ will denote the set of all non negative integers. The following lemma is easy to prove.

Lemma 1. Let I be an ideal of a semiring R and let $a, x \in R$ such that $a + I \subseteq x + I$. Then $ar + I \subseteq xr + I$, $ra + I \subseteq rx + I$, $a + r + I \subseteq x + r + I$ for all $r \in R$.

An ideal I of a semiring R is called subtractive if $a, a + b \in I, b \in R$ implies $b \in I$. An ideal I of semiring R is called a partitioning ideal if there exists a subset Q of R such that:

- 1. $R = \bigcup \{q + I : q \in Q\}.$
- 2. If $q_1, q_2 \in Q$ then $(q_1 + I) \cap (q_2 + I) \neq \emptyset$ if and only if $q_1 = q_2$.

Lemma 2. If I is a partitioning ideal of a semiring R then I is a subtractive ideal of R.

Proof. See Corollary 7.19 of [8], which holds true for semirings not necessarily with an identity element.

Let I be a partitioning ideal of a semiring R and let $R/I = \{q+I : q \in Q\}$. Then R/I forms a semiring under the binary operations \oplus and \odot defined as follows:

$$(q_1+I)\oplus(q_2+I)=q_3+I$$

²⁰⁰⁰ Mathematics Subject Classification. 16Y60.

Key words and phrases. Semiring, subtractive ideal, partitioning ideal, quotient semiring, right π -regular semiring, right regular semiring, π -regular semiring, regular semiring, right semiregular right ideal, Jacobson-Bourne radical, semiprime semiring, semisimple semiring, right Arthinian semiring, right Noetherian semiring.

where $q_3 \in Q$ is the unique element such that $q_1 + q_2 + I \subseteq q_3 + I$.

$$(q_1 + I) \odot (q_2 + I) = q_4 + I$$

where $q_4 \in Q$ is the unique element such that $q_1q_2 + I \subseteq q_4 + I$.

This semiring R/I is called the quotient semiring of R by I. By definition of partitioning ideal, there exists a unique $q \in Q$ such that $0 + I \subseteq q + 1$. Then q + I is a zero element of R/I.

An element a of a semiring R is called right π -regular (resp. π -regular) if there exist $x, y \in R$ and a positive integer n such that $a^n + a^{n+1}x = a^{n+1}y$ (resp. $a^n + a^n x a^n = a^n y a^n$). A semiring R is called right π -regular (resp. π -regular) if every element of R is right π -regular (resp. π -regular). If n = 1then a is called a right regular (resp. regular) element of R. If every element of a semiring R is right regular (resp. regular) then R is called a right regular (resp. regular) semiring.

Example 3. (i) Let $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in (\{0, 1\}, \max, \min) \right\}$. Then R is a right π -regular, π -regular semiring but not right regular or regular. The element $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not right regular or regular.

(ii) Let $R = \{(a_{ij})_{2\times 2} : a_{ij} \in (\{0, 1\}, \max, \min)\}$. Then R is a regular semiring but not right, left regular.

(iii) Let $R = (Z^+ \cup \{-\infty\}, \oplus, \odot)$ where $a \oplus b = \max\{a, b\}$ and $a \odot b = a + b$. Then R is a commutative regular semiring with $-\infty$ as a zero element and 0 as an identity element. Let $a \in R$ where $a \neq 0, -\infty$. Then there does not exist any $y \in R$ such that $a = a \oplus y \oplus a$.

A right ideal I of a semiring R is called right semiregular if for every $a_1, a_2 \in I$ there exist $r_1, r_2 \in I$ such that $a_1 + r_1 + a_1r_1 + a_2r_2 = a_2 + r_2 + a_1r_2 + a_2r_1$. The sum of all right semiregular right ideals of a semiring R is called the right Jacobson radical of R. The right Jacobson radical of R is equal to the left Jacobson radical of R. It is called the Jacobson-Bourne radical of R. We denote it by J(R). It is a right semiregular right ideal of R. It is a two sided ideal of R. A semiring R is called semisimple if J(R) = 0 (see [4]). Let $R = (Z^+, +, \cdot)$. Then by Theorem 9 of [4] and Theorem 4 of [9], the matrix semiring $R_{n \times n}$ is semisimple. A semiring R is called semiprime if it has no non-zero nilpotent ideals. Every semisimple semiring is semiprime ([4], Theorem 7). A semiring R is called right Noetherian (resp. right Artinian) if there exists no infinite properly ascending (resp. descending) sequence of right ideals $I_1 \subset I_2 \subset I_3 \subset \cdots$ (resp. $I_1 \supset I_2 \supset I_3 \supset \cdots$) of R.

Theorem 4. If R is a right and left π -regular semiring then R is a π -regular semiring.

Proof. Let $a \in R$. Then there exist $x, y, x', y' \in R$ and positive integers m, n such that

$$a^m + a^{m+1}x = a^{m+1}y (1)$$

$$a^n + x'a^{n+1} = y'a^{n+1}. (2)$$

Multiplying (1) by a from left, by y from right and using (1), we get

$$a^{m} + a^{m+1}x + a^{m+2}xy = a^{m+2}y^{2}.$$
 (3)

Now multiplying (3) by a from left, by x from right and then adding a^m , we get

$$a^{m} + a^{m+1}x + a^{m+2}x^{2} + a^{m+3}xyx = a^{m} + a^{m+3}y^{2}x.$$
 (4)

By using (1), we can write (4) as

$$a^m + a^{m+3}z_1 = a^{m+1}z_2$$
 where $z_1 = y^2x, z_2 = y + ax^2 + a^2xyx.$ (5)

Multiplying (5) by a from left and by z_2 from right, we get

$$a^{m+1}z_2 + a^{m+4}z_1z_2 = a^{m+2}z_2^2.$$
 (6)

By using (5), this can be written as

$$a^m + a^{m+2}w_1 = a^{m+2}w_2$$
 where $w_1 = az_1 + a^2 z_1 z_2, w_2 = z_2^2$. (7)

Repeat the same process. After n-1 steps, we get

$$a^{m} + a^{m+n}u_1 = a^{m+n}u_2$$
 for some $u_1, u_2 \in R$. (8)

By using (2) and the similar argument as above, we get

$$a^{n} + v_{1}a^{m+n} = v_{2}a^{m+n}$$
 for some $v_{1}, v_{2} \in R.$ (9)

From (8) and (9), we get

$$a^{m+n} + a^m v_1 a^{m+n} + a^{m+n} u_1 a^n + a^{m+n} u_1 v_1 a^{m+n} = a^{m+n} u_2 v_2 a^{m+n}.$$
 (10)

Adding $a^{m+n}u_1v_1a^{m+n}$ in both sides of (10), we get

$$a^{m+n} + (a^m + a^{m+n}u_1)v_1a^{m+n} + a^{m+n}u_1(a^n + v_1a^{m+n}) = a^{m+n}(u_2v_2 + u_1v_1)a^{m+n}.$$
 (11)

By using (8) and (9), the equation (11) can be written as

$$a^{m+n} + a^{m+n}(u_1v_2 + u_2v_1)a^{m+n} = a^{m+n}(u_1v_1 + u_2v_2)a^{m+n}.$$

Therefore R is a π -regular semiring.

A semiring R is called duo if every one sided ideal of R is a two sided ideal of R.

Corollary 5. Let R be a duo semiring. Then R is a right π -regular semiring if and only if it is π -regular semiring.

Proof. Let $a \in R$. As in the above theorem, there exist $x, y \in R$ and a positive integer *m* such that $a^m + a^{m+2}x = a^{m+2}y$. Let $\langle a^{m+1} \rangle_1$ be the left ideal of *R* generated by a^{m+1} . It is a two sided ideal of *R*. So $a^{m+1}x, a^{m+1}y \in \langle a^{m+1} \rangle_1$. Hence $a^{m+1}x = sa^{m+1} + ja^{m+1}, a^{m+1}y = ta^{m+1} + ka^{m+1}$ for some $s, t \in R$ and $j, k \in Z^+$. Hence $a^m + a(sa^{m+1} + ja^{m+1}) = a(ta^{m+1} + ka^{m+1})$. So $a^m + ua^{m+1} = va^{m+1}$ for some $u, v \in R$. Therefore *R* is a left π-regular semiring. So *R* is a π-regular semiring. Conversely, let $a \in R$. Then there exist $x, y \in R$ and a positive integer *m* such that $a^m + a^mxa^m = a^mya^m$. Let $\langle a^m \rangle_r$ be the right ideal of *R* generated by a^m . It is a two sided ideal of *R*. So $xa^m, ya^m \in \langle a^m \rangle_r$. Hence $xa^m = a^ms + a^mj, ya^m = a^mt + a^mk$ for some $s, t \in R$ and $j, k \in Z^+$. Now $a^m + a^m(a^ms + a^mj) = a^m(a^mt + a^mk)$. So $a^m + a^{2m}(s+j) = a^{2m}(t+k)$. If m > 1 then $a^m + a^{m+1}w = a^{m+1}z$ for some $w, z \in R$. If m = 1 then $a + a^2(s+j) = a^2(t+k)$. As in the above theorem, it is easy to see that $a + a^2u = a^2v$ for some $u, v \in R$. Therefore *R* is a right π-regular semiring.

Lemma 6. Let R be a right π -regular semiring and $a \in J(R)$. Then $a^n + w = w$ for some $w \in J(R)$ and positive integer n.

Proof. Let $a \in J(R)$. Then there exist $x, y \in R$ and a positive integer n such that

$$a^n + a^{n+1}x = a^{n+1}y. (1)$$

Since $ax, ay \in J(R)$, there exist $s_1, s_2 \in J(R)$ such that $ax + s_1 + axs_1 + ays_2 = ay + s_2 + ays_1 + axs_2$. Now multiplying this by a^n from left, we get $a^{n+1}x + a^ns_1 + a^{n+1}xs_1 + a^{n+1}ys_2 = a^{n+1}y + a^ns_2 + a^{n+1}ys_1 + a^{n+1}xs_2$. Using (1), it can be written as $a^{n+1}x + a^ns_1 + a^{n+1}xs_1 + (a^n + a^{n+1}x)s_2 = a^n + a^{n+1}x + a^ns_2 + (a^n + a_{n+1}x)s_1 + a^{n+1}xs_2$. Now $a^n + w = w$ where $w = a^{n+1}x + a^ns_1 + a^{n+1}xs_1 + a^ns_2 + a^{n+1}xs_2 \in J(R)$.

Theorem 7. If R is an additive cancellative semiprime, right Artinian or right π -regular right Noetherian semiring then R is semisimple.

Proof. Let R be right Artinian. Easily, R is right π -regular. By Lemma 6, J(R) is a nil ideal. It is easy to see that J(R) is a nilpotent ideal of R. So J(R) = 0. Let R be right π -regular right Noetherian semiring. Hence J(R) is a nil ideal. We can see that R has no non-zero nil ideal. So J(R) = 0. \Box

The condition that R is an additive cancellative semiring is essential.

Example 8. Let $R = (\{0, 1, 2, ..., n\}, \max, \min)$. Then R is a commutative semiprime Noetherian π -regular semiring with an identity element n. It is not an additive cancellative semiring. Let I be an ideal of R and let $a_1, a_2 \in I$. Then we can choose $r_1 = r_2 = \max\{a_1, a_2\} \in I$ such that $a_1 + r_1 + a_1r_1 + a_2r_2 = a_2 + r_2 + a_1r_2 + a_2r_1$ holds. Hence every ideal of R is semiregular. Thus J(R) = R. So R is not semisimple.

Example 9. Let $R = (Z^+ \cup \{\infty\}, \max, \min)$. Then R is a commutative semiprime Artinian semiring with an identity element ∞ . It is not an additive cancellative semiring. Every ideal of R is semiregular. So R is not semisimple.

Lemma 10. Let R be a semiring and $a, x \in R$. If $a^n + a^{n+1}x$ is right regular element where n > 0 then a is right π -regular element.

Proof. Let $a^n + a^{n+1}x$ be right regular element. Then $a^n + a^{n+1}x + (a^n + a^{n+1}x)^2w = (a^n + a^{n+1}x)^2z$ for some $w, z \in R$. Hence $a^n + a^{n+1}(x + a^{n-1}w + a^nxw + xa^nw + xa^{n+1}xw) = a^{n+1}(a^{n-1} + a^nx + xa^n + xa^{n+1}x)z$. Therefore a is right π -regular.

Proposition 11. Every ideal of a right π -regular semiring is right π -regular.

Proof. Let I be an ideal of a right π -regular semiring R. Let $a \in I$. Then there exist $x, y \in R$ and a positive integer n such that

$$a^n + a^{n+1}x = a^{n+1}y. (1)$$

Multiplying this equation by a from left, by x from right and then adding a^n in both sides, we get

$$a^{n+1}y + a^{n+2}x^2 = a^n + a^{n+1}x + a^{n+2}x^2 = a^n + a^{n+2}yx.$$
 (2)

Now multiplying (1) by a from left and by y from right and then adding $a^{n+2}x^2$ in both sides, we get $a^{n+2}x^2 + a^{n+1}y + a^{n+2}xy = a^{n+2}x^2 + a^{n+2}y^2$. Using (2) we have $a^n + a^{n+2}yx + a^{n+2}xy = a^{n+2}x^2 + a^{n+2}y^2$. So $a^n + a^{n+1}u_1 = a^{n+1}u_2$ where $u_1 = ayx + axy$, $u_2 = ax^2 + ay^2 \in I$. Hence I is a right π -regular ideal.

Proposition 12. A semiring R is right π -regular if and only if R/I is right π -regular for every partitioning ideal I of R.

Proof. Define $f : R \to R/I$ by f(a) = q + I where $q \in Q$ is the unique element such that $a + I \subseteq q + 1$. Then f is an onto homomorphism. If R is right π -regular semiring then so is R/I. Conversely, since I = 0 is a partitioning ideal of R with Q = R, we see that $R \cong R/0$ is right π -regular semiring. \Box

Theorem 13. Let I be a partitioning ideal of a semiring R such that $Q = (R - I) \cup \{0\}$. If I is a right regular ideal and the quotient semiring R/I is right π -regular then R is a right π -regular semiring.

Proof. Let $q \in R$. If $q \in I$ then q is right π -regular. Suppose $q \notin I$. Then $q \in Q$ and $q \neq 0$. Since R/I is right π -regular, there exist q' + I, $q'' + I \in R/I$ and a positive integer n such that $(q+I)^n \oplus (q+I)^{n+1} \odot (q'+I) = (q+I)^{n+1} \odot (q''+I) = q^* + I$ where $q^* \in Q$ is the unique element such that 1. $q^{n+1}q'' + I \subseteq q^* + I$. 2. $q^n + q^{n+1}q' + I \subseteq q^* + I$

which follows by Lemma 1.

(i) Suppose $q^{n+1}q'' \in I$. We have $q^{n+1}q'' = q^* + x$ for some $x \in I$. Since by Lemma 2, I is a substractive ideal of R, $q^* \in I$. We have $q^n + q^{n+1}q' \in$ $q^n + q^{n+1}q' + I \subseteq q^* + I \subseteq I$. By Lemma 10, q is right π -regular. (ii) If $q^{n+1}q'' \notin I$ then $q^{n+1}q'' \in Q$. So using (1) and the definition of partitioning ideal, we get $q^{n+1}q'' = q^*$. Thus $q^n + q^{n+1}q' + I \subseteq q^* + I = q^{n+1}q'' + I$. If $q^n + q^{n+1}q' \in Q$ then $q^n + q^{n+1}q' = q^{n+1}q''$. Hence q is right π -regular. If $q^n + q^{n+1}q' \notin Q$ then $q^n + q^{n+1}q' \in I$. Hence by Lemma 10, q is right π -regular. Now R is right π -regular.

The following example satisfies all the hypotheses of the above theorem.

Example 14. Let $R = (Z^+ \cup \{\infty\}, \max, \min)$. Then R is a commutative semiring with an identity element ∞ . Let $I = \{0, 1, 2, 3, 4, 5\}$. Then I is a partitioning ideal of R where $Q = \{0, 6, 7, 8, \ldots\} \cup \{\infty\}$. Hence $Q = (R - I) \cup \{0\}$. Clearly I, R/I and R are regular.

References

- M. R. Adhikari, M. K. Sen and H. J. Weinert, On k-regular semirings, Bull. Cal. Math. Soc., 88 (1996), 141–144.
- [2] P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412–416.
- [3] P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, *Basic Abstract Algebra*, Cambridge University Press, 1986.
- [4] S. Bourne, The Jacobson radical of a semiring, Prec. Nat. Acad. Sci., 37 (1951), 163–170.
- [5] J. N. Chaudhari and V. Gupta, Weak primary decomposition theorem for right noetherian semirings, Indian J. Pure and Appl. Math., 25 (1994),647–654.
- [6] F. Dischinger, π-reguliers, C.R. Acad. Sci. Paris, 283A (1976), 571–573.
- [7] S. Ghosh, A note on regularity in matrix semirings, Kyungpook Math J., 44 (2004), 1–4.
- [8] J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, John Wiley and Sons, New York. 1992.
- [9] V. Gupta and J. N. Chaudhari, Some remarks on semirings, Rad. Mat., 12 (2003), 13–18.
- [10] U. Hebisch and H. J. Weinert, Semirings-Algebraic Theory and Applications in Computer Science, World Scientific Publishing Co. Pvt. Ltd., 1998.
- [11] Y. Hirano, Some studies of strongly π -regular rings, Math J. Okayama Univ., 20 (1978), 141–149.
- [12] K. Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., 11 (1959), 409– 421.
- [13] M. K. Sen and P. Mukhopadhyay, Von Neumann regularity in semirings, Kyungpook Math. J., 35 (1995), 249–258.

(Received: July 6, 2004)

Vishnu Gupta Department of Mathematics University of Delhi Delhi 110 007, India vishnu-gupta2k3@yahoo.co.in

J. N. Chaudhari Department of Mathematics M.J. College Jalgaon 425 002, India