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SOME COMMUTATIVE NEUTRIX CONVOLUTIONS
INVOLVING THE FRESNEL INTEGRALS

BRIAN FISHER, KAMSING NONLAOPON AND GUMPON SRITANRATANA

Abstract. The Fresnel cosine integral C(x), the Fresnel sine integral

S(x) and the associated functions C+(x), C−(x), S+(x) and S−(x) are
defined as locally summable functions on the real line. Some convolu-
tions and commutative neutrix convolutions of the Fresnel sine integral
and its associated functions with xr are evaluated.

The Fresnel sine integral S(x) is defined by

S(x) =

√
2
π

x∫

0

sinu2 du,

see [7] and the associated functions S+(x) and S−(x) are defined by

S+(x) = H(x) S(x), Ss−(x) = H(−x) S(x).

The Fresnel cosine integral C(x) is defined by

C(x) =

√
2
π

x∫

0

cosu2 du,

see [7] and the associated functions C+(x) and C−(x) are defined by

C+(x) = H(x) C(x), Cc−(x) = H(−x) C(x),

where H denotes Heaviside’s function.
We define the function Ir(x) by

Ir(x) =

x∫

0

ur sinu2 du
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for r = 0, 1, 2, . . . . In particular

I0(x) =
√

π

2 S(x), I1(x) =
1
2
(1− cosx2), I2(x) = −1

2
x cosx2 +

√
π

2
√

2
C(x).

We define the functions cos+ x, cos− x, sin+ x and sin− x by

sin+ x = H(x) sinx, sin− x = H(−x) sinx,

cos+ x = H(x) cos x, cos− x = H(−x) cos x.

If the classical convolution f ∗ g of two functions f and g exists then g ∗ f
exists and

f ∗ g = g ∗ f. (1)

Further, if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exists, then

(f ∗ g)′ = f ∗ g′ (or f ′ ∗ g). (2)

The classical definition of the convolution can be extended to define the
convolution f ∗g of two distributions f and g in D′ with following definition,
see [6].

Definition 1. Let f and g be distributions in D′. Then the convolution f ∗g
is defined by the equation

〈(f ∗ g)(x), ϕ(x)〉 = 〈f(y), 〈g(x), ϕ(x + y)〉〉
for arbitrary ϕ in D′, provided f and g satisfy either of the conditions:

(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗ g exists by this definition then equa-
tions (1) and (2) are satisfied.

The following convolutions were proved in [5].

(sin+ x2) ∗ xr
+ =

r∑

i=0

(
r

i

)
(−1)r−iIr−i(x)xi

+,

(sin− x2) ∗ xr
− = −

r∑

i=0

(
r

i

)
Ir−i(x)xi

−,

S+(x) ∗ xr
+ =

√
2√

π(r + 1)

r+1∑

i=0

(
r + 1

i

)
(−1)r−i+1Ir−i+1(x)xi

+,

S−(x) ∗ xr
− =

√
2√

π(r + 1)

r+1∑

i=0

(
r + 1

i

)
Ir−i+1(x)xi

−

for r = 0, 1, 2, . . . .
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Definition 1 was extended in [2] with the next definition but first of all
we let τ be a function in D having the following properties:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,
(iii) τ(x) = 1, for |x| ≤ 1

2 ,
(iv) τ(x) = 0, for |x| ≥ 1.

The function τν is now defined for ν > 0 by

τν(x) =





1, |x| ≤ ν,

τ(ννx− νν+1), x > ν,

τ(ννx + νν+1), x < −ν.

Definition 2. Let f and g be distributions in D′ and let fν = fτν for ν > 0.
The neutrix convolution f©∗ g is defined as the neutrix limit of the sequence
{fν ∗ g}, provided the limit h exists in the sense that

N-lim
ν→∞ 〈fν ∗ g, ϕ〉 = 〈h, ϕ〉,

for all ϕ in D, where N is the neutrix, see van der Corput [1], having domain
N ′ the positive real numbers, with negligible functions finite linear sums of
the functions

νλ lnr−1 ν, lnr ν, (λ 6= 0, r = 1, 2, . . .)
and all functions which converge to zero in the normal sense as ν tends to
infinity.

Note that in this definition the convolution product fν ∗ g is defined in
Gel’fand and Shilov’s sense, the distribution fν having bounded support.

It was proved in [2] that if f ∗g exists in the classical sense or by Definition
1, then f ©∗ g exists and

f ©∗ g = f ∗ g.

The above definition of the neutrix convolution is in general non-commu-
tative. The next definition gives a commutative neutrix convolution and
was given in [3].

Definition 3. Let f and g be distributions in D′ and let fν = fτν and
gν = gτν for ν > 0. The commuative neutrix convolution product f ∗ g is
defined as the neutrix limit of the sequence {fν ∗ gν}, provided the limit h
exists in the sense that

N-lim
ν→∞ 〈fν ∗ gν , ϕ〉 = 〈h, ϕ〉,

for all ϕ in D, where N is the neutrix, see van der Corput [1], having domain
N ′ the positive real numbers, with negligible functions finite linear sums of
the functions

νλ lnr−1 ν, lnr ν, (λ 6= 0, r = 1, 2, . . .)
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and all functions which converge to zero in the normal sense as ν tends to
infinity.

The following theorem, proved in [3] shows that the neutrix convolution
is a generalization of the convolution.

Theorem 1. Let f and g be distributions in D′ satisfying either condition
(a) or condition (b) of Gel’fand and Shilov’s definition. Then the neutrix
convolution product f ∗ g exists and

f ∗ g = f ∗ g.

Note that equation (1) holds for the neutrix convolution product but
(f ∗ g)′ is not necessarily equal to f ′ ∗ g, but we do have the following
theorem which was proved in [4].

Theorem 2. Let f and g be distributions in D′ and suppose that the neutrix
convolution product f ∗ g exists. If N-limν→∞〈(fτ ′ν)∗gν , ϕ〉 exists and equals
〈h, ϕ〉 for all ϕ in D, then f ′ ∗ g exists and

(f ∗ g)′ = f ′ ∗ g + h. (3)

In the following, we need to extend our set of negligible functions to
include finite linear sums of the functions

νr cos ν2, νr sin ν2 (r = 1, 2, . . .).

We also need the following lemma, which was proved in [5]:

Lemma 1. If Ir = N-limν→∞ Ir(ν), then

I4r =
(−1)r(4r)!

√
π

24r+1(2r)!
√

2
(4)

I4r+1 =
(−1)r(2r)!

2
, (5)

I4r+2 =
(−1)r(4r + 1)!

√
π

24r+2(2r)!
√

2
, (6)

I4r+3 = 0 (7)

for r = 0, 1, 2, . . . .

We now prove

Theorem 3. The commutative neutrix convolution (sin+ x2) ∗ xr exists and

(sin+ x2) ∗ xr =
r∑

i=0

(
r

i

)
(−1)r−iIr−ix

i (8)
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for r = 0, 1, 2, . . . . In particular,

(sin+ x2) ∗ 1 =
√

π

2
√

2
, (9)

(sin+ x2) ∗ x = −1
2

+
√

π

2
√

2
x. (10)

Proof. We put (sin+ x2)ν = (sin+ x2)τν(x) and (xr)ν = xrτν(x). Then the
convolution (sin+ x2)ν ∗ (xr)ν exists and

(sin+ x2)ν ∗ (xr)ν =

ν∫

0

sin t2(x− t)rτν(x− t) dt

+

ν+ν−ν∫

ν

sin t2(x− t)rτν(t)τν(x− t) dt. (11)

If 0 ≤ |x| ≤ ν, then
ν∫

0

sin t2(x− t)rτν(x− t) dt =
r∑

i=0

(
r

i

) ν∫

0

xi(−t)r−i sin t2 dt

=
r∑

i=0

(
r

i

)
(−1)r−iIr−i(ν)xi

and it follows that

N-lim
ν→∞

ν∫

0

sin t2(x− t)rτν(x− t) dt =
r∑

i=0

(
r

i

)
(−1)r−iIr−ix

i, (12)

on using Lemma 1.
Further,

∣∣∣∣∣

ν+ν−ν∫

ν

sin t2(x− t)rτν(t)τν(x− t) dt

∣∣∣∣∣ ≤
ν+ν−ν∫

ν

(t− x)r dt ≤ (ν + ν−ν)ν−ν

and it follows that for each fixed x,

lim
ν→∞

ν+ν−ν∫

ν

sin t2(x− t)rτν(t)τν(x− t) dt = 0. (13)

Equation (8) follows from equations (11), (12) and (13). Equations (9) and
(10) follow immediately on using Lemma 1. ¤
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Corollary 3.1. The commutative neutrix convolution sin− x2 ∗ xr exists
and

(sin− x2) ∗ xr =
r∑

i=0

(
r

i

)
(−1)r−i+1Ir−ix

i (14)

for r = 0, 1, 2, . . . . In particular,

(sin− x2) ∗ 1 = −
√

π

2
√

2
, (15)

(sin− x2) ∗ x =
1
2
−
√

π

2
√

2
x. (16)

Proof. Equation (14) follows on replacing x by −x in equation (8) and noting
that Ir must be replaced by

N-lim
ν→∞ Ir(−ν) = (−1)r−1 N-lim

ν→∞ Ir(ν) = (−1)r−1Ir. (17)

Equations (15) and (16) follow from equation (14) on using equations (4)
and (5). ¤

Corollary 3.2. The commutative neutrix convolution (sinx2) ∗ xr exists
and

(sinx2) ∗ xr = 0 (18)

for r = 0, 1, 2, . . . .

Proof. Equation (18) follows from equations (8) and (14) on noting that
sinx2 = sin+ x2 + sin− x2. ¤

Theorem 4. The commutative neutrix convolution (x cos+ x2) ∗ xr exists
and

(x cos+ x2) ∗ xr =
r

2

r−1∑

i=0

(
r − 1

i

)
(−1)r−i+1Ir−ix

i (19)

for r = 1, 2, . . . . In particular,

(x cos+ x2) ∗ 1 = 0, (20)

(x cos+ x2) ∗ x =
1
4
, (21)

(x cos+ x2) ∗ x2 = −
√

π

4
√

2
+

x

2
. (22)
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Proof. We have

[(sin+ x2)τ ′ν(x)] ∗ (xr)ν =

ν+ν−ν∫

ν

sin t2(x− t)rτν(x− t) dτν(t)

= − sin ν2(x− ν)rτν(x− ν)

− 2

ν+ν−ν∫

ν

t cos t2(x− t)rτν(t)τν(x− t) dt

+ r

ν+ν−ν∫

ν

sin t2(x− t)r−1τν(t)τν(x− t) dt

+

ν+ν−ν∫

ν

sin t2(x− t)rτν(t)τ ′ν(x− t) dt. (23)

Now τν(x− ν) is either 0 or 1 for large enough ν and so

N-lim
ν→∞ sin ν2(x− ν)rτν(x− ν) = 0. (24)

Next we have
∣∣∣∣∣

ν+ν−ν∫

ν

t cos t2(x− t)rτν(t)τν(x− t) dt

∣∣∣∣∣ ≤
ν+ν−ν∫

ν

t(t− x)r dt ≤ (ν + ν−ν)r+1ν−ν

and it follows that

lim
ν→∞

∣∣∣∣∣

ν+ν−ν∫

ν

t cos t2(x− t)rτν(t)τν(x− t) dt

∣∣∣∣∣ = 0. (25)

Similarly,

lim
ν→∞

∣∣∣∣∣

ν+ν−ν∫

ν

sin t2(x− t)r−1τν(t)τν(x− t) dt

∣∣∣∣∣ = 0. (26)

Noting that τ ′ν(x− t) = 0 for large enough ν and x 6= 0, it follows that

lim
ν→∞

ν+ν−ν∫

ν

sin t2(x− t)rτν(t)τ ′ν(x− t) dt = 0. (27)
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If x = 0, then

ν+ν−ν∫

ν

sin t2(x− t)rτν(t)τ ′ν(x− t) dt =

ν+ν−ν∫

ν

(−t)r sin t2τν(t)τ ′ν(−t) dt

= −1
2

ν+ν−ν∫

ν

(−t)r sin t2 dτ2
ν (t)

=
(−ν)r sin ν2

2
+

(−1)r

2

ν+ν−ν∫

ν

[rtr−1 sin t2 + 2tr+1 cos t2]τ2
ν (t) dt

and it follows that

N-lim
ν→∞

ν+ν−ν∫

ν

(−t)r sin t2τν(t)τ ′ν(−t) dt = 0. (28)

It now follows from equations (23) to (28) that

N-lim
ν→∞ [(sin+ x2)τ ′ν(x)] ∗ (xr)ν = 0 (29)

and then from Theorem 2 and equation (8) that

−r

r−1∑

i=0

(
r − 1

i

)
(−1)r−iIr−ix

i = [(sin+ x2) ∗ xr]′

= (sin+ x2)′ ∗ xr

= 2(x cos+ x2) ∗ xr.

Equations (19) to (22) follow. ¤

Corollary 4.1. The commutative neutrix convolution (x sin− x2) ∗ xr exists
and

(x cos− x2) ∗ xr =
r

2

r−1∑

i=0

(
r − 1

i

)
(−1)r−iIr−ix

i (30)

for r = 1, 2, . . . . In particular,

(x cos− x2) ∗ 1 = 0, (31)

(x cos− x2) ∗ x = −1
4
, (32)

(x cos− x2) ∗ x2 =
√

π

4
√

2
− x

2
. (33)



SOME COMMUTATIVE NEUTRIX CONVOLUTIONS · · · 19

Proof. Equations (30) to (33) follow on replacing x by −x in equations (19)
to (22) respectively and using equation (17). ¤
Corollary 4.2. The commutative neutrix convolution (x cosx2) ∗ xr exists
and

(x cosx2) ∗ xr = 0 (34)
for r = 1, 2, 3, . . . .

Proof. Equation (34) follows from equations (19) and (30) on noting that
cosx2 = cos+ x2 + cos− x2. ¤
Theorem 5. The commutative neutrix convolution S+(x) ∗ xr exists and

S+(x) ∗ xr =
√

2√
π(r + 1)

r∑

i=0

(
r + 1

i

)
(−1)r−i+1Ir−i+1x

i (35)

for r = 0, 1, 2, . . . . In particular

S+(x) ∗ 1 = − 1√
2π

, (36)

S+(x) ∗ x =
1
8
− 1√

2π
x. (37)

Proof. We put [S+(x)]ν = S+(x)τν(x) and (xr)ν = xrτν(x). Then the con-
volution [S+(x)]ν ∗ (xr)ν exists and

[S+(x)]ν∗(xr)ν =

ν∫

0

S(t)(x−t)rτν(x−t) dt+

ν+ν−ν∫

ν

S(t)(x−t)rτν(t)τν(x−t) dt.

(38)
If 0 ≤ |x| ≤ ν, then

√
π

2

ν∫

0

S(t)(x− t)rτν(x− t) dt =

ν∫

0

(x− t)r

t∫

0

sinu2 du dt

=

ν∫

0

sinu2

ν∫

u

(x− t)r dt du

= − 1
r + 1

ν∫

0

sinu2[(x− ν)r+1 − (x− u)r+1] du

= − 1
r + 1

ν∫

0

r∑

i=0

(
r + 1

i

)
xi[(−ν)r−i+1 − (−u)r−i+1] sinu2 du
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and it follows that

N-lim
ν→∞

ν∫

0

S(t)(x−t)rτν(x−t) dt =
√

2√
π(r + 1)

r∑

i=0

(
r + 1

i

)
(−1)r−i+1Ir−i+1x

i.

(39)
Further, for each fixed x

√
π

2

∣∣∣∣∣

ν+ν−ν∫

ν

S(t)(x− t)rτν(t)τν(x− t) dt

∣∣∣∣∣ ≤
ν+ν−ν∫

ν

|x− t|r
t∫

0

| sinu2| du dt

≤
ν+ν−ν∫

ν

t(t− x)r dt ≤ (ν + ν−ν)r+1ν−ν

and it follows that

lim
ν→∞

ν+ν−ν∫

ν

S(t)(x− t)rτν(t)τν(x− t) dt = 0. (40)

Equation (35) now follows immediately from equations (38), (39) and (40).
¤

Corollary 5.1. The commutative neutrix convolution S−(x) ∗ xr exists and

S−(x) ∗ xr =
√

2√
π(r + 1)

r∑

i=0

(
r + 1

i

)
(−1)r−iIr−i+1x

i (41)

for r = 0, 1, 2, . . . . In particular

S−(x) ∗ 1 =
1√
2π

, (42)

S−(x)©∗ x = −1
8

+
1√
2π

x. (43)

Proof. Equations (41), (42) and (43) follow on replacing x by −x in equa-
tions (35), (36) and (37) respectively and using equation (17). ¤
Corollary 5.2. The commutative neutrix convolution S(x) ∗ xr exists and

S(x) ∗ xr = 0 (44)

for r = 0, 1, 2, . . . .

Proof. Equation (44) follows from equations (35) and (41) on noting that
S(x) = S+(x) + S−(x). ¤
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